

ffirs.indd iiffirs.indd ii 8/9/12 2:02 PM8/9/12 2:02 PM

BEGINNING PERL

INTRODUCTION . xxiii

CHAPTER 1 What Is Perl? . 1

CHAPTER 2 Understanding the CPAN . 25

CHAPTER 3 Variables .41

CHAPTER 4 Working with Data . 83

CHAPTER 5 Control Flow . 125

CHAPTER 6 References . 157

CHAPTER 7 Subroutines . 175

CHAPTER 8 Regular Expressions . 219

CHAPTER 9 Files and Directories . 249

CHAPTER 10 sort, map, and grep . 287

CHAPTER 11 Packages and Modules . 315

CHAPTER 12 Object Oriented Perl . 353

CHAPTER 13 Moose . 399

CHAPTER 14 Testing . 439

CHAPTER 15 The Interwebs . 481

CHAPTER 16 Databases . 523

CHAPTER 17 Plays Well with Others. 545

CHAPTER 18 Common Tasks . 567

CHAPTER 19 The Next Steps . 611

APPENDIX Answers to Exercises . 655

INDEX . 695

ffirs.indd iffirs.indd i 8/9/12 2:02 PM8/9/12 2:02 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ffirs.indd iiffirs.indd ii 8/9/12 2:02 PM8/9/12 2:02 PM

BEGINNING

Perl

ffirs.indd iiiffirs.indd iii 8/9/12 2:02 PM8/9/12 2:02 PM

ffirs.indd ivffirs.indd iv 8/9/12 2:02 PM8/9/12 2:02 PM

BEGINNING

Perl

Curtis “Ovid” Poe

John Wiley & Sons, Inc.

ffirs.indd vffirs.indd v 8/9/12 2:02 PM8/9/12 2:02 PM

Beginning Perl

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-01384-7
ISBN: 978-1-118-22187-7 (ebk)
ISBN: 978-1-118-23563-8 (ebk)
ISBN: 978-1-118-26051-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012944681

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 8/9/12 2:02 PM8/9/12 2:02 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

This book is dedicated to my wife, Leïla, and our

daughter, Lilly-Rose.

When I fi rst had the opportunity to write this book,

I was going to turn it down because I had a newborn

daughter. Leïla, however, insisted I write it. She

knows how much I love writing and was adamant that

she would be supportive while I wrote this book. She

has been more than supportive: She has kept me going

through a long, painful process. Leïla, I love you. And

beaucoup. You know what I mean.

ffirs.indd viiffirs.indd vii 8/9/12 2:02 PM8/9/12 2:02 PM

Acquisitions Editor

Mary James

Project Editor

Maureen Spears

Technical Editor

chromatic

Production Editor

Christine Mugnolo

Copy Editor

San Dee Phillips

Editorial Manager

Mary Beth Wakefi eld

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager

Ashley Zurcher

Business Manager

Amy Knies

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Neil Edde

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Proofreader

James Saturnio, Word One New York

Indexer

Robert Swanson

Cover Designer

Ryan Sneed

Cover Image

© RTimages / iStockPhoto

CREDITS

ffirs.indd viiiffirs.indd viii 8/9/12 2:02 PM8/9/12 2:02 PM

ABOUT THE AUTHOR

CURTIS “OVID” POE started programming back in 1982 and has been programming Perl almost
exclusively for 13 years. He currently sits on the Board of Directors for the Perl Foundation, speaks
at conferences in many countries, but is most proud of being a husband and father.

ABOUT THE TECHNICAL EDITOR

CHROMATIC is a prolifi c writer and developer. He is most recently the author of Modern Perl, from
Onyx Neon Press (http://onyxneon.com/).

ffirs.indd ixffirs.indd ix 8/9/12 2:02 PM8/9/12 2:02 PM

http://onyxneon.com/

ffirs.indd xffirs.indd x 8/9/12 2:02 PM8/9/12 2:02 PM

ACKNOWLEDGMENTS

AS WITH MANY BOOKS, this one would not have been possible without many people helping me
along the way. In particular, I want to thank Michael Rasmussen, my “secret reviewer” who, despite
not being one of the offi cial reviewers, nonetheless diligently reviewed every chapter and came back
with many helpful comments that made this a far better book.

I also have to thank chromatic, my technical reviewer, who managed to annoy me time and time
again by pointing out subtle issues that I should have caught but didn’t. He’s a better programmer
than I am, damn it.

Mary James and Maureen Spears, my primary contacts at Wiley, Wrox imprint, were a joy to work
with and really helped keep my spirits up when this book seemed to drag on far longer than
I thought. Their senses of humor and help through the editorial process were invaluable. I also have
to thank San Dee, whoever the heck she is. Her name kept popping up through the editorial process
and her work catching many issues in this book is much appreciated.

I also need to thank Adrian Howard, Ævar Arnfjörð Bjarmason, Alejandro Lopez, Andy
Armstrong, Aristotle, Michael Schwern, Ricardo Signes, Sean T Lewis, and Simon Cozens for
foolishly agreeing to review a book of this length.

Finally, I’d like to thank the people working on the Open Feedback Publishing System at O’Reilly
and for engendering a review community (http://ofps.oreilly.com/titles/9781118013847/) for
this book and for all the helpful comments this site generated.

There are far too many to name and I apologize in advance for not mentioning all of you here.

On a personal note, I have to say that many times I’ve read the comment “and all errors are mine”
and I’ve thought, “But that’s what reviewers are for, right?” The reality is far different. When you
write a book, the reviewers will catch a huge number of issues, as mine did, but they can’t catch all
of them. I now realize that in a work of this scope, I have to take responsibility for any fl aws. The
reviewers are generally not paid for this work and they’re not going to sit there, hours every night,
months on end, worrying over every paragraph as I did. They caught most issues, but the remaining
fl aws in this work are mine and mine alone. Mea Culpa.

ffirs.indd xiffirs.indd xi 8/9/12 2:02 PM8/9/12 2:02 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://ofps.oreilly.com/titles/9781118013847/

ffirs.indd xiiffirs.indd xii 8/9/12 2:02 PM8/9/12 2:02 PM

CONTENTS

INTRODUCTION xxiii

CHAPTER 1: WHAT IS PERL? 1

Perl Today 2

Getting Perl 3

Working with Non-Windows Platforms: perlbrew 4

Using Windows 6

The Perl Community 8

IRC 8

PerlMonks 9

Perl Mongers 9

StackOverfl ow 9

Using perldoc 11

Understanding the Structure of perldoc 11

Getting Started with perldoc 11

Using Tutorials and FAQs 12

Using the perldoc -f function 14

Using a Terminal Window 14

Using the Command Line 15

Creating a Work Directory 16

Creating Hello, World! 18

Writing Your First Program 18

Shebang Lines 21

Summary 22

CHAPTER 2: UNDERSTANDING THE CPAN 25

CPAN and METACPAN 26

Finding and Evaluating Modules 27

Downloading and Installing 29

CPAN Clients 33

Using the CPAN.pm Client 33

Using the Cpanm Client 35

PPM 36

CPAN::Mini 36

Summary 39

ftoc.indd xiiiftoc.indd xiii 8/9/12 8:03 AM8/9/12 8:03 AM

xiv

CONTENTS

CHAPTER 3: VARIABLES 41

What Is Programming? 42

A Few Things to Note Before Getting Started 43

strict, warnings, and diagnostics 43

The my Function 43

Sigils 44

Identifi ers 45

Scalars 46

Strings 47

Numbers 51

Arrays 53

Breaking Down the Code 54

Accessing Elements 55

Iterating over Arrays 58

Hashes 58

Accessing Elements 59

Iterating Over Hashes 60

Adding Data to Hashes 60

Slices 61

Array Slices 62

Hash Slices 62

Context 63

Scalar Context 63

List Context 64

Scope 67

my Variables 67

Package Variables 69

Strict, Warnings, and Diagnostics 72

strict 74

warnings 74

diagnostics 75

Working Without a Net 76

Perl’s Built-in Variables 78

$_ 78

%ENV 79

@ARGV 79

Other Special Variables 80

Summary 81

CHAPTER 4: WORKING WITH DATA 83

Using Scalars 84

Working with Strings 85

ftoc.indd xivftoc.indd xiv 8/9/12 8:03 AM8/9/12 8:03 AM

xv

CONTENTS

Using String Operators 94

Scalar::Util 97

Numeric Builtins 98

Bitwise Operators 103

Understanding Booleans 103

Assignment Operators 108

Precedence and Associativity 109

Array and List Functions 111

Built-in Array Functions 111

List::Util 116

Built-in Hash Functions 116

delete() 116

exists() 117

keys() 117

values() 117

each() 117

Scoping Keywords 119

my() 119

local() 119

our() 120

state() 120

Summary 121

CHAPTER 5: CONTROL FLOW 125

Using the if Statement 126

Understanding Basic Conditionals 126

else/elsif/unless 128

The Ternary Operator ?: 131

for/foreach loops 132

Arrays 132

Lists 135

C-Style 136

Using while/until Loops 142

Lists 143

last/next/redo/continue 144

Labels 146

Statement Modifi ers 147

Types of Statement Modifi ers 147

do while/do until 149

given/when 151

Basic Syntax 151

The Switch Module 153

Summary 154

ftoc.indd xvftoc.indd xv 8/9/12 8:03 AM8/9/12 8:03 AM

xvi

CONTENTS

CHAPTER 6: REFERENCES 157

References 101 158

Array References 158

Hash References 159

Anonymous References 160

Other References 163

Working with References 166

 Debugging 166

Copying 169

Slices 172

Summary 173

CHAPTER 7: SUBROUTINES 175

Subroutine Syntax 176

Argument Handling 177

Multiple Arguments 178

Named Arguments 179

Aliasing 181

State Variables (Pre- and Post-5.10) 181

Passing a List, Hash, or Hashref? 184

Returning Data 186

Returning True/False 186

Returning Single and Multiple Values 188

wantarray 189

FAIL! 190

“Wake Up! Time to Die!” 191

carp and croak 192

eval 192

evalGotchas 194

Try::Tiny 195

Subroutine References 196

Existing Subroutines 196

Anonymous Subroutines 197

Closures 197

Prototypes 200

Argument Coercion 200

More Prototype Tricks 202

Mimicking Builtins 204

Forward Declarations 206

Prototype Summary 207

ftoc.indd xviftoc.indd xvi 8/9/12 8:03 AM8/9/12 8:03 AM

xvii

CONTENTS

Recursion 209

Basic Recursion 209

Divide and Conquer 210

Memoization 211

Things to Watch For 215

Argument Aliasing 215

Scope Issues 216

Doing Too Much 216

Too Many Arguments 217

Summary 217

CHAPTER 8: REGULAR EXPRESSIONS 219

Basic Matching 220

Quantifi ers 221

Escape Sequences 223

Extracting Data 226

Modifi ers and Anchors 228

Character Classes 231

Grouping 232

Advanced Matching 235

Substitutions 235

Lookahead/Lookbehind Anchors 236

Named Subexpressions (5.10) 238

Common Regular Expression Issues 241

Regexp::Common 241

E-mail Addresses 242

HTML 242

Composing Regular Expressions 243

Summary 245

CHAPTER 9: FILES AND DIRECTORIES 249

Basic File Handling 250

Opening and Reading a File 250

File Test Operators 258

The Diamond Operator 260

Temporary Files 260

DATA as a File 261

binmode 262

Directories 265

Reading Directories 265

Globbing 265

ftoc.indd xviiftoc.indd xvii 8/9/12 8:03 AM8/9/12 8:03 AM

xviii

CONTENTS

Unicode 266

What Is Unicode? 267

Two Simple Rules 267

Lots of Complicated Rules 271

Useful Modules 276

File::Find 276

File::Path 278

File::Find::Rule 279

Summary 284

CHAPTER 10: SORT, MAP, AND GREP 287

Basic Sorting 288

Sorting Alphabetically 288

Sorting Numerically 289

Reverse Sorting 290

Complex Sort Conditions 290

Writing a sort Subroutine 292

Sorting and Unicode Fun! 293

map and grep 297

Using grep 298

Using map 303

Aliasing Issues 305

Trying to Do Too Much 306

Trying to Be Clever 307

Putting It All Together 308

Schwartzian Transform (aka decorate, sort, undecorate) 308

Guttman-Rosler Transform 310

Summary 311

CHAPTER 11: PACKAGES AND MODULES 315

Namespaces and Packages 316

use Versus require 321

Package Variables 323

Version Numbers 326

Subroutines in Other Packages 327

Exporting 327

Naming Conventions 330

BEGIN, UNITCHECK, CHECK, INIT, and END 335

BEGIN blocks 336

END Blocks 337

ftoc.indd xviiiftoc.indd xviii 8/9/12 8:03 AM8/9/12 8:03 AM

xix

CONTENTS

INIT, CHECK, and UNITCHECK Blocks 337

Plain Old Documentation (POD) 338

Documentation Structure 340

Headings 340

Paragraphs 341

Lists 341

Verbatim 342

Miscellaneous 342

Creating and Installing Modules 344

Creating a Simple Module 344

Makefi le.PL or Module::Build? 349

Summary 349

CHAPTER 12: OBJECT ORIENTED PERL 353

What Are Objects? The Ævar the Personal Shopper 354

Three Rules of Perl OO 355

Class Is a Package 355

An Object Is a Reference That Knows Its Class 356

A Method Is a Subroutine 358

Objects – Another View 371

Using TV::Episode 371

Subclassing 374

Using TV::Episode::Broadcast 375

Class Versus Instance Data 379

A Brief Recap 381

Overloading Objects 381

Using UNIVERSAL 385

Understanding Private Methods 387

Gotchas 393

Unnecessary Methods 393

“Reaching Inside” 394

Multiple Inheritance 394

Summary 397

CHAPTER 13: MOOSE 399

Understanding Basic Moose Syntax 400

Using Attributes 402

Using Constructors 405

Understanding Inheritance 408

Taking Care of Your Moose 409

ftoc.indd xixftoc.indd xix 8/9/12 8:03 AM8/9/12 8:03 AM

xx

CONTENTS

Advanced Moose Syntax 413

Using Type Constraints 414

Using Method Modifi ers 417

Understanding and Using Roles 420

Exploring MooseX 425

Rewriting Television::Episode 428

Moose Best Practices 433

Use namespace::autoclean and Make Your Class Immutable 434

Never Override new() 434

Always Call Your Parent BUILDARGS Method 434

Provide Defaults if an Attribute is Not Required 434

Default to Read-Only 434

Put Your Custom Types in One Module and
Give Them a Namespace 435

Don’t Use Multiple Inheritance 435

Always Consume All Your Roles at Once 435

Summary 436

CHAPTER 14: TESTING 439

Basic Tests 440

Using Test::More 440

Writing Your Tests 442

Understanding the prove Utility 443

Understanding Test::More Test Functions 444

Using ok 445

Using is 445

Using like 448

Using is_deeply 449

Using SKIP 450

Using TODO 450

Using eval {} 451

Using use_ok and require_ok 452

Working with Miscellaneous Test Functions 453

Using Other Testing Modules 457

Using Test::Diff erences 457

Using Test::Exception 459

Using Test::Warn 460

Using Test::Most 460

Understanding xUnit Style Using Testing 461

Using Test::Class 461

A Basic Test Class 463

Extending a Test Class 467

ftoc.indd xxftoc.indd xx 8/9/12 8:03 AM8/9/12 8:03 AM

xxi

CONTENTS

Using Test Control Methods 471

Calling Parent Test Control Methods 473

Summary 477

CHAPTER 15: THE INTERWEBS 481

A Brief Introduction to HTTP 482

Plack 484

Hello, World! 484

Handling Parameters 490

Templates 492

Handling POST Requests 496

Sessions 500

Web Clients 511

Extracting Links from Web Pages 512

Extracting Comments from Web Pages 514

Filling Out Forms Programmatically 515

Summary 520

CHAPTER 16: DATABASES 523

Using the DBI 524

Connecting to a Database 524

Using SQLite 527

Using DBD::SQLite 527

Selecting Basic Data 533

Using SELECT Statements 533

Using Bind Parameters 536

Inserting and Updating Data 539

Creating Transactions 540

Handling Errors 541

Summary 542

CHAPTER 17: PLAYS WELL WITH OTHERS 545

The Command Line 546

Reading User Input 546

Handling Command-Line Arguments 548

perlrun 551

Other Programs 556

Running an External Program 556

Reading Another Program’s Output 559

Writing to Another Program’s Input 560

STDERR 562

Summary 565

ftoc.indd xxiftoc.indd xxi 8/9/12 8:03 AM8/9/12 8:03 AM

xxii

CONTENTS

CHAPTER 18: COMMON TASKS 567

Using CSV Data 568

Reading CSV Data 569

Writing CSV Data 570

Understanding Basic XML 571

Reading CSV Data 572

Writing CSV Data 576

Handling Dates 580

Using the DateTime Module 580

Using Date::Tiny and DateTime::Tiny 581

Understanding Your Program 587

Using the Debugger 587

Profi ling 594

Perl::Critic 604

Summary 608

CHAPTER 19: THE NEXT STEPS 611

What Next? 612

What This Book Covers 612

What This Book Leaves Out 613

Understanding Object-Relational Mappers 613

Understanding DBIx::Class 614

Understanding Basic DBIx::Class Usage 614

Understanding the Pros and Cons of an ORM 618

Using DBIx::Class::Schema::Loader 624

Using the Template Toolkit 625

Why Use Templates? 625

An Introduction to Template Toolkit 626

Using Catalyst to Build Apps 634

The Beauty of MVC 635

Setting Up a Catalyst Application 635

Using Catalyst Views 641

Using Catalyst Models 643

Using Catalyst Controllers 646

CRUD: Create, Read, Update, and Delete 648

Summary 651

APPENDIX: ANSWERS TO EXERCISES 655

INDEX 695

ftoc.indd xxiiftoc.indd xxii 8/9/12 8:03 AM8/9/12 8:03 AM

INTRODUCTION

“Get a job, hippy!”

That was the subtitle for this book that was sadly, but wisely, rejected. However, it conveys two
things about this book that I’ve tried to focus on: getting a job and having fun while learning the
skills you need. Well, as much fun as you can reasonably have while learning how to program.

Although many books aren’t explicit in this intent, I’ll say it up front: This book is about money.
Information Technology (IT) workers are in high demand, even during the current economic down-
turn, and this book draws not only on your author’s 13 years of experience with the Perl program-
ming language, but also on surveys that have been conducted regarding “Perl in the wild.” That’s
why you’ll fi nd an astonishing decision in this book: We focus on Perl versions 5.8 and 5.10. They’re
no longer offi cially supported, but these are the versions of Perl that most companies still use.
Fortunately, the Perl 5 Porters (also known as P5P) strive hard to maintain backward compatibility,
so the code in this book still runs on the latest versions of Perl. As a result of this focus, by the time
you fi nish this book, you’ll have the skills necessary to accept many Perl jobs.

I fi rst conceived of a Perl book aimed at developing job skills when I was living in Portland, Oregon.
Later, I moved to London and made a few inquiries about working on it, but to no avail. Then I
moved to Amsterdam and started working with Wrox to create this book. I’m now living in Paris
and am fi nishing this book. The common thread in all those cities is that Perl opened up the door
for jobs. With many other excellent dynamic programming languages, such as PHP, Python, and
Ruby fi ghting for the same slice of the pie, some Perl developers moved to other languages, leaving
companies in need of developers to maintain their code and build new systems in Perl. Perl develop-
ers are in high demand, and this book is about meeting that demand.

Lest you think that Perl is just for maintaining legacy code, I can assure you that plenty of com-
panies, large and small, are still turning to Perl as their fi rst choice of programming language. It’s
powerful, solid, and the Comprehensive Perl Archive Network (CPAN) is still the largest collection
of open source code dedicated to a single language. Many times you’ll fi nd that rather than need-
ing to write new code to solve a tricky problem, you can turn to the CPAN and fi nd that someone’s
already written that code.

I’ve been paid to program in many languages, including 6809 Assembler (boy, did I just date myself,
or what?), BASIC, C, Java, COBOL, FOCUS, JCL (Job Control Language), VBA, and JavaScript,
but I keep coming back to Perl. Why? Well, why not? It’s a powerful language. If your programming
needs are CPU-bound, such as in real-time ray tracing, then Perl may not be the best choice, but oth-
erwise, it’s an excellent language. I tend to work on large-scale database-driven applications, and the
performance issues there are usually located in the network, the database, or the fi le system. You’d
have the same performance issues regardless of the programming language, so you may as well
choose a language that you enjoy.

flast.indd xxiiiflast.indd xxiii 8/9/12 8:08 AM8/9/12 8:08 AM

xxiv

INTRODUCTION

So what have I done with Perl? Probably the most prominent example is movies. If you read in
the paper that your favorite movie made x millions of dollars over the weekend, there’s a good
chance that I worked on the Perl software that processes those numbers (in real time, I might add)
because those numbers are often reported by a single company.

I also worked for several years on the central metadata repository for the BBC, the world’s largest
broadcaster. When another team in the BBC needs data about programs (if you’re in the UK,
you may have heard of this little thing called iPlayer), it probably called the Perl software that
I worked on.

I also worked for the world’s largest online hotel reservation fi rm. When I started, the fi rm was busy
converting many of its Java programs to Perl because Perl was just so darned useful. Almost all its
backend code is written in Perl, which is a large part of its huge success.

I currently work for Weborama, one of the pioneers of online marketing technologies in Europe.
I deal with insane amounts of traffi c and data, all of which Perl handles quite nicely. In fact,
Weborama ditched some other popular programming languages in favor of Perl because, well, Perl
just gets the job done.

At the end of the day, Perl is so much fun to use that although I still dabble in other languages
(mostly JavaScript, but Erlang is looking particularly interesting right now), I’m happy to keep hack-
ing in Perl. I dash out a quick bash script from time to time and then kick myself when I fi nd it’s
easier to write in Perl as soon as it starts getting complicated. Perl has been very good to me.

WHO THIS BOOK IS FOR

Is this book for you? I’ve tried hard to ensure that even someone with no programming experience
can pick up this book and learn Perl.

If You Have No Programming Experience

However, if you have no programming experience, you’re going to want to pay a lot of attention to
Chapter 1, where I describe many different resources available to help a new programmer. You’ll
generally fi nd the Perl community to be a friendly place, always happy to help someone learn.
Without a background in computers, you might struggle with Chapter 2, which is about installing
Perl code from the CPAN, but just turn back to Chapter 1 for a many excellent resources on where
to turn for help (including local user groups where you can meet other Perl programmers). After you
get over the learning curve in Chapter 2, you’ll fi nd the rest of the book to be as straightforward as
a programming book can be.

If You’re An Experienced Programmer

If you’re an experienced programmer looking for a comprehensive resource into a language, this
is that book. Chapter 1 mostly covers where to look for help, but you probably already know how
to fi nd programming answers by now. Chapter 2 is about installing Perl modules from the CPAN
and that’s worth at least skimming, but you’re going to want to start paying attention at Chapter 3,
where we discuss Perl’s variables. Perl doesn’t focus much on the kinds of data you use, but how you

flast.indd xxivflast.indd xxiv 8/9/12 8:08 AM8/9/12 8:08 AM

xxv

INTRODUCTION

organize that data. Perl makes the assumption that you’re competent and know what your data is
and makes it easy to organize your data they way you need it.

WHAT THIS BOOK COVERS

Though this will come as a surprise to some, we focus on two unsupported versions of Perl: 5.8
and 5.10. This is because multiple surveys and your author’s personal experience working for and
consulting with multiple companies show that they’re conservative about upgrading programming
languages and tend to use older versions. Fortunately, P5P focuses heavily on ensuring that newer
versions of Perl are backward compatible, so all of the examples in this book should work on the
newest versions of Perl. When appropriate, we do discuss some newer features that you may encoun-
ter and clearly indicate when this happens.

We focus on the core of the Perl language, and then move to working with databases, with a focus
on web technologies. Why web technologies? Money. This book is about getting a job. If you don’t
already know SQL or HTML, it will eventually (by Chapter 15) be worth hitting some online tuto-
rials to learn a bit of SQL and HTML. You won’t need much to use to use this book, but it will be
worth understanding the basics to make some examples easier to understand.

HOW THIS BOOK IS STRUCTURED

This book is written so that each chapter builds on previous chapters.

 ➤ Chapters 1 and 2: The fi rst two chapters of this book (cunningly referred to as Chapters 1
and 2), are mostly background information. They tell you where to look for extra help and
how to set up a CPAN client to install additional Perl modules.

 ➤ Chapters 3 through 10: These chapters cover the core of the Perl language. By the time
you’re done with them, you should fi nd it easy to write Perl to handle many common tasks.
They are actually the “Beginning Perl” this book’s title refers to.

 ➤ Chapters 11 through 13: These chapters start covering modules (a way to organize your
code) and object-oriented programming (a powerful way to create reusable “experts”
that can handle common programming tasks).

 ➤ Chapter 14: This chapter covers testing, a subject near and dear to my heart. Many pro-
grammers suffer from fear-driven programming. This is a problem when you work with
large systems and are afraid to change something because you don’t know what it will
break. Done right, testing can free you from that fear and give you the confi dence to make
any changes you might need, even on large systems.

 ➤ Chapters 15 through 18: These are somewhat optional, but don’t skip them. They’re the
chapters that can give you a smattering of skills that mid- to high-level Perl programmers
need. You learn how easy it is to build websites in Perl, how to work with databases, how to
handle many common tasks (such as working with dates), and how to work with command
line applications.

flast.indd xxvflast.indd xxv 8/9/12 8:08 AM8/9/12 8:08 AM

xxvi

INTRODUCTION

 ➤ Chapter 19: This chapter fi nishes up by summarizing what you’ve covered and what you
still have to learn. You also build a web application to manage multimedia rights data to
fi ght DMCA takedown notices. It’s an ambitious task, but you can see how easy it is to do
with Perl and the CPAN.

 ➤ Appendix: Each chapter in this book ends with a set of exercises to further sharpen the
skills you’ve learned throughout the chapter. This appendix gives the answers to those exer-
cises. Don’t cheat and read them fi rst because that would be, uh, cheating.

WHAT YOU NEED TO USE THIS BOOK

Perl code, fortunately, runs on almost every operating system and often requires no changes when
switching from, say, Windows to Linux. The only thing you will need to use the examples in this
book is Perl version 5.8 or newer. Later chapters require that you install code from the CPAN, but
Chapter 2 covers using the CPAN thoroughly.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

How It Works

After each Try It Out, the code you’ve typed will be explained in detail.

WARNING Boxes with a warning icon like this one hold important, not-to-be

 forgotten information that is directly relevant to the surrounding text.

NOTE The pencil icon indicates notes, tips, hints, tricks, or and asides to the cur-

rent discussion.

flast.indd xxviflast.indd xxvi 8/9/12 8:08 AM8/9/12 8:08 AM

xxvii

INTRODUCTION

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that’s particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at http://www.wrox.com. A fi le name is provided for each code snippet or
listing presented in the book and this fi le name corresponds to the source code on the www.wrox.com
site. When at the site, simply locate the book’s title (either by using the Search box or by using one
of the title lists) and click the Download Code link on the book’s detail page to obtain all the source
code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to search

by ISBN; this book’s ISBN is 978-1-118-01384-7.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling
mistake or faulty piece of code, we would be grateful for your feedback. By sending in errata you
may save another reader hours of frustration and at the same time you can help us provide even
higher quality information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at http://www.wrox.com/
misc-pages/booklist.shtml.

flast.indd xxviiflast.indd xxvii 8/9/12 8:08 AM8/9/12 8:08 AM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml

xxviii

INTRODUCTION

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you want new messages from a particular forum e-mailed to
you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

For Instructors: Classroom and training support material are available for this book.

If you don’t spot “your” error on the Book Errata page, go to http://www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in subse-
quent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you can fi nd a number of different forums to help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P but to post

your own messages, you must join.

flast.indd xxviiiflast.indd xxviii 8/9/12 8:08 AM8/9/12 8:08 AM

http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://P2P.WROX.COM
http://p2p.wrox.com
http://p2p.wrox.com

What Is Perl?

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Getting Perl

 ➤ Learning about the community

 ➤ Understanding the Perl documentation

 ➤ Using a terminal

 ➤ Writing your fi rst Hello, World! program

My goodness, where to start? To even begin to cover a language with such a rich history and
huge infl uence over the world of computing and the web is a daunting task, so this chapter just
touches on the highlights.

By the time you fi nish with this chapter, you’ll have a good understanding of the history of
Perl and where to go to get more help when you need to know more than this book offers.
Learning how to fi nd the answers to your questions is probably one of the most valuable skills
you can develop.

Before you install Perl, a word about Perl terminology — information that you need to know
to converse intelligently with other Perl users.

The name of the language is Perl. It is not PERL. Larry Wall, the creator of Perl, originally
wanted a name with positive connotations and named the language Pearl, but before its
release, he discovered another programming language named Pearl, so he shortened the
name to Perl.

The name of the language causes a bit of confusion. When people write Perl (uppercase), they
are referring to the programming language you learn in this book. When people write perl
(lowercase), they are referring to the binary executable used to run Perl, the language.

1

c01.indd 1c01.indd 1 8/9/12 8:34 AM8/9/12 8:34 AM

2 ❘ CHAPTER 1 WHAT IS PERL?

So perl is the binary and Perl is the language. The former parses and runs the latter: perl parses
and runs Perl. If someone writes PERL, you know immediately that they’re not familiar with the
Perl language. This is why sometimes you see experienced programmers use PERL to refer to poorly
written Perl programs.

Due to the wording of the original documentation that shipped with Perl, many programmers
assume that PERL is an acronym for Practical Extraction and Report Language. However
 perlfaq1 — the documentation that shipped with Perl — sets the record straight:

... never write “PERL”, because perl is not an acronym, apocryphal
 folklore and post-facto expansions notwithstanding.

Remember, there is no such thing as PERL. It’s Perl, the language, or perl, the executable.

DYNAMIC PROGRAMMING LANGUAGES

Perl, Python, Ruby, and PHP are all examples of dynamic programming languages.
In contrast to languages such as Java, C++, and other static programming
languages, the dynamic languages often delay certain things until run time that
static languages might decide at compile time, such as determining which class a
method will dispatch to. Without going into detail beyond the scope of this book,
dynamic languages tend to be rapid to develop in, but have certain kinds of errors
that are less common in static languages.

Discussions about dynamic and static typing are about type theory, and the
terms are poorly defi ned. However, there is one solid rule you should remember:
Computer scientists have reasonable disagreements about type theory,
whereas computer programmers have unreasonable ones. If you get into “static
versus dynamic languages” debates, and you don’t understand type theory, you’re
going to sound like a fool to those who do. So don’t do that.

PERL TODAY

Today, Perl is widely used throughout the world. It comes standard on every major operating system
apart from Windows and is still extensively used in web development, thus driving many websites.
New startups choose Perl as their language of choice for data processing, system administration,
web development, and other uses.

As of this writing, Ricardo Signes, a long time Perl hacker, is overseeing the development of
Perl. Perl 6, a new language with roots in Perl 5, is being actively worked on with several interesting
implementations, including a Niecza, which runs on Mono/.NET.

c01.indd 2c01.indd 2 8/9/12 8:34 AM8/9/12 8:34 AM

Getting Perl ❘ 3

This book mostly focuses on 5.8.x and 5.10.x versions of Perl, even though support for both of these
has offi cially been discontinued. Why? This was a diffi cult decision to make, but there were several
reasons for this decision. An important consideration is that surveys show most businesses still run
these versions of Perl. It’s a strange thing for a book author to stand up and say, “This book
targets an unsupported version of the language,” but you go to war with the Perl you have, not the
Perl you want.

Fortunately, this choice isn’t as bad as it might sound. The Perl 5 Porters (known as “P5P”) work
hard to keep new releases of Perl backward compatible. Perl 5.14.2 ships with almost half a million
tests (455,832, to be exact) to ensure that Perl works exactly as intended. Thus, what you learn to
write throughout this book generally works unmodifi ed on later versions of Perl.

GETTING PERL

Obviously, it’s diffi cult to program Perl if you don’t have it installed on your computer; this section
covers several methods for doing this. Even if you already have Perl installed, you should to read this
section anyway because if your system depends on your Perl installation, you might want to install
a separate version to avoid changing behavior that your system requires.

So how do you get Perl? Well, you’re in luck. Almost every major operating system aside from
Windows ships with Perl by default. This is often referred to as the system Perl. You can test
whether you already have Perl installed by opening up a terminal and typing perl -v at the
command line. Currently, on my MacBook Pro, this prints the following:

$ perl -v
This is perl 5, version 14, subversion 2 (v5.14.2) built for darwin-2level
Copyright 1987-2011, Larry Wall
Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.
Complete documentation for Perl, including FAQ lists, should be found on
this system using “man perl” or “perldoc perl”. If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Perl is supported on more than 100 platforms — did you even know there were that many? If you
want a different version of Perl than what you already have installed, go to http://www.perl.org/
get.html.

PERL JOB OPPORTUNITIES

A quick search of many job sites shows plenty of opportunities, but there are fewer
competent developers vying for these roles. If a career in Perl interests you, you can
also check out http://jobs.perl.org/ for a website dedicated to listing jobs that
have Perl as their major technology, compared to jobs where Perl is merely used
incidentally.

c01.indd 3c01.indd 3 8/9/12 8:34 AM8/9/12 8:34 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.perl.org/
http://www.perl.org/get.html
http://www.perl.org/get.html
http://jobs.perl.org/

4 ❘ CHAPTER 1 WHAT IS PERL?

Working with Non-Windows Platforms: perlbrew

If you do not run Windows, check out perlbrew (http://www.perlbrew.pl/). This tool enables
you to install multiple and run different versions of Perl.

Running different Perl installations is important because there’s a good chance that some of your
operating system depends on the behavior of the system Perl. Therefore, using perlbrew to install
your own versions of Perl not only ensures that you don’t need to worry about breaking your system
Perl, but you also can play with different versions.

That being said, so long as you’re not overwriting any modules that your system Perl uses, it’s
fi ne to use your system Perl for learning Perl. It’s also usually fi ne to upgrade your system modules,
but it’s not recommended. If a core module your system depends on changes in an incompatible
way, the results are unpredictable. Windows does not have this problem because it does not
depend on Perl.

If your system has both bash and curl installed, you can try to install perlbrew with the following
command-line command:

curl -kL http://xrl.us/perlbrewinstall | bash

If you don’t have curl installed but you do have wget, you can install perlbrew with this:

wget --no-check-certificate -O - http://install.perlbrew.pl | bash

If that works on your system, it should enable you to easily install multiple versions of Perl without
superuser (root, or administrator) permissions. It’s then easy to switch between those versions.
This has many benefi ts, including the following:

 ➤ It’s easy to try new versions of Perl.

 ➤ You don’t risk breaking your system’s Perl.

 ➤ You don’t need superuser permission to install Comprehensive Perl Archive Network
(CPAN) modules.

 ➤ You can test production code on newer versions of Perl.

NOTE If you use OS X, you already have Perl installed. However, you will

 eventually build modules or install other modules. To do this, you need to install

the Developer Tools found on your OS X install DVD or in Apple’s AppStore.

Only the UNIX Development Support tools are required, but there’s no harm

(other than disk space) in installing all of them. Why Apple built a wonderful

 computer for developers and made the development tools optional is one of

life’s many inscrutable mysteries.

c01.indd 4c01.indd 4 8/9/12 8:34 AM8/9/12 8:34 AM

http://www.perlbrew.pl/
http://xrl.us/perlbrewinstall
http://install.perlbrew.pl

Getting Perl ❘ 5

To install and use Perl version 5.14.2, type the following (but see the perlbrew available
 command below):

perlbrew install perl-5.14.2
perlbrew switch perl-5.14.2

The installation takes a while because perlbrew needs to download and build the version of
Perl you’re asking for.

After perlbrew installs, you can use the following commands:

 ➤ perlbrew help: Typing perlbrew help shows you how to use perlbrew. It’s quite easy.

 ➤ Installing an older Perl version: If you want to install an older version of Perl, you can
run the following:

perlbrew install perl-5.8.3

 ➤ Switching versions: You can run perlbrew list to see which versions of Perl you have
installed and can switch to a different version. Following is the author’s setup:

$ perlbrew list
 perl-5.10.1
 perl-5.12.3
 perl-5.14.0
* perl-5.14.2
 perl-5.8.3

The asterisk before the version indicates which version of Perl you’re running at the moment.

 ➤ Testing code: To test your code against different versions of Perl, use the following:

perlbrew exec myprogram.pl

The author used this command extensively while writing this book because it’s extremely
useful when you want to fi nd out if your code is compatible with different versions of Perl.

 ➤ Available versions: As of this writing, following are the Perl versions available to install on
the author’s computer. The perlbrew available command lists all available versions:

$ perlbrew available
 perl-5.15.4
i perl-5.14.2
 perl-5.12.4
i perl-5.10.1
 perl-5.8.9
 perl-5.6.2
 perl5.005_04
 perl5.004_05
 perl5.003_07

The leading i indicates which versions of Perl you have installed, and the list of available
versions will grow over time.

If you can use perlbrew, it will make your programming life much more pleasant.

c01.indd 5c01.indd 5 8/9/12 8:34 AM8/9/12 8:34 AM

6 ❘ CHAPTER 1 WHAT IS PERL?

Using Windows

Windows is one of the few operating systems that does not include Perl by default. This makes
things a bit more diffi cult, but you have a wide variety of options here. Your author recommends
Strawberry Perl, but ActivePerl is also an excellent choice. Cygwin is only recommended only if you
want a Linux emulation layer.

Strawberry Perl

Strawberry Perl (http://strawberryperl.com) is the newest option for Windows, but it’s the one
many developers prefer today. It’s also free and it’s the choice of Perl that Larry Wall utilizes when
he uses Windows. Strawberry Perl does not offer commercial support. Like many open source
projects, support is excellent — but on a volunteer basis.

When you install Strawberry Perl, the following software is installed with it:

 ➤ Mingw GCC C/C++ compiler

 ➤ dmake make tool

 ➤ ExtUtils::CBuilder and ExtUtils::ParseXS

 ➤ Bundle::CPAN

 ➤ Bundle::LWP (which provides more reliable HTTP CPAN repository support)

 ➤ XML::Parser and XML::LibXML, which enables most CPAN XML modules

 ➤ DBI and DBD drivers for SQLite, ODBC, MySQL, and Postgres

 ➤ Additional minor modules to enhance the stability of Win32 Perl.

Don’t worry about what all this means for now. As you move further along in the book, these items
will start to make sense. Just know that they make Perl on Windows easy enough to use that it
rivals Perl on Linux for many tasks. Unless you have a particular reason to use another version of
Perl, the author recommends Strawberry Perl. Some things to remember with Strawberry Perl follow:

 ➤ Pros: Strawberry Perl “just works.” Almost everything you need to develop Perl is bundled
with it, including many tools that are usually mandatory in a work environment.

 ➤ Cons: It’s relatively new and companies that rely on Windows are sometimes uncomfortable
with software that lacks commercial support.

NOTE Using perlbrew is great, but it requires that you already have Perl 5.8 or

newer installed on your system. However, as because version 5.8 was released

in July of 2002 (see as shown in Table 1-1), this is generally not a problem.

c01.indd 6c01.indd 6 8/9/12 8:34 AM8/9/12 8:34 AM

http://strawberryperl.com

Getting Perl ❘ 7

ActiveState Perl

Another strong alternative for Windows is ActivePerl (http://www.activestate.com/
activeperl). It’s free, but commercial support is provided. ActivePerl has been available for more
than a decade and is probably the most popular Perl for Windows. When considering ActivePerl,
remember the following:

 ➤ Pros: ActivePerl has been around for more than a decade, and it is maintained by a company
with a strong history of supporting Perl and dynamic languages. It’s also often updated
faster than Strawberry Perl. Additionally, some binary packages are easier to install with
ActiveState than with Strawberry Perl.

 ➤ Cons: ActivePerl does not ship with the full set of tools with which Strawberry Perl ships.
Further, it contains some non-open source utilities and, unlike Strawberry Perl, it cannot be
embedded in other open source projects.

Cygwin

One way to run Perl on Windows is to install Cygwin, a free Linux emulator for Windows. You can
download Cygwin from http://www.cygwin.com/. Click the Install Cygwin link for instructions.

By default, Cygwin does not install Perl. You can easily fi nd instructions on the web for installing
and running Perl under Cygwin, including many useful YouTube videos. If you go this route,
make sure that when you install Cygwin, you select both Perl and the GCC/C++ packages from
Development menu when you’re given a choice on which packages to install. However, to get the
most out of Perl on Cygwin, make sure you have the following packages installed:

 ➤ perl

 ➤ gcc/C++

 ➤ gnupg

 ➤ gzip

 ➤ lynx

 ➤ make

 ➤ ncftp

 ➤ ncftpget

 ➤ tar

 ➤ unzip

 ➤ wget

This list should cover most of what you need. Keep the following in mind:

 ➤ Pros: With Cygwin, you get a Linux environment, which means that most Perl programs
can run unchanged.

 ➤ Cons: As an emulation layer, it tends to be a bit slow. It’s also a bit diffi cult to install
 everything correctly if you’re not used to it.

c01.indd 7c01.indd 7 8/9/12 8:34 AM8/9/12 8:34 AM

http://www.activestate.com/activeperl
http://www.activestate.com/activeperl
http://www.cygwin.com/

8 ❘ CHAPTER 1 WHAT IS PERL?

THE PERL COMMUNITY

You didn’t read detailed instructions on how to install Perl for Windows or how to install alterna-
tive versions of Perl on your operating system of choice. As mentioned previously, Perl is supported
on more than 100 platforms, and although the author has tried writing instructions on how to
do this in the past, the impossibility of handling that obscure error that someone inevitably has
makes this diffi cult. Fortunately, Perl is easy to install on Windows, and the language has a strong
community supporting it; this community can help you work through even the most unusual issues.

Because the Wrox “Programmer to Programmer” series targets experienced developers looking to
expand their skills, you, the developer, will likely be familiar with software installation. If you’re
new to programming, you might need a bit more help. Either way, the following sections discuss a
variety of resources to help you start.

NOTE If you have issues getting Perl to run on Windows, go to http://win32

.perl.org/. Your easiest (and best) options are to go with the ActiveState or

Strawberry Perl options, but win32.perl.org gives you plenty of answers to

questions you may encounter.

NOTE Consult these sources regularly when you get stuck on a particular

 problem. This is one of the lovely things about the open source community:

Quality help is widely available, and it’s free. There’s no need to struggle on

your own when so many people can help you learn Perl.

IRC

Internet Relay Chat (IRC) has been around since 1988, and it’s often a great way to get questions
answered “in real time.” With IRC, you have several options:

 ➤ mIRC (http://www.mirc.net/): For Windows, this is probably the most popular IRC
 client, but it’s shareware, and you can use it only for 30 days before paying.

 ➤ KVIrc (http://www.kvirc.net/): This is a good, free choice for a graphical IRC client,
and it’s available for most platforms.

 ➤ Colloquy (http://colloquy.info/): For OS X, the author uses this.

 ➤ Chatzilla (http://chatzilla.hacksrus.com/): If you use the Firefox browser, it has the capa-
ble Chatzilla add-on, which this should work regardless of which operating system you choose.

 ➤ freenode: You can also access freenode with any browser via http://webchat.freenode
.net/.

Actually, any IRC client you’re comfortable with is fi ne.

c01.indd 8c01.indd 8 8/9/12 8:34 AM8/9/12 8:34 AM

http://www.mirc.net/
http://www.kvirc.net/
http://colloquy.info/
http://chatzilla.hacksrus.com/
http://win32.perl.org/
http://win32.perl.org/
http://webchat.freenode.net/
http://webchat.freenode.net/
http://win32.perl.org

The Perl Community ❘ 9

When you get on IRC, connect to the irc.freenode.net server and join #perl. The #perl channel
generally has plenty of users, and you can get many Perl questions answered quickly and easily — or
at least get told where to RTFM, which stands for Read The Manual. (the “F” is silent.)

If you’re not familiar with IRC, hit you favorite search engine and search for list of IRC commands.
You can also consult the Wikipedia page for IRC (http://en.wikipedia.org/wiki/Irc) for more
information, including lists of other IRC clients.

PerlMonks

PerlMonks (http://www.perlmonks.org/) is a fantastically useful Perl site that’s been around for
more than a decade. Your author joined in 2000, unsurprisingly as “Ovid,” and has been a regular
contributor for years.

In the top right corner of the site, you see many useful links. Seekers of Perl Wisdom is probably
the most useful when you need an answer to a problem. When you fi rst post a question, it shows in
Newest Nodes, and many people follow that to try to help answer the new questions. Fortunately,
the regular users at PerlMonks generally don’t suffer as much from the “fi rst post” silliness you
often fi nd at other sites.

In addition to answering questions, PerlMonks has book reviews, Meditations (a section for
people who just want to muse about Perl-related things), tutorials, Perl news, site discussion, and a
chatterbox for those who just want casual conversation or have a quick question.

If you’re serious about learning Perl, PerlMonks is a good place to start. Many of the top minds in
Perl hang out there, and it’s a good resource with plenty of history to search through. PerlMonks is
“all Perl, all the time.” Joe Bob says, “Check it out.”

Perl Mongers

For those who like a bit of real-life interaction (and who doesn’t?), there’s also Perl Mongers
(http://www.pm.org/). Founded by brian d foy in 1997, Perl Mongers is an organization of Perl
hackers in different cities who meet periodically to, well, do whatever they want. Your author ran
the Perl Mongers group in Portland, Oregon (Portland.pm) for several years, and has attended
Perl Mongers meetings in a number of countries.

The local Perl Mongers user groups are Perl enthusiasts who enjoy hanging out together and talking
about stuff. Sometimes that stuff is Perl. The Portland.pm group generally schedules technical talks
followed by a “social” at a local pub, often the excellent Lucky Lab in Portland, Oregon. If you ever
visit Portland, check out that pub.

There are Perl Mongers groups on every continent except Antarctica, but there was discussion of an
Antarctica group starting up when Mongers found out there was a Perl programmer there. If you live
near a major city, there’s a good chance there’s a Perl Mongers group close to you. If not, create one!

StackOverfl ow

StackOverfl ow (http://stackoverflow.com/) was created in 2008 by Joel Spolsky and Jeff Atwood as
an “open” site for anyone to ask programming-related questions. It has spun off numerous related sites
and has become extremely popular as the site where you can ask just about any technology question.

c01.indd 9c01.indd 9 8/9/12 8:34 AM8/9/12 8:34 AM

http://www.perlmonks.org/
http://en.wikipedia.org/wiki/Irc
http://www.pm.org/
http://stackoverflow.com/

10 ❘ CHAPTER 1 WHAT IS PERL?

Perl questions are answered quickly with solid information, and you can easily see the “rating” of
the users who respond to your questions. Because of how questions are tagged, it’s easy to quickly
drill down to questions that might be relevant to your situation.

LEARNING HOW TO ASK EFFECTIVE QUESTIONS

Quite often on PerlMonks, StackOverfl ow, or other sites, you see a question like
“I tried to use module XYZ, but when I tried to print with it, it didn’t work. What
am I doing wrong?”

That’s it. “Didn’t work” isn’t explained. No code sample is provided. Nothing.

Here’s how to ask an effective question:

 1. State what you’re trying to do.

 2. Explain how you tried to do it.

 3. Explain what result you expected.

 4. Explain what result you had instead.

“How you tried to do it” often involves posting a minimal code sample. Posting
no code is just as bad as posting 500 lines of code. Just give people an idea of what
you’re trying to do, and answer any follow-up questions they have (if any).

It’s also a good idea to indicate how you already tried to fi nd an answer. People are often
more helpful if it looks like you’ve already tried to fi nd an answer to a basic question.

TRY IT OUT Register for a Free Account at PerlMonks

Every chapter, has “Try It Out” sections, but for this fi rst chapter, there’s not much to “try out.” After
the “Try It Out” sections, there is usually a “How It Works” section explaining what you’ve just done,
but this fi rst one is self-explanatory, so “How It Works” is skipped this time. Instead, this Try It Out is
to nudge you to PerlMonks and get you started on your journey to Perl. Just do the following:

1. Go to http://www.perlmonks.org/ and click Create a New User. (The link is on the right,
below the login box.)

2. Read some of the useful information, such as “Don’t create a username people can’t type.”

3. Fill out the small form and wait for your confi rmation e-mail.

I encourage you to click the Newest Nodes or Seekers of Perl Wisdom links and read through some of
the material there. Much, if not most, of the information might seem foreign to you, but by the time
you fi nish this book, you’ll be answering questions for newcomers. Or you should be: Answering
questions is one of the best ways to learn new material.

c01.indd 10c01.indd 10 8/9/12 8:34 AM8/9/12 8:34 AM

http://www.perlmonks.org/

Using perldoc ❘ 11

USING PERLDOC

Now that you’ve installed Perl, the fi rst thing you should do is get acquainted with the extensive Perl
documentation that ships with the language. As this book covers various topics, a perldoc tip often
prefi xes sections, like this:

perldoc perlnumber

If you type perldoc perlnumber into your terminal, you receive an introduction to how numbers
are used in Perl. If you prefer a web browser, go to http://perldoc.perl.org/, select your Perl
version, and then go to: http://perldoc.perl.org/perlnumber.html.

By constantly reinforcing perldoc throughout this text, you get the tools to fi nd answers to most
questions yourself. This is one bit of advice the author would have liked to received when starting
his Perl journey in the ‘90s. You don’t need to memorize the material in the documentation, but as
you become more familiar with it, you’ll fi nd it easier to remember where to look it up later.

Understanding the Structure of perldoc

The Perl documentation is written in POD, short for Plain Old Documentation. POD is an easy- to-
learn markup language for documenting Perl. It’s easy enough to learn (and you will in Chapter 11),
but fl exible enough, that many authors write their books in POD.

When you type perldoc <documentation name>, the program searches through parts of your system
where it thinks the documentation may be found, looking for a fi le with a .pod or .pm extension. The
.pod extension is preferred, and .pm is used if the fi le with the .pm extension has embedded POD and
the .pod extension is not found. The program then formats the POD and displays it. For earlier versions
of perldoc, you could add the -v switch to see where the perldoc command is looking for your POD:

perldoc -v perldoc

If your version of perldoc supports (see perldoc perldoc) this, use the -D switch to see where
perldoc is looking for the documentation. The -v switch now displays the description of Perl’s
built-in variables:

perldoc -v ‘$_’
perldoc -v ‘@ARGV’

You can also type perldoc perlvar to see all of Perl’s built-in variables.

You can read perldoc perldoc for more information about how to customize perldoc output or
to see what other command-line switches it supports.

Getting Started with perldoc

The fi rst thing you want to do is type perldoc perl. This gives you a brief description of some of
what Perl can do and quickly directs you to

perldoc perlintro

c01.indd 11c01.indd 11 8/9/12 8:34 AM8/9/12 8:34 AM

http://perldoc.perl.org/
http://perldoc.perl.org/perlnumber.html

12 ❘ CHAPTER 1 WHAT IS PERL?

That’s a gentle introduction to Perl. If you’re dedicated, you could start there and not buy this or
any other Perl book. That approach works if you have lots of time and patience. This book presents
what you need to know most, including where to get more information.

The perlintro is clear but terse. It assumes that you already know how to program and rushes
through the basic features of the language. As a result, there are many bits and pieces you should be
aware of but won’t be. So to follow up on the perlintro, you’ll want:

perldoc perltoc

As you might expect, that’s the Table of Contents for the Perl documentation. For Perl 5.14.2, that
Table of Contents is more than 20,000 lines! That’s a huge amount of documentation. It’s longer than
many of the chapters in this book, and your author hopes his publisher doesn’t notice. In contrast,
Perl 5.8.3’s Table of Contents weighs in at a measly 11,911 lines. However, this book mostly focuses
on 5.8 and 5.10, and it won’t actually talk (much) about what’s in those newer documents.

Using Tutorials and FAQs

Perl comes bundled with many tutorials you can read with perldoc. Table 1-1 lists the tutorials that
are some of the popular ones included in Perl version 5.8.3. You can type perldoc < tutorialname>
to read these tutorials.

TABLE 1-1: perldoc Tutorials

TUTORIAL DESCRIPTION

perlreftut Tutorial on references

perldsc Data structures cookbook

perllol Data structures: arrays of arrays

perlrequick Regular expression quickstart

perlretut Regular expression tutorial

perlboot Object Oriented (OO) Perl for beginners

perltoot OO tutorial, part 1

perltooc OO tutorial, part 2

perlbot OO tricks and examples

perlstyle Style guide

perlcheat Cheat sheet

perltrap Traps for the unwary

perldebtut Debugger tutorial

c01.indd 12c01.indd 12 8/9/12 8:34 AM8/9/12 8:34 AM

Using perldoc ❘ 13

Because the author had so much fun cutting and pasting from the documentation and padding the
page count, Table 1-2 lists the Frequently Asked Questions (FAQs) that ship with Perl.

NOTE The object oriented (OO) Perl documentation which ships with Perl

5.8 and 5.10 was very useful in its day but is now considered to be rather out of

date. Its examples and recommended practices should be considered suspect.

We’ll be covering OO starting in chapter 12.

TABLE 1-2: perlfaq

FAQ DESCRIPTION

perlfaq Perl FAQs

perlfaq1 General questions about Perl

perlfaq2 Obtaining and learning about Perl

perlfaq3 Programming tools

perlfaq4 Data manipulation

perlfaq5 Files and formats

perlfaq6 Regexes (regular expressions)

perlfaq7 Perl language issues

perlfaq8 System interaction

perlfaq9 Networking

These FAQs are extensive. For example, the following are some of the questions addressed
in perlfaq2:

 ➤ What machines support Perl? Where do I get Perl?

 ➤ How can I get a binary version of Perl?

 ➤ I don’t have a C compiler on my system. How can I compile Perl?

 ➤ I copied the Perl binary from one machine to another, but scripts don’t work. Why?

What’s nice is that for any of these questions, you can type perldoc -q “something I’m
looking for” and perldoc will spit out the sections from any FAQ that matches the term you
give it. (Actually, perldoc matches against regular expressions, which aren’t covering until
Chapter 8, so pretend you didn’t read that bit.)

c01.indd 13c01.indd 13 8/9/12 8:34 AM8/9/12 8:34 AM

14 ❘ CHAPTER 1 WHAT IS PERL?

A full reference manual also ships with the Perl documentation along with extensive information
about the internals of Perl (not for the faint of heart), linking Perl to C and C++ programs, platform-
specifi c information, and other things that aren’t covered in this book.

Using the perldoc -f function

One of the most useful perldoc commands is perldoc –f . When you type perldoc -f, followed
by a function name, you can see a complete description of the function in question and quite
 possibly far more than you ever need to know. For example, perldoc -f my displays the following:

my EXPR
my TYPE EXPR
my EXPR : ATTRS
my TYPE EXPR : ATTRS
 A “my” declares the listed variables to be local (lexically) to
 the enclosing block, file, or “eval”. If more than one value
 is listed, the list must be placed in parentheses.
 The exact semantics and interface of TYPE and ATTRS are still
 evolving. TYPE is currently bound to the use of the “fields”
 pragma, and attributes are handled using the “attributes”
 pragma, or starting from Perl 5.8.0 also via the
 “Attribute::Handlers” module. See “Private Variables via my()”
 in perlsub for details, and fields, attributes, and
 Attribute::Handlers.

It starts with the grammar for the function and then a brief (and sometimes verbose) explanation
of that function. In the preceding example, the grammar could represent any of the following:

my $dog;
my Dog $spot;
my $dog : HasSpots;
my Dog $spot : HasSpots;

NOTE In real-world Perl, you almost always see the fi rst form from the previous

code, my $dog, and not the three that follow it. The semantics of the last three

forms were never well defi ned and caused confusion, so people don’t use them.

This is an example where the docs show you what you can do, not what you

should do.

USING A TERMINAL WINDOW

You can skip this section if you already know how to use a terminal window. Otherwise, this
 section will explain the absolute minimum you need to know about opening and using a terminal
window. As with a number of other languages, if you want to program in Perl, much of your
 professional life will be spent in a terminal window.

c01.indd 14c01.indd 14 8/9/12 8:34 AM8/9/12 8:34 AM

Using a Terminal Window ❘ 15

Using the Command Line

Perl comes from a UNIX background and, as a result, is often run from a terminal window. Unlike
many graphical user interface (GUI) systems, terminals enable you to type commands directly into
the system rather than clicking an icon on a screen or selecting items from menus. Getting used
to the command line not only gives you all the power of a GUI system, but also leverages the consid-
erable power of the command line. If you’re not familiar with this method, hit your favorite search
engine for how to use the command line on your system, but for now, this section concentrates
on getting a terminal window open.

This isn’t diffi cult, but ask a geek friend for help if you get stuck.

Working with the Terminal Window in Linux

If you’re familiar with Linux, you probably already know about the terminal window.
Unfortunately, because there are more than 100 Linux distributions and many different window
managers, it’s impossible to tell you how to do this on your system. However, following are some
general tips:

 1. Look for an icon on your desktop that looks like a computer screen. It may say Terminal or
Console next to it. Try double-clicking that. You can also often right-click your desktop and
look for open terminal or something similar.

 2. In the menu system under the System folder, you may also fi nd the Konsole or
Gnome Terminal program.

 3. Search your desktop menu for the words terminal or console. Many Linux systems have
icons on their menus, and you may see a terminal icon there.

Working with the Terminal Window in Mac OS X

If you’re on a Mac, you can follow these steps:

 1. Go to your desktop and press Command-Shift-G (in other words, hit all those keys at the
same time). This brings up a Go to folder dialog.

 2. Type /Applications/Utilities in the text window, and click Go.

 3. Scroll through the applications until you see the Terminal icon.

 4. Drag this to the dock. You’ll use the terminal a lot in this book, so you want to have this handy.

A quick check of a search engine for mac command line or learning os x terminal should bring you
up to speed on some of the basic commands. When you use the Mac command line, you’ll fi nd that
most standard UNIX/Linux commands operate the same way.

NOTE Alternatively, go to iTerm2 (http://www.iterm2.com/) to download

their free terminal application. The author uses iTerm2, which is an excellent

 replacement for Terminal.app that is included with OS X.

c01.indd 15c01.indd 15 8/9/12 8:35 AM8/9/12 8:35 AM

http://www.iterm2.com/

16 ❘ CHAPTER 1 WHAT IS PERL?

Working with the Terminal Window in Windows

For Windows, you have a couple options:

 ➤ If you’ve installed Cygwin, you can double-click the Cygwin desktop icon (not the installer!)
and you’ll automatically be at a command-line prompt ready to go.

 ➤ Press the Windows key and r at the same time. This should bring up a Run dialog box. Type
cmd (short for command) into the box, click OK, and a terminal window pops up.

 ➤ You can bring up the Run dialog box by clicking Start; then you should see Run as one
of the menu items. Click that and it’s the same procedure: type cmd into that box and
click OK.

If you don’t like the standard terminal on Windows, some people prefer console, available via free
download at http://sourceforge.net/projects/console/.

For Windows, the terminal window is sometimes referred to as a DOS window. DOS stands for
Disk Operating System and earlier versions of Windows were based on DOS with a Window
manager on top. Today, Windows is a GUI system, and the DOS window is an emulation layer, but
the commands have not changed much over time.

If you’re unfamiliar with the Windows command line, search the Internet for list of DOS commands
to learn more about this environment.

Creating a Work Directory

Now that you have a terminal window open, you might want to fi nd out where you are on your
system. To see the current directory you are in, you can type pwd (print working directory) on Linux
or OS X, or cd (with no arguments) on Windows. You can type ls on Linux or OS X to see a list of
fi les in the current directory or dir if you’re on Windows.

NOTE A folder in Windows or OS X is what most other operating systems refer

to as a directory. This text says directory.

Create a folder named wroxperl and change to it. For most major operating systems, type this:

mkdir wroxperl
cd wroxperl

You should now be in an empty directory, suitable for creating your sample programs. When you
create them, make them in separate directories named chapter1, chapter2, and so on. This makes
it easier to organize and refer back to them. So go ahead and create a chapter1 directory now and
change to it:

mkdir chapter1
cd chapter1

c01.indd 16c01.indd 16 8/9/12 8:35 AM8/9/12 8:35 AM

http://sourceforge.net/projects/console/

Using a Terminal Window ❘ 17

You won’t need this until you get to the “Hello, World!” section (it’s a law that all programming
books start with this), but stay in the terminal for now to get used to the perldoc command.

INSTALLING THE PERLDOC COMMAND

You probably have perldoc installed. You can verify this by typing perldoc –h to
bring up a help page for perldoc. Annoyingly enough, some systems that include
Perl by default don’t include the perldoc command even though it is installed by
default when you install Perl manually. If your system uses apt, you can install
perldoc with:

sudo apt-get install perl-doc

Unfortunately, that won’t work on systems that don’t use apt, and because Perl
is available on more than 100 platforms, this book can’t cover them all. Thus,
in the event that you don’t have perldoc installed, try hitting IRC, PerlMonks,
StackOverfl ow, or your favorite search engine to fi nd out how to install perldoc.
Or ask your geek friend to do it for you. Pizza is a great payment.

TRY IT OUT Getting Used to perldoc

You don’t want to just read about the command line; you must get used to it, too. You’ll see a lot of
Perl’s internal documentation here. You don’t actually have to read it right now, but you should be
familiar enough with seeing it to know where to look for more information.

 1. Open a terminal. Actually, you should already have one open by this time. To navigate, try the
following commands by typing the following:

 ➤ q: To exit (quit) perldoc

 ➤ Spacebar or the down arrow: This enables you to scroll through the pages

 ➤ Forward slash (/) and some letters: Enables you to search through the documentation

Unfortunately, most of those commands depend on you having a sane pager program, such as less.
You can set the PAGER environment variable to your desired pager or just play around with your
perldoc to see which commands it accepts.

2. See which perldoc version you’re using.

perldoc -V

 3. Read about what the perldoc command can do on your version of Perl.

perldoc perldoc

c01.indd 17c01.indd 17 8/9/12 8:35 AM8/9/12 8:35 AM

18 ❘ CHAPTER 1 WHAT IS PERL?

 4. Read (skim) about Perl.

perldoc perl

 5. Read the Table of Contents. (Actually, there’s probably too much here to read).

perldoc perltoc

 6. Search for information in the FAQs, which provide a wealth of information.

perldoc -q variable
perldoc -q file

 7. Read about some Perl functions.

perldoc -f print
perldoc -f map

 8. If your Perl is new enough (5.12 or better), you can read about some built-in Perl variables. Older
versions of Perl use the -v to “verbosely” show you where perldoc is searching for your
documentation. Newer versions of Perl use the -D switch for this.

perldoc -v ‘$_’
perldoc -v ‘@ARGV’

How It Works

The perldoc command searches all places where it thinks Perl documentation may be living and reads
likely fi les it fi nds to determine if they contain the information you need. If you are curious to know,
you can run the following command to see for yourself where it’s (mostly) searching:

perl -le ‘print join “\n”, @INC, map {split /:/} @ENV{qw/PERL5LIB PATH/}’

If you understand that command and what it’s doing, there’s a good chance you don’t need this book.
By the time you’re done with this book, you’ll understand it.

CREATING HELLO, WORLD!

Now that you’ve read far too much documentation (who am I kidding? You skimmed it), it is time
for that traditional rite (write?) of passage, “Hello, World!” As one friend explained to me, he
was proud that he could write “Hello, World!” in 15 programming languages — though he could
program in none. Try to avoid that, okay?

Writing Your First Program

First, open your terminal and type this:

perl -e ‘print “Hello, Wrox!\n”’

c01.indd 18c01.indd 18 8/9/12 8:35 AM8/9/12 8:35 AM

Creating Hello, World! ❘ 19

Oh, wait. Sorry Windows people. You have to type this:

perl -e “print \”Hello, Wrox!\n\””

Except that it might not work, depending on your version of Windows. See perldoc perlfaq3 and
read the section “Why don’t Perl one-liners work on my DOS/Mac/VMS system?” to understand
why your life is diffi cult. If you have a Mac, the “Mac” section likely does not apply to you because
OS X handles Perl and the command line quite well, thank you.

Aside from your author blatantly patronizing the publisher, the “Hello, Wrox!” snippet shows some-
thing common about Perl: running Perl from the command line. This won’t be covered much in the
book, but as you get more familiar with Perl, you’ll see people doing things like this:

perl -pi.bak -e ‘s/version = 13/version = 14/’ <list of files>

That changes all strings in <list of files> matching “version = 13” to “version = 14”
and create backups of all those fi les with a .bak extension. That’s more or less equivalent to the
following Perl program that is also listed in perldoc perlrun. (Although it’s been cleaned up to
be “safer.”)

#!/usr/bin/perl
my $extension = ‘.bak’;
my $oldargv;
LINE: while (<>) {
 if ($ARGV ne $oldargv) {
 my $backup;
 if ($extension !~ /*/) {
 $backup = $ARGV . $extension;
 }
 else {
 ($backup = $extension) =~ s/*/$ARGV/g;
 }
 rename($ARGV, $backup);
 open(ARGVOUT, “>”, $ARGV)
 or die “Cannot open ‘$ARGV’ for writing: $!”;;
 select(ARGVOUT);
 $oldargv = $ARGV;
 }
 s/version = 13/version = 14/;
}
continue {
 print; # this prints to original filename
}
select(STDOUT);

As you can see, using Perl on the command line effectively gives you a lot of power to get things
done quickly. You can read perldoc perlrun to understand some of this, but search for perl
one-liners online to see what you can do if you’re interested in this area.

Getting back to “Hello, World!”, the general way you write a Perl program is to save a fi le with
the program code and then type perl <programname>. The fi rst line of the program is often the

c01.indd 19c01.indd 19 8/9/12 8:35 AM8/9/12 8:35 AM

20 ❘ CHAPTER 1 WHAT IS PERL?

shebang line, which you learn more about in a bit. After that is your program text. All you need
to do to get a basic Perl program running is to type up your program, save it (usually with a .pl
extension), and then type perl <programname>.

Listing 1-1 is a short Perl program that shows how a simple program may look. You learn more
about the strict, warnings, and diagnostics in Chapter 3.

LISTING 1-1: Hello, World!

#!perl
use strict;
use warnings;
use diagnostics;
this is a comment
print “Hello, World!\n”; # so is this

TRY IT OUT Your First Perl Program

This is a simple example to demonstrate writing a Perl program, saving it, and running it.

 1. Type the following code into your favorite editor, and save it as bonjour.pl.

#!/usr/bin/perl
“Hello world!, in French
print “Bonjour, tout le monde!\n”;

 2. From the command line type cd (change directory) into the directory where you saved your
program, and type perl bonjour.pl. You should see this output:

Bonjour, tout le monde!

How It Works

On the command line, when you type perl followed by the name of a fi le containing a Perl program,
Perl reads that fi le, parses the code, and executes it. The sharp (#) begins a comment. It can be on its
own line or embedded in a line after some code.

NOTE People sometimes mistakenly refer to Perl as an interpreted language,

but it’s not quite a compiled one, either. Like many modern languages, it falls

somewhere in between the two. When you run a program with perl

programname.pl, Perl fi rst compiles your Perl down to a set of opcodes and then

executes those. Because there is generally no complicated compile/link phase

for executing a Perl program, it’s very easy to quickly make and test changes

to programs.

c01.indd 20c01.indd 20 8/9/12 8:35 AM8/9/12 8:35 AM

Creating Hello, World! ❘ 21

Shebang Lines

The fi rst line of a Perl program often starts with a shebang line. A shebang line starts with “sharp”
(#) and an exclamation point, also known as a “bang” (!), hence the term shebang. The line is
followed by a path telling the shell where to fi nd the interpreter that is used to execute the program.

On a system that understands the chmod command, you can type chmod +x programname to make
the program directly executable. If it’s in your path, you can then type programname to run the
program. Otherwise, you can type the full or relative path to the program to execute it.

For example, if you’re in /Users/ovid/wroxperl/chapter1 and you create a program called runme
in that directory, you could run it like this:

$./runme
$ /Users/ovid/wroxperl/chapter1/runme

For now, you can just type perl programname to run the programs.

The shebang line might take one of a number of different forms. On a Linux system, this often looks
like one of the following:

#!/usr/bin/perl
#!/usr/local/bin/perl
#!/usr/bin/perl -w
#!/usr/bin/env perl

The fi rst two lines point directly to the Perl executable that should run the program. The third line,
with the -w switch, tells Perl to run the program with global warnings. The fi nal line tells Perl to use

WINDOWS AND THE .PL EXTENSION

On Windows, when you install Perl, you’ll often fi nd that the .pl extension is
associated with Perl in the registry. New Perl programmers on Windows often
double-click a Perl program icon and then wonder why they see a brief fl ash of a
console before it disappears, taking their program output with it. That’s because
Perl is usually run from the command line. One trick to work around this is to add
the following code as the last line of your program:

<STDIN>;

That causes Perl to hang, waiting for you to enter some input, leaving the console
up. Just pressing Enter makes the console disappear. This is explained more when
you cover user interaction in Chapter 17, but for now do not use this trick. Get used
to running Perl from the command line.

c01.indd 21c01.indd 21 8/9/12 8:35 AM8/9/12 8:35 AM

22 ❘ CHAPTER 1 WHAT IS PERL?

the env program to fi nd out which perl is currently set as the default perl for your system. This is
useful if you have different versions of Perl installed and want your program to always run with the
Perl you’re currently using.

Some people just do the following:

#!/perl

And that generally does what you want.

On Windows you might see the following:

#!C:\Perl\bin\perl.exe
#!C:\strawberry\perl\bin\perl.exe

The fi rst line is often found when running with ActiveState Perl. The line version is found when
running with Strawberry Perl.

When perl sees the shebang line, it attempts to run your program using whatever it fi nds after the
#!. Generally, this isn’t a problem, but if you want to run the script on more than one machine, even
with the same architecture, you could have a problem if someone installs Perl in a different location.

Fortunately, there is one simple trick you can follow to ensure you don’t have problems with
shebang lines: Don’t install modules and scripts by hand. Instead, package them as proper
distributions and install them with the standard Perl toolchain (such as cpan or cpanm). You learn
module installation in Chapter 2 and module writing in Chapter 11.

For the Perl code that can be downloaded with this book, you will not be using shebang lines
because they tend not to be portable. You will need to run the programs by explicitly typing
perl programname.

SUMMARY

By this time you’ve learned a bit about the history of Perl, where to go to get more information,
installing Perl, and running a simple Perl program. This isn’t a huge amount of information, but it’s
the foundation you need to progress in Perl.

c01.indd 22c01.indd 22 8/9/12 8:35 AM8/9/12 8:35 AM

Summary ❘ 23

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

History The basic history of the Perl language, its releases, and common use.

Getting Perl About system Perl and perlbrew for those who use UNIX-style systems.

Cygwin, ActivePerl, and Strawberry Perl are compared as options for

Windows users.

Community Perlmonks, IRC, Perl Mongers, and StackOverfl ow are all valuable

resources for learning Perl.

perldoc Perl comes with extensive documentation. You learned the basic structure

of the docs and how to look up basic information.

Using a terminal You use a terminal extensively when programming Perl. You learned how

to launch a terminal and run a program from the command line.

c01.indd 23c01.indd 23 8/9/12 8:35 AM8/9/12 8:35 AM

c01.indd 24c01.indd 24 8/9/12 8:35 AM8/9/12 8:35 AM

#2
Understanding the CPAN

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the CPAN

 ➤ Using CPAN clients to install modules

This is the end of Chapter 10. Or it was. Many Perl books, if they include information about the
Comprehensive Perl Archive Network (CPAN), mention it almost as an afterthought, just as your
author was going to. However, CPAN is the soul of Perl. Its use is so common that your author
repeatedly found it hard to create compelling examples of Perl without duplicating code already
on the CPAN. Thus, the CPAN is now not only near the front of the book, it has an entire
 chapter all to itself. You cannot be a real Perl programmer without understanding the CPAN.

It’s been said that the best way to make a technology popular is to release a killer app that
requires it. VisiCalc, a precursor to spreadsheets, made the Apple II computer popular. Ruby
on Rails is the killer app that made the Ruby programming language famous.

Perl has the CPAN. Though many have tried, nothing compares to the CPAN.

THE HISTORY OF THE CPAN

In 1994, on the Perl-packrats mailing list, an idea was born. The idea was simple:
Make a single place for Perl authors to upload their modules and for others to
download them. That idea became the Comprehensive Perl Archive Network
(CPAN) and was launched in 1995. Since then, it has grown to an enormous size.
By October of 2011, the CPAN had this to say for itself http://www.cpan.org/

The Comprehensive Perl Archive Network (CPAN) currently has 100,649
Perl modules in 23,600 distributions, written by 9,282 authors, mirrored
on 269 servers.

c02.indd 25c02.indd 25 10/08/12 8:23 PM10/08/12 8:23 PM

http://www.cpan.org/

26 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

The breadth of modules available on the CPAN is amazing. Following is an overview of what’s
available:

 ➤ Many popular Web frameworks: Including Catalyst, Dancer, and Mojolicious.

 ➤ DBI, the standard database interface: Or if you prefer ORMs (Object-Relational Mappers).

 ➤ DBIx::Class and Rose::DB: These classes make working with databases much easier.

 ➤ Artifi cial intelligence modules in the AI:: namespace: You can fi nd out about namespaces a
bit more in Chapter 3, “Variables.”

 ➤ More testing modules than you can imagine in the Test:: namespace: They’re great for
testing your code to make sure it’s not misbehaving.

 ➤ An entire bioperl distribution: This is available because Perl is used heavily in biology
research.

 ➤ An Acme:: namespace: This is where people upload humorous modules just for fun.

The author has more than 40 modules on the CPAN at http://search.cpan.org/~ovid/;
although, many of them are for rather obscure problems.

That’s part of what makes the CPAN so great. When you have a relatively obscure problem, there’s
a good chance there’s a CPAN module for it. Today, many are surprised when they have a problem
and there’s not a CPAN module for it. Whenever possible, don’t reinvent the wheel. Look for a solu-
tion on the CPAN to see if you can save a lot of time and effort by using someone else’s code. That’s
why it’s there.

Oh, and did I mention that most code on the CPAN is both free and open source?

CPAN AND METACPAN

The following are two main websites (and many mirrors) that Perl developers currently use to fi nd
modules:

 ➤ http://search.cpan.org/: The search interface to the original CPAN and currently
the one that most people think of when they think of the CPAN website. It enables you to
browse distributions, search distributions, check test results on modules, and read reviews
of said modules.

WARNING You see many diff erences between Windows and other operating

systems. That’s unfortunate, but those diff erences are minimized as much as

possible. The short description: Use the automated tools recommend (for CPAN

clients, for example) and don’t try to do this stuff manually. You’ll probably get it

wrong until you understand what’s happening here. Fortunately, this is probably

your biggest hurdle if you use Windows.

c02.indd 26c02.indd 26 10/08/12 8:23 PM10/08/12 8:23 PM

http://search.cpan.org/~ovid/
http://search.cpan.org/

CPAN and METACPAN ❘ 27

NOTE Sadly, the maintainer of http://kobesearch.cpan.org and http://

cpan.uwinnipeg.ca, Randy Kobes, has passed away. The future of these sites

is uncertain. Our condolences to his family and friends.

In 1994, on the Perl-packrats mailing list, an idea was born. The idea was simple: Make a single place
for Perl authors to upload their modules and for others to download them. “That idea became the
CPAN”. You won’t actually use much of this information when you fi rst start learning Perl, but the
further you go in your Perl journey, the more crucial CPAN will be. You will repeatedly face a hard
problem and then fi nd that someone else has done the work for you and has uploaded it to the CPAN.

Finding and Evaluating Modules

For http://www.cpan.org, you can browse the modules at http://www.cpan.org/modules/
index.html. You can browse by author, module name, recent modules, and so on. However, many
people look for modules to handle a problem they need to solve, not for a particular author or mod-
ule name. Given the size of the CPAN, browsing is somewhat impractical. You want to search for a
module and not just browse them. For that, you want to use http://search.cpan.org/.

The front page of http://search.cpan.org has a list of module categories you can browse
through, but given the size of the CPAN, this list is not well maintained. Instead, use the search
box. Say you need to write some software that displays the weather forecast. Searching for weather
brings up something like this:

 ➤ weather

 ➤ Weather::Bug::Weather

 ➤ App::Dataninja::Bot::Plugin::Weather

 ➤ http://www.cpan.org/ When writing a book, you always face a danger in describing
new technology because it may change or cease to exist by the time the book is printed,
but this site has enough developers working on it and seems stable enough that it’s worth
including in this book. It has a search engine with autocomplete driven by the excellent
ElasticSearch search engine (http://www.elasticsearch.org/). In addition to offering
everything that cpan.org offers, it also has an API where you can write your own CPAN
tools. You can sign up for a free account with metacpan and add modules as favorites,
link other accounts to your metacpan account, and even accept PayPal donations by
e-mail address. In short, it’s social networking for the CPAN. Add the API on top of it,
and the author expects that metacpan is the future of the CPAN. (Your author has also
been wrong before.)

 ➤ http://kobesearch.cpan.org and http://cpan.uwinnipeg.ca: Alternatively, some
people like these sites, but they’re less popular.

:

c02.indd 27c02.indd 27 10/08/12 8:23 PM10/08/12 8:23 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.cpan.org/
http://www.elasticsearch.org/
http://kobesearch.cpan.org
http://cpan.uwinnipeg.ca
http://www.cpan.org
http://www.cpan.org/modules/index.html
http://www.cpan.org/modules/index.html
http://search.cpan.org/
http://search.cpan.org
http://kobesearch.cpan.org
http://cpan.uwinnipeg.ca.
http://cpan.uwinnipeg.ca.
http://cpan.org

28 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

 ➤ Weather::Com::Base

 ➤ Geo::Weather

 ➤ Yahoo::Weather

 ➤ Weather::Com

 ➤ Weather::Google

 ➤ Weather::Underground

 ➤ Weather::Bug::CompactWeather

And that’s just the fi rst page of search results!

Each result actually has a bit more detail. For example, the Weather::Google module has this:

Weather::Google
Perl interface to Google’s Weather API
Weather-Google-0.05 (2 Reviews) - 26 Jan 2010 - Daniel LeWarne

The fi rst line is the name of the module and also a link to the module documentation. After that is
a short description, its current distribution name, a link to reviews (if any), the date of its release, and
the author name. As you get more familiar with the CPAN and the Perl community, you can recognize
author names, which may help you decide whether a given distribution is worth looking at.

If you click the Weather::Google link, you see a page, as shown in Figure 2-1.

FIGURE 2-1

There’s a lot of information on this page, so the following list just covers the highlights.

c02.indd 28c02.indd 28 10/08/12 8:23 PM10/08/12 8:23 PM

CPAN and METACPAN ❘ 29

 ➤ Standard format: In reading through the documentation, you can see that most Perl modules
have a standard format with sections for NAME, SYNOPSIS, DESCRIPTION, and so on.
Reading through those three sections should tell you if the module in question satisfi es
your needs.

 ➤ Weather::Google link: Clicking this link, which is found in the Modules section on the
bottom of the page, shows you the main documentation for the module. Larger modules,
such as DBIx::Class, often have many modules bundled together, so read through the list
carefully to understand which ones give you the most useful information. You might even
fi nd a Documentation section below the Modules section.

 ➤ CPAN Testers: Refer to Figure 2-1 to see that Weather::Google has a CPAN Testers section
with PASS (337) FAIL (32). When users upload a module to the CPAN (well, to PAUSE, that
isn’t covered), many people download that module and attempt to build it on their system.
As you can see, Weather::Google fails to build on approximately 10 percent of the systems.
This is a rather high failure rate, so you might want to click the [View Reports] link
and browse through some of the test failures to fi nd out what’s going on.

 ➤ Rating: Most modules do not have user ratings attached, but in Figure 2-1, you see that
there are two fi ve-star (good) ratings. You can click through to read what the ratings say.

There is, of course, much more information available on this page, and you should play around with
it to try to learn a bit more about it.

Downloading and Installing

You’ve searched for a module, found one you want, and now you want to install it. That’s usually
fairly simple after you do it one or two times, but getting to that fi rst module to install can be
 problematic if you’re on Windows.

Following is an explanation of how to do this manually because, you need to know this when you
eventually start writing your own modules. Later, you learn how to use various CPAN tools, which
make most of this automatic. After you’ve read about manual installation, you’ll be grateful that
there’s an automatic procedure that does all of this work for you. However, you’ll sometimes
fi nd that you need to install modules by hand, or maybe you’re just a masochist and like doing
things the hard way. It’s up to you.

To download and install a module, follow these steps:

 1. Click the download link next to the module name to download the distribution.
For example, for the Weather::Google distribution (see Figure 2-1), you’ll download a fi le
named Weather-Google-0.05.tar.gz.

Most CPAN distributions (exceptions tend to be old distributions) end in with .tar.gz or
.tgz. These are tarred, gzipped fi les. There’s some old UNIX history going on behind the
names, but you can ignore that.

 2. Unpack the distribution. How you do this depends on your platform:

 ➤ If you’re a OS X or Linux user: You can unpack the distribution with this
command:

tar zxf Weather-Google-0.05.tar.gz

c02.indd 29c02.indd 29 10/08/12 8:23 PM10/08/12 8:23 PM

30 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

 ➤ If you’re a Windows user: You’ll generally fi nd a WinZip or other zip program that
enables you to unpack .tar.gz and .tgz fi les. If you don’t have a command line
interface, double-click the distribution icon to unpack it. Make sure it’s unpacked
into the correct directory. The distribution might come with a .zip extension. If
your tar command is new, you should be able to just use tar zxf filename.zip.
Otherwise, use a zip program to handle it. You won’t fi nd these distributions often,
and they’re usually from Windows users.

 3. When unpackaged, change to the directory that’s created and list the fi les. If you’re on
Windows, use the dir command instead of ls.

cd Weather-Google-0.05/
ls

You should see a list of fi les like the following:

Build.PL
Changes
INSTALL
MANIFEST
META.yml
Makefile.PL
README
lib
t

You can ignore most of those for now. The README fi le usually contains instructions for installing,
but in this case, it’s merely a copy of the documentation that ships with the distribution. That’s fi ne.
What you are interested in are two fi les:

Build.PL
Makefile.PL

 ➤ If you see Build.PL you can build, test, and install your distribution with this:

perl Build.PL
./Build
./Build test
./Build install

 ➤ For a Makefile.PL, you can do this:

perl Makefi le.PL
make
make test
make install

WARNING If you have the tar command, you can type man tar for more infor-

mation about the tar command. Warning: it’s a long, complicated page and if

you’re unfamiliar with man output, it can be daunting. A web search may prove

more useful.

c02.indd 30c02.indd 30 10/08/12 8:23 PM10/08/12 8:23 PM

CPAN and METACPAN ❘ 31

Read the output of each of those steps carefully to make sure they’re doing what you want. In this
case, when you run ./Build (or perl Build) it has output similar to the following:

$ perl Build.PL
Checking prerequisites...
 requires:
 ! XML::Simple is not installed
 build_requires:
 ! Test::Pod is not installed
ERRORS/WARNINGS FOUND IN PREREQUISITES. You may wish to install the versions
of the modules indicated above before proceeding with this installation
Run ‘Build installdeps’ to install missing prerequisites.
Created MYMETA.yml and MYMETA.json
Creating new ‘Build’ script for ‘Weather-Google’ version ‘0.05’

This means you need:

$ perl Build installdeps

And hope all the dependencies install correctly. This may fail due to not having suffi cient
 permissions or simply because some dependencies fail their tests. If your module has a Makefile.PL
and no Build.PL, it might not even allow you to automatically install these dependencies (it depends
on how the Makefile.PL is written), thus forcing you to download and install all dependencies by
hand, possibly repeating this procedure over and over.

The ./Build test or make test steps are completely optional. They merely run any tests included
with the distribution. If you run this, you’ll see similar output:

$./Build test
t/00-load.t 1/1 # Testing Weather::Google 0.05
t/00-load.t ok
t/01init.t ok
t/02current_conditions.t ok
t/03forecast_conditions.t ... ok
t/04forecast_information.t .. ok
t/05language.t ok
t/pod-coverage.t ok
t/pod.t ok
All tests successful.
Files=8, Tests=388, 4 wallclock secs
Result: PASS

NOTE Weather::Google requires an Internet connection for the tests to run.

This is not surprising because it contacts Google for the results, but it’s problem-

atic because you won’t always have an Internet connection when running tests.

It’s one of many subtle issues that can occur when testing.

c02.indd 31c02.indd 31 10/08/12 8:23 PM10/08/12 8:23 PM

32 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

There’s also a problem with the ./Build install and make install commands. They often
require root access and must be run like this:

sudo ./Build install
sudo make install

(If you’re a Windows user, this probably won’t apply because you’ll probably have Administrator
access to your box.)

That’s because the default installation is usually in a directory that your regular user accounts won’t
have access to. You can install your modules to some place you do have access to if you want:

perl ./Build.pl --install_base /path/to/install/modules
#or
perl Makefile.PL INSTALL_BASE=/path/to/your/home/dir

WHY ARE BOTH BUILD.PL AND MAKEFILE.PL REQUIRED TO BUILD PERL
MODULES?

A long time ago, in a garage far, far away, Makefile.PL was created to allow
 creation of a Makefile to build your Perl module. Unfortunately, with more than
100 supported platforms and many different and confl icting make programs, it was
diffi cult to write portable makefi les. Plus, some systems don’t support make at all!

Thus, Build.PL was created. Makefile.PL relies on ExtUtils::MakeMaker to
create makefi les. Build.PL relies only on Perl to install itself. Because Perl is
far more portable than make, it was considered by some to be a better solution.
ExtUtils::MakeMaker turns out to be far too diffi cult to extend for new
features. Unfortunately, Module::Build has historically had a few bugs and many
 developers rejected it. It offers more features, but some of the same features needed
to be implemented differently.

The battle between the two formats rages to this day and you’re rather stuck with
the mess.

Now you need to understand a lot about how to tell Perl where to fi nd these modules, which can get
annoying if you’re not familiar with Perl. If you don’t use Windows, use perlbrew if possible. You’ll
install the modules in a subdirectory off your home directory, and perlbrew can magically handle
making sure that Perl knows where your modules are.

If you do use Windows, you might want to use Strawberry Perl because the CPAN module (and
thus, module installation) magically works out-of-the-box. However, if you prefer to use ActivePerl,
read the ppm section later in this chapter. Fortunately, ActiveState Perl has been updated to make
using the CPAN much easier. Make sure you use a recent version of ActiveState Perl version 5.10.1
or better. The CPAN client bundled with it is preconfi gured, and when you fi rst run it, it notes that

c02.indd 32c02.indd 32 10/08/12 8:23 PM10/08/12 8:23 PM

CPAN Clients ❘ 33

you’re missing dmake and a compiler and downloads, builds, and installs them for you. You see a
message similar to the following when you fi rst run cpan:

C:\>cpan
It looks like you don’t have a C compiler and make utility installed. Trying
to install dmake and the MinGW gcc compiler using the Perl Package Manager.
This may take a few minutes...

Then just wait a few minutes while it handles downloads and installs everything. After that is done,
everywhere that you see instructions to run the make command, type dmake.

Or you can install Strawberry Perl, which is not an issue because it comes bundled with everything
you need.

And now to have you really hate your author: all of the above can mostly be ignored unless you’re
debugging why a module didn’t install correctly. That’s because CPAN clients will take care of all of
that for you.

CPAN CLIENTS

Ha ve you been scared enough to not do install modules on your own? To be fair, so far this book
has skimmed the surface of things that can go wrong if you try to install modules manually. The
author has been doing this for years and is quite used to it, but prefers the clients. Essentially, when
you want to install a module, clients take care of fi nding that module, downloading and building its
dependencies along with the module itself, and then installing the module where your Perl code can
fi nd it. Because this is automated, it’s much faster and easier than doing it by hand.

Using the CPAN.pm Client

The CPAN.pm module that comes bundled with Perl is the oldest of the CPAN clients. To run it,
type cpan, which puts you in the CPAN shell. If you use Strawberry Perl for Windows (sense a
theme here?), the CPAN client is confi gured for you already. Otherwise, when you fi rst run cpan, it,
prompts you for basic information. The prompt message may vary. Older versions ask the following:

Are you ready for manual configuration? [yes]

Newer versions ask the following:

Would you like to configure as much as possible automatically? [yes]

The sense of the question has been reversed. If you’re asked to confi gure as much as possible
 automatically, press Enter, and cpan sets everything up for you, except for your urllist. The urllist
tells the client where to fi nd and download CPAN modules from CPAN mirrors all over the world.
Follow the instructions carefully, choosing the continent you’re on, then your country, and fi nally
a few mirrors that are hopefully close to you. Don’t stress too much about getting these mirrors
 perfect; newer CPAN clients ask you if you want it to automatically pick the mirrors for you,
making this much easier than it used to be. Starting with a CPAN client is a breeze compared to
what it used to be.

c02.indd 33c02.indd 33 10/08/12 8:23 PM10/08/12 8:23 PM

34 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

If you choose to go the manual confi guration route, you will be asked many questions about the
CPAN build and cache directory, the cache size, what you want to cache, terminal settings, whether
to follow prerequisites, where various programs are installed, and so on. Most of these questions
have defaults, and if you don’t understand the question, pressing Enter and accepting the default is
usually fi ne.

After confi guring the CPAN, you probably want to install Bundle::CPAN to ensure that your CPAN
is updated to the latest version. To install a module, type install module::name at the cpan
prompt.

cpan > install Bundle::CPAN

This takes a while for the fi rst time, but it updates your CPAN client to the latest version. It also
adds a few extra features, such as readline support, that are not available by default due to license
issues.

For the Weather::Google module discussed earlier in the chapter (refer to Figure 2-1), you use this
code:

cpan > install Weather::Google

When you do this, the client

 ➤ Finds the latest version of the module

 ➤ Downloads it

 ➤ Unpacks it

 ➤ Builds it

 ➤ Follows dependencies (optional)

 ➤ Tests it

 ➤ Installs it

If any dependencies exist, the CPAN client either prompts you if you want to install them, or if
you’ve confi gured it to follow dependencies automatically, it goes through its fi nd, download,
unpack, build, follow, test, and install steps for every dependency. For Weather::Google, you have
dependencies on both LWP::Simple and XML::Simple (both, in turn, having other dependencies).
Having your client do all this automatically for you is a huge timesaver and means it’s more likely to
get it right than you will.

NOTE If any tests fail, the client does not install the module. You can either

choose a diff erent module, or if you’ve investigated the tests and don’t think

they apply to you, you can force the module to install anyway:

cpan > force install Weather::Google

c02.indd 34c02.indd 34 10/08/12 8:23 PM10/08/12 8:23 PM

CPAN Clients ❘ 35

To better understand what you can do with your cpan client, a small amount of help is available.

cpan> help

The output varies considerably depending on the CPAN version you installed.

NOTE If you use a Linux/OS X computer and you decided to install modules in

directories to which your regular user does not have access, you may need to

type sudo cpan to allow your modules to install. If feasible, you should install it

as a non-root user. Otherwise, rather than having the entire package download

and confi guration running as root, you may elect to only have sudo run during

the installation. You can do this by altering the make_install_make_command

in the CPAN client. You type o conf make_install_make_command to see the

current value.

cpan[2]> o conf make_install_make_command
 make_install_make_command [/usr/bin/make]

And you type the same command, followed by its new value, in quotes. You

prefi x the value with sudo to ensure that the CPAN client will only prompt

you for your password during module installation.

cpan[3]> o conf make_install_make_command ‘sudo /usr/bin/make’
 make_install_make_command [sudo /usr/bin/make]

If you do this, you will want to do the same for the Module::Build install

command:

o conf mbuild_install_build_command ‘sudo ./Build’

You will need to type o conf commit to save this change. Otherwise it will only

be in eff ect for your current CPAN session.

Using the Cpanm Client

A new and popular CPAN client is cpanm, also known as App::cpanminus. It’s fast, requires no
confi guration, and has no dependencies on other modules. This makes it easy to install. If you use a
package management system such as Debian, FreeBSD ports, and so on, search for cpanminus and
attempt to install it that way.

You can also install it using the following steps:

 1. Type this option:

curl -L http://cpanmin.us | perl - --sudo App::cpanminus

c02.indd 35c02.indd 35 10/08/12 8:23 PM10/08/12 8:23 PM

http://cpanmin.us

36 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

 2. If you use perlbrew, local::lib, or some other method to ensure your Perl modules do
not require root access to install, you can omit the --sudo switch:

curl -L http://cpanmin.us | perl - App::cpanminus

 3. Click the download link at http://search.cpan.org/dist/App-cpanminus/ and install it
manually, as explained previously.

tar zxf App-cpanminus-1.5004.tar.gz
cd App-cpanminus-1.5004/
perl Makefi le.PL
make
make test
make install

As previously mentioned, the make install step may need to be changed to sudo make install.

If you’re on Windows and using nmake, change the last three lines:

nmake
nmake test
nmake install

 4. To install a module, type cpanm module. The cpanm program attempts to install the module
for you, quickly and easily. It produces little output beyond “downloading this, confi guring
that,” and related messages. Many modules ask questions such as “Do you want to install
X?” cpanm attempts to do the right thing without bothering you. Large, complicated
modules with many dependencies can be a hassle to install even with the cpan client; cpanm
usually makes it easy.

PPM

If you use ActivePerl, you’re probably on Windows, and if you have trouble with a CPAN client, you
can use ppm or the Perl Package Manager that ships with ActivePerl. This uses a large set of prebuilt
modules that work. Want to install Text::CSV_XS?

ppm install Text::CSV_XS

If you run ppm without any arguments, a GUI launches and you can browse installed packages or
upgrade, remove, or install new packages. The GUI enables you to do anything the command-line
version of ppm does, and you may fi nd it a more comfortable environment to work in. However, you
cannot upgrade core modules (modules that ship with Perl) with ppm. As a result, you cannot install
any module that requires a core module to be upgraded.

CPAN::Mini

CPAN::Mini isn’t actually a client, but it’s so useful that you need to know about it. Sometimes
you’ll fi nd that you want to install a CPAN module, but you have no Internet connection or a slow
Internet connection. CPAN::Mini enables you to create a “mini” CPAN mirror on your computer,
complete with the latest versions of all modules.

c02.indd 36c02.indd 36 10/08/12 8:23 PM10/08/12 8:23 PM

http://cpanmin.us
http://search.cpan.org/dist/App-cpanminus/

CPAN Clients ❘ 37

To use CPAN::Mini, follow these steps:

 1. Open your favorite text editor, and type the following:

local: ~/minicpan/
remote: http://cpan.pair.com/pub/CPAN/

 2. Save this in your home directory as .minicpanrc.

 3. The local: key should point to where you want your miniature copy of CPAN to be store.
If you prefer, you can use a full path to a particular directory:

local: C:\home\users\ovid

NOTE Windows uses a backslash instead of a forward slash for directory

 separators, but Perl is smart enough to do the right thing, even if you use

 forward slashes instead:

local: C:/home/users/ovid

NOTE The fi rst time you run this command, it takes a long time because it

needs to fetch the latest version of every CPAN module. If you run it regularly,

subsequent updates are much faster.

 4. The remote: key should point to a close CPAN mirror. You can see a list of CPAN mirrors
at http://www.cpan.org/SITES.html.

 5. Then install CPAN::Mini:

cpanm CPAN::Mini

 6. From there run the minicpan command periodically to update your local copy.

 7. To install modules from your local CPAN::Mini mirror, confi gure your CPAN client to use
this mirror:

$ cpan
cpan shell -- CPAN exploration and modules installation (v1.9800)
Enter ‘h’ for help.
cpan> o conf urllist unshift fi le:///Users/ovid/minicpan
Please use ‘o conf commit’ to make the confi g permanent!

As noted in the output, use o conf commit if you want this change to be permanent.

c02.indd 37c02.indd 37 10/08/12 8:23 PM10/08/12 8:23 PM

http://www.cpan.org/SITES.html
http://cpan.pair.com/pub/CPAN/

38 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

When this is done and when you attempt to install a module, the module is fetched from your local
mirror instead of using the Internet.

 8. You can tell cpanm to only look for modules in your mirror and only the mirror:

cpanm --mirror ~/minicpan/ --mirror-only Weather::Google

 9. If you make heavy use of shell aliases, add the following to your list of aliases:

alias minicpanm=’cpanm --mirror ~/minicpan/ --mirror-only’

 10. When you’re without an Internet connection, use the following code:

minicpanm Weather::Google

TRY IT OUT Confi gure a CPAN Client and Install File::Find::Rule

You’re now going to confi gure a CPAN client and install File::Find::Rule. Once this is done, you’ll
fi nd it easy to download and install new modules from the CPAN.

This example requires an Internet connection. This example will use App::cpanminus because it’s one
of the easiest ways to install Perl modules. App::cpanminus also has no dependencies, which makes it
easy to install. Install it manually because this is the most portable option.

1. Point your Web browser to http://search.cpan.org/dist/App-cpanminus/ and click the
download link.

2. Unpack, build, and install the application:

tar zxf App-cpanminus-1.5004.tar.gz
cd App-cpanminus-1.5004/
perl Makefi le.PL
make
make test
make install

Remember, if you’re on Windows, you may need to type nmake instead of make.

Alternatively, if you have the curl executable installed, you can try to install App::cpanminus with one
of the following commands:

curl -L http://cpanmin.us | perl - App::cpanminus
curl -L http://cpanmin.us | perl - --sudo App::cpanminus

The fi rst time you install App::cpanminus, it may take a while because it downloads, builds, and
installs a number of useful modules.

3. Install the File::Find::Rule module.

cpanm File::Find::Rule

You’ll likely get output similar to the following:

c02.indd 38c02.indd 38 10/08/12 8:23 PM10/08/12 8:23 PM

http://search.cpan.org/dist/App-cpanminus/
http://cpanmin.us
http://cpanmin.us

Summary ❘ 39

$ cpanm File::Find::Rule
--> Working on File::Find::Rule
Fetching authors/id/R/RC/RCLAMP/File-Find-Rule-0.33.tar.gz ... OK
Confi guring File-Find-Rule-0.33 ... OK
==> Found dependencies: Text::Glob, Number::Compare
--> Working on Text::Glob
Fetching authors/id/R/RC/RCLAMP/Text-Glob-0.09.tar.gz ... OK
Confi guring Text-Glob-0.09 ... OK
Building and testing Text-Glob-0.09 ... OK
Successfully installed Text-Glob-0.09
--> Working on Number::Compare
Fetching authors/id/R/RC/RCLAMP/Number-Compare-0.03.tar.gz ... OK
Confi guring Number-Compare-0.03 ... OK
Building and testing Number-Compare-0.03 ... OK
Successfully installed Number-Compare-0.03
Building and testing File-Find-Rule-0.33 ... OK
Successfully installed File-Find-Rule-0.33
3 distributions installed

If you previously installed File::Find::Rule, it may say that the module is up to date, or it may tell
you that it’s upgraded from a previous version.

How It Works

When you try to install a module, cpanm inspects the package to fi gure out if the module depends on
other modules being installed. According to the Makefile.PL that ships with File::Find::Rule, this
module depends on fi ve other modules:

 ➤ File::Spec

 ➤ File::Find

 ➤ Test::More

 ➤ Number::Compare

 ➤ Text::Glob

The fi rst three modules, File::Spec, File::Find, and Test::More are included with Perl. The
Number::Compare and Text::Glob modules, however, need to be downloaded, unpacked, built, and
installed. The cpanm installer does this for you. Because those two modules require only Test::More as
a dependency, they do not require more modules to be downloaded and built.

After those are built and installed, File::Find::Rule is then built and installed for you.

SUMMARY

Congratulations! You now know how to fi nd and install modules from the CPAN! In this chapter
you learned about the CPAN, the world’s largest collection of open source code dedicated to a single
programming language. You learned the cpan and cpanm clients, how to create a miniature CPAN
mirror, and you installed your fi rst module, File::Find::Rule.

c02.indd 39c02.indd 39 10/08/12 8:23 PM10/08/12 8:23 PM

40 ❘ CHAPTER 2 UNDERSTANDING THE CPAN

TOPIC KEY CONCEPTS

CPAN The world’s largest collection of open source code for a single language.

This makes it very easy to fi nd code you need rather than writing it

yourself.

http://www.cpan

.org

The website for the CPAN. Use this to search for modules that solve prob-

lems you face.

CPAN.pm The original client program for downloading and installing CPAN modules

App::cpanminus A new and excellent alternative to CPAN.pm. It is much less verbose than

the origina CPAN client.

PPM The CPAN client bundled with ActivePerl.

CPAN::Mini How to create a local CPAN mirror. It’s useful when installing modules

when you don’t have an internet connection.

 � WHAT YOU LEARNED IN THIS CHAPTER

c02.indd 40c02.indd 40 10/08/12 8:23 PM10/08/12 8:23 PM

http://www.cpan.org
http://www.cpan.org

3
Variables

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding programming in Perl

 ➤ General things to remember as you work with variables

 ➤ Understanding scalars

 ➤ Using data in arrays and hashes

 ➤ Working with array and hash slices

 ➤ Implementing scalar and list content

 ➤ Understanding the scope of variables

 ➤ Working with strict, warnings, and diagnostics

 ➤ Using Perl’s context feature

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapterare found at http://www.wrox.com/
WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD

.html on the Download Code tab. The code for this chapter is divided into the following
major examples:

 ➤ example_3_1_variable.pl

 ➤ example_3_2_diagnostics.pl

 ➤ exercise_3_2a_array.pl

c03.indd 41c03.indd 41 8/9/12 2:07 PM8/9/12 2:07 PM

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://WROX.COM
http://wrox.com

42 ❘ CHAPTER 3 VARIABLES

 ➤ exercise_3_2b_array.pl

 ➤ exercise_3_3_fruit.pl

 ➤ listing_3_1_scope.pl

 ➤ listing_3_2_vars.pl

 ➤ listing_3_3_our.pl

 ➤ listing_3_4_diagnostics.pl

 ➤ listing_3_5_hello.pl

This chapter examines the three primary data types of Perl: scalars, arrays, and hashes. Unlike
many other languages that focus on things such as strings, integers, fl oats, and so on, Perl’s types
focus on how you organize your data, rather than what the data is. It’s an approach to data
types that is unusual to those who think of “types” as restricting data to certain values, but in
 practice, it’s a robust, powerful approach that many other programming languages follow.

Don’t worry about the size of this chapter because you won’t need to memorize it. Most of this
information will be reinforced in subsequent chapters. Primarily, you need to understand how to
create and assign values to Perl’s three primary data types (scalars, arrays, and hashes). You also
need to ensure that you understand context because it will come up repeatedly in your career as a
Perl programmer. Many inexperienced Perl programmers struggle to understand bugs in context
because it’s often treated as an afterthought.

WHAT IS PROGRAMMING?

You’ve already received quite a bit of background about Perl, but now is the time to start programming.
For those new to programming, a Perl program is a fi le — often many fi les — of text instructions
telling the computer what to do with some data. For example, pretend that the following is a
program to send cucumber recipes to a cucumber fetish mailing list. This program uses pseudocode,
a made-up language designed to explain programming ideas.

email_addresses = read_list_of_email_addresses()
cuke_recipe = read_new_recipe()

for each address in email_addresses
 email_to(address, cuke_recipe)

Even if you have never programmed before, you can probably guess what each line in this
 “program” does. At its core, there’s nothing mysterious about programming. Take some data and
do something with it.

But where is this data? Usually, when you have data in a program, you keep it in a variable, a named
container for data, and variables are the little beasties everyone loves and hates. They’re the things
you always get wrong but you must get oh so right. As you program, many of your errors will be the
wrong data in the wrong variable. Have fun!

c03.indd 42c03.indd 42 8/9/12 2:07 PM8/9/12 2:07 PM

A Few Things to Note Before Getting Started ❘ 43

A FEW THINGS TO NOTE BEFORE GETTING STARTED

The following sections discuss a few general concepts that make this chapter much easier to follow.
We’re going to explain a few things that you will see throughout this book, such as making your
programs safer and how to recognize variables. You’ll want to be familiar with these concepts as
you will use them extensively in your career.

strict, warnings, and diagnostics

You learn more detail about this later, but for now, assume that every code snippet begins like this:

use strict;
use warnings;
use diagnostics;

Those three statements can save you a lot of pain. They force you to properly declare most
variables and subroutines, and warn you when you’re doing silly things. And if you include the use
diagnostics line, they actually give you an extended description of what you did wrong, along
with suggestions on how to fi x it. Experienced programmers generally omit diagnostics, but when
you start, they’re invaluable.

NOTE These three lines won’t be listed for every code snippet because it

would just be useless noise. When you don’t see them, assume they’re there

unless you are told otherwise, although they will be slipped in from time to time

as a reminder.

Next, look at a few variables:

my $nick_name = ‘Ovid’;
my @cats = (‘Valentin’, ‘Arthur’);
my $nick = $nick_name;

print $nick;

That example assigns values to some variables. The statement in the third line copies the string Ovid
from the variable $nick_name to the variable $nick. The print statement prints the word Ovid to
your console.

If you’re an experienced programmer, you already understand much of what’s going on here, and you
can probably guess a lot more. But for now, let's cover some common ground that applies to most
variables you work with in Perl.

The my Function

Each variable in the preceding code is declared with the my function. When you declare a variable,
you’re telling Perl “hey, we have a variable we’re going to start using.” This makes Perl happy. The
my function in Perl is the most common way to declare a variable, and it also makes the variable

c03.indd 43c03.indd 43 8/9/12 2:07 PM8/9/12 2:07 PM

44 ❘ CHAPTER 3 VARIABLES

visible only to the current scope (which is covered later in this chapter) to hide it from other parts
of your program. That’s important to ensure that a distant part of your program doesn’t silently
change your data.

NOTE For more information, see perldoc -f my. (Remember that the –f switch

is used to list functions.)

You can declare variables inother ways; actually, the variable declaration is sometimes optional. You’ll
learn more about that in the “Scope” section in this chapter, but for now, be sure to declare
your variables with my, as shown here:

my $nick_name = ‘Ovid’;

This protects this part of your program from being accidentally changed by another part where you
used the same variable name. That kind of self-infl icted bug is too easy to create and extremely
diffi cult to fi nd and fi x. Use my and you can make your programming life easier.

NOTE Even experienced Perl programmers object to describing my as a func-

tion. However, Perl’s distinction between functions, operators, and keywords

is a bit fuzzy at times; it’s understandable that this is a point of disagreement

for some people. The key takeaway here is simple: Don’t get hung up on

terminology.

Sigils

Moving a bit further to the right in the sample code presented at the beginning of this discussion,
you see punctuation before each variable name — in this case the dollar sign, $, as shown here:

my $nick_name = ‘Ovid’;

In Perl, this leading punctuation is called a sigil because, like the word scalar, it is a common word
that has been repurposed. A sigil was originally a carved or painted symbol of great power. So, in
Perl, a sigil is a punctuation symbol that tells you something about the variable you use.

Getting back to that dollar sign sigil, in Perl, when you see a variable beginning with a dollar sign,
you know that you’re accessing a $calar value. The “S” shape of the dollar sign is a (theoretically)
handy mnemonic for scalar. Or maybe it’s a handy mnemonic for $ingle value.

Note the phrase, “You’re accessing a $calar value.” That does not read, “contains a scalar value.”
When you learn about arrays and hashes (or containers that can contain multiple values), the leading
“$” shows you when you’re accessing a $ingle value of the array or hash, instead of multiple values.
You learn more that when you discover arrays and hashes.

c03.indd 44c03.indd 44 8/9/12 2:07 PM8/9/12 2:07 PM

A Few Things to Note Before Getting Started ❘ 45

NOTE For more information, see perldoc perldata.

Identifi ers

Variables usually have names. Actually, many things in Perl have names, also called identifi ers.
These are things such as subroutines (discussed in Chapter 7), fi le handles (discussed in Chapter 9),
packages (discussed in Chapter 11), and a few others. Just about anything you can pick a name for
in Perl follows fairly simple naming rules.

NOTE For more information, see perldoc perlglossary.

Perl names must start with a leading letter or underscore. You can optionally follow that with one
or more letters, numbers, or underscores. The following are all valid variable names:

my $x;
my $foo;
my $_some_1;
my $DontMakeVariableNamesLikeThis;
my $make_names_like_this_instead;
my $item_3;
my $verily_I_say_unto_you_the_number_of_the_tr_tag_shall_be;

(The author used that last one in anger in a project several years ago, and somewhere out there is a
maintenance programmer who wants to kill him.)

As a matter of style in Perl (yes, Perl has a style, as you can see at perldoc perlstyle), don’t use
camelCaseWords. Instead, use words_separated_by_underscores. This is because the latter is eas-
ier to read, particularly for those who do not speak English as a fi rst language. The practice of using
camelCase is merely a holdover from older programming languages that didn’t allow underscores in
identifi ers. Perl programmers are not down with arbitrary limitations imposed by archaic
programming conventions. They have enough arbitrary limitations already, thank you.

The following are not valid variable names:

my $answer-to-life;
my $~destructor;
my $3rd_times_the_charm;

As with all things in life and Perl, there are some caveats, the biggest of which is that Perl is allowed
to violate the rules it sets for you. So, in Perl programs, you sometimes see things the following:

my $host = $1;
my $this_perl = $^X;
my $taint_mode = ${^TAINT};

c03.indd 45c03.indd 45 8/9/12 2:07 PM8/9/12 2:07 PM

46 ❘ CHAPTER 3 VARIABLES

You can read about these and other special variables in perldoc perlvar. the most common ones
are covered in this book as they appear.

NOTE All the previous names use ASCII characters. Although it is generally not

recommended, you can use UTF8 characters in your identifi ers by including use

utf 8 in your program as shown here:

use utf8;
my $cédille = ‘French letter’;
print $cédille;

Even though you can do this, you shouldn’t, given that many programmers

 cannot type these characters.

SCALARS

In Perl, a scalar is merely a single value. The following are some scalars:

my $celsius_temp = 37;
my $nick_name = ‘Ovid’;

A scalar can be a number, a string, or a reference. (You learn more about references in Chapter 6). If
you have a math or physics background, forget that you might know another defi nition for scalar. In
Perl, it just means a single value.

NOTE For more information, see perldoc intro.

NOTE A literal is a hard-coded value in a program, as opposed to a variable

containing that value. See perldoc perlglossary for this and other terms you

may be unfamiliar with.

In the previous example, my is a function declaring the variable, followed by the variable itself,
followed by the assignment operator (=), followed by a numeric literal (37) or a string literal
(‘Ovid’).

c03.indd 46c03.indd 46 8/9/12 2:07 PM8/9/12 2:07 PM

Scalars ❘ 47

If you don’t assign anything to the variable, it has a special value called undef.

my $var; # its value is undef

As you progress through this book, you’ll see that a variable with an undef value often causes
“uninitialized” warnings in your code. You’ll see some of those warnings later and you’ll discover
tips on how to avoid them.

BEING SELECTIVE WITH VARIABLE NAMES

Unlike some other programming languages, Perl enables you to assign just about any
kind of data to a variable. Perl focuses on making data structures easy and expects
you to know what kind of data you’re working with. Many programmers who prefer
“bondage and discipline” languages are keen to disagree, in the hands of an experi-
enced programmer, you tend not to get the type of data wrong as often as you might
think. Sadly, this is more a matter of experience than proof, so it’s time to pull the
“appeal to authority” fallacy out of the hat and say “Trust me on this.”

This means that you can do the following, but it’s not a good idea:

my $celsius_temp = 37;
my $nick_name = ‘Ovid’;
$celsius_temp = $nick_name;

Picking intelligent variable names can help you realize when you’ve done something
silly.

If you prefer, you can declare several scalars at once by putting parentheses around them, as shown
here:

my ($celsius_temp, $nick_name);

And you can even assign values to them when you declare them by putting parentheses around the
right side, as shown here:

my ($celsius_temp, $nick_name) = (37, ‘Ovid’);

As you might expect, that assigns 37 to $celsius_temp and “Ovid” to $nick_name.

Strings

Assigning a string to a scalar is simple:

my $person = ‘Leila’;
my $wife = “lovely”;

c03.indd 47c03.indd 47 8/9/12 2:07 PM8/9/12 2:07 PM

48 ❘ CHAPTER 3 VARIABLES

Both these lines of code are valid ways to assign a string to a scalar. When using single quotes, what
you see inside of the quotes is generally exactly what you get. However, when you use double
quotes, you can use escape characters (“\n” for newline, “\t” for tab, and so on) and interpolate
(embed) other variables in the string. Following is an example that prints out “lovely Leila” with a
 newline at the end:

my $person = ‘Leila’;
my $wife = “lovely $person”;
print “$wife\n”;

Sometimes you need to include quotes in your quotes. You can escape the quotes or use a different
set of quotes, as shown here:

my $city = ‘R\’lyeh’;
my $city = “R’lyeh”;
print $city;

Quotes and Quote Operators

Sometimes, though, you must interpolate something and use double quotes at the same time, as
shown here:

my $reviewer = ‘Adrian’;
my $review = “$reviewer wrote \”This book is awful\””;

That can be painful and confusing to read, so Perl provides rich quotelike- operators. (See perldoc
perlop and search for “Quote-like Operators”). The q{} replaces single quotes and qq{} replaces
double-quotes. This can eliminate much painful escaping.

my $reviewer = ‘Adrian’;
my $review = qq{$reviewer wrote “This book is wonderful”};

Also, the actual delimiter used with q and qq does not need to be curly braces ({}). It could be
almost any pair of delimiters you choose, such as shown in the following examples:

my $review = qq!$reviewer wrote “This book is awful”!;
my $review = qq<$reviewer wrote “This book is awful”>;
my $review = qq[$reviewer wrote “This book is awful”];
my $review = qq($reviewer wrote “This book is awful”);
my $review = qq@$reviewer wrote “This book is awful”@;

You can even use quotes over multiple lines, as shown here:

my $letter = qq{
Dear $editor,

I really liked the subtitle that you rejected and beg you to reconsider.
It was brilliant and perfectly conveyed the tone of this book. In case
you want to reconsider, it’s:

c03.indd 48c03.indd 48 8/9/12 2:07 PM8/9/12 2:07 PM

Scalars ❘ 49

 “Get a job, hippy!”

Sincerely,
Ovid
};

However, if you go that route, it’s generally considered better to use “here-docs.” These types of
strings require a << followed by a string literal of your choosing. All following text will be included
in the string until the string literal is found again:

my $letter = <<”END_APOLOGY”;
Dear $editor,

I’m very sorry for mocking you in the last email. I promise it won’t
happen again. Can I still get paid?

Sincerely,
Ovid
END_APOLOGY

You can use just about any string literal.

my $get_customers_with_orders = <<”SQL”;
SELECT c.id
 FROM customers c
 JOIN orders o ON c.id = o.customer_id
SQL

Just be sure to pick a descriptive literal (END is a popular one) for the here-doc. Yes, you can use a
single dot (.) or even an empty string, but this is considered bad style, which can lead to confusing
code or even strange errors.

NOTE You can also use here-docs with single quotes, in which case nothing

inside of the here-doc will be interpolated.

WARNING The fi nal string literal in a here-doc must have a newline at the end

of it, or Perl won’t see it, and you’ll get an error like this:

Can’t find string terminator “END_APOLOGY” anywhere before EOF.

It’s a confusing thing that trips up a few people.

c03.indd 49c03.indd 49 8/9/12 2:07 PM8/9/12 2:07 PM

50 ❘ CHAPTER 3 VARIABLES

Escape Sequences

Many times when creating strings you come across characters that can be awkward to type. The
full list can be seen with perldoc perlop, but Table 3-1 shows the main escape sequences you’ll
encounter.

TABLE 3-1: Main Escape Sequences

SEQUENCE DESCRIPTION

\t Tab

\n Newline

\r Carriage return

\x{263a} Wide hex character

\N{name} Named Unicode character

Now consider the following:

print “I mean it!\nI’m really sorry for mocking you!\n”;

This line of code prints the following:

I mean it!
I’m really sorry for mocking you!

Table 3-2 shows a few special escape sequences that are less common but are sometimes used to con-
trol the “case” of characters.

TABLE 3-2: Special Escape Sequences

SEQUENCE DESCRIPTION

\l Lowercase next character

\u Uppercase next character

\L Lowercase until \E

\U Uppercase until \E

\E End case modifi cation

c03.indd 50c03.indd 50 8/9/12 2:07 PM8/9/12 2:07 PM

Scalars ❘ 51

You can use these just as you would other escape characters. For example, the following prints
“E.E. Cummings” and offends your literature professor:

print “\Ue.e. c\Eummings\n”;

Numbers

Manipulating strings is fi ne, but much of your work as a programmer will deal with numbers such
as integers, fl oating point numbers, hexadecimal numbers and other beasties. It’s not very useful
to have a programming language that doesn’t do math, so this section shows you several ways of
declaring numbers in Perl.

Integers and Floats

Scalars can hold numbers, too. Just assign the numbers to them:

my $answer = 42;
my $body_temp_fahrenheit = 98.6;

You can use integers or fl oats as needed. Internally, Perl stores these numbers; however, the C com-
piler that built Perl supports them.

Integers are represented exactly, but as with other programming languages, fl oating point numbers
are only an approximation because of how computers store numbers internally. For example, the
int function takes the integer value of a number, but this can lead to unpleasant surprises:

print int(4.39 * 100);

Depending on your Perl, that will likely print 438 instead of 439. That’s because 4.39 is represented
internally as something like 4.3899999999999 and when you multiply it by 100 and drop the
 decimal part, you get 438. This is a general limitation with programming languages, not just Perl.

WHY PERL DOESN’T REPRESENT FLOATING POINT NUMBERS CORRECTLY

The reason Perl often doesn’t represent fl oating point numbers correctly is because
not all numbers can be stored in a fi nite amount of memory. For example, 1/3 is
.3333… (with an infi nite number of 3s after it). Internally, a fl oating point number
is actually stored as the number and a “fl oating point” that explains where the deci-
mal should be.

The number is stored in binary (ones and zeros) format. Each binary digit covers
a base two fraction such as 1/2, 1/4, 1/8 … 1/number of bits. All fractions whose
binary digit corresponds to 1 are added together. For example, a standard fl oating
point number is 32 bits long and the number .75 can be represented exactly as 110
00000000000000000000000000000. The fi rst two digits mean that .75 is
considered to be 1/2 + 1/4 (in this case, an exact match).

continues

c03.indd 51c03.indd 51 8/9/12 2:07 PM8/9/12 2:07 PM

52 ❘ CHAPTER 3 VARIABLES

However, the number 1/3 can only be approximated as 01010101010101010101010
101010101. That is 1/4 + 1/16 + … + 1/4294967296 (yes, we skipped many
numbers). This means that with a 4 byte (32 bit) fl oat, the closest approximation of
1/3 is 0.333333333255723.

If you want to explore this more, the following program will print out the
fractions, the binary number and something close to the internal equivalent of the
$num that you have chosen. You can alter $bits to change the number of bits of
representation of the number to better see how these approximations change.

use strict;
use warnings;

my $num = .3;
my $bits = 32;

don’t touch anything below this line
my $accumulator = 0;
my $bitstring = ‘’;

my @fractions;
for (1 .. $bits) {
 my $denominator = 2 ** $_;
 my $fraction = 1 / $denominator;
 if ($accumulator + $fraction <= $num) {
 push @fractions, “1/$denominator”;
 $bitstring .= “1”;
 $accumulator += $fraction;
 }
 else {
 $bitstring .= “0”;
 }
}

my $fractions = join “ + “, @fractions;
print <<”END”;
Fractions: $fractions
Bits: $bitstring
Result: $accumulator
END

Note that this is not a perfect description of what’s going on, but it’s gives you the
general idea. By the end of chapter 5, you should understand that entire program.

Octal, Hex, and Exponential Notation

If you need to, you can designate integer numbers (and only integer numbers) as octal or hex by
prepending them with a 0 or 0x respectively:

 (continued)

c03.indd 52c03.indd 52 8/9/12 2:07 PM8/9/12 2:07 PM

Arrays ❘ 53

my $answer = 052; # 42 in decimal
my $hex_number = 0xFF; # 255 in decimal
my $hex_number = 0xff; # also 255 in decimal

You can also use exponential notation if needed, and like many other languages, Perl is rather
fl exible about how you write it. The following are all equivalent:

my $number_of_stars_in_universe = 3e23;
my $number_of_stars_in_universe = 3E+23;
my $number_of_stars_in_universe = 3.0e+23;

Naturally, you can represent small numbers with this, too.

my $electron_mass = 9.1093822e-31;

Perl doesn’t “remember” the format of the number you used, so if you assign a hex or octal value to
a number, Perl prints the integer equivalent, but if you print a number using an exponential format,
Perl will printonly the integer equivalent if it can be represented without exponential notation (in
other words, when it’s small enough).

You see more about working with numbers in Chapter 4.

NOTE For more information, see perldoc perlnumber and perldoc perlfaq4

(Date Manipulation).

NOTE For more information, see perldoc perlintro.

ARRAYS

In Perl, an array is an ordered list of scalars. The following is how you might assign a few numbers
to an array:

my @even = (2, 4, 6, 8, 10);

For an array, the variable is preceded by an @ (at) sign, so the mnemonic for this is an “@rray.” And
when you have a list of items, separate them with a comma and use parentheses () around them.
For now, just take my word for it. In Chapter 4, you learn more about this in detail when you
discover precedence.

c03.indd 53c03.indd 53 8/9/12 2:07 PM8/9/12 2:07 PM

54 ❘ CHAPTER 3 VARIABLES

So, the preceding code has an array on the left and a list on the right, and you’re assigning the list to
the array.

Of course, just as with scalars, you can use any kind of data you need to use. You can even assign
lists with a mix of strings or other scalars to an array:

my $nine = 9;
my @stuff = (7, ‘of’, $nine);

If you just print the array as shown in the following example, what happens?

my $nine = 9;
my @stuff = (7, ‘of’, $nine);
print @stuff, “\n”;
print “@stuff\n”;

Although there are ways you can tweak this, the code just presented will probably print the
following:

7of9
7 of 9

Breaking Down the Code

In the previous example, the print function takes a list of arguments. Consider the fi rst print
statement in the example:

print @stuff, “\n”;

This tells Perl to dutifully print every item in the list, one after another, with the newline being
printed last. Because no item in the list contains a space, they run together as they’re being printed.

The second version has the array being interpolated into a string:

print “@stuff\n”;

When an array is interpolated into a string, the individual elements are, by default, separated with a
single space, generating the “7 of 9” output.

NOTE Although an array interpolated into a string is separated by default by a

single space, this is actually controlled by the value of the $” special variable.

Read perldoc perlvar to understand this better. Some sloppy programmers

like to abuse that variable, and you’ll see it in code from time to time.

The array @stuff has two integers and one string. Because Perl is more focused on data structures
than strict limitations on the kinds of data they contain, you can generally use whatever kinds of
data you want.

c03.indd 54c03.indd 54 8/9/12 2:07 PM8/9/12 2:07 PM

Arrays ❘ 55

Accessing Elements

Now printing out an array is all fi ne and dandy, but often when you’re working with an array, you
are trying to work with one element of the array or all elements. (Sometimes you work with a few
elements called a slice, and you’ll learn more about that in a bit.)

You may remember earlier in this chapter the discussion said that, “in Perl, when you see a
variable beginning with a dollar sign, you know that you’re accessing a $calar value.” It’s the same
with arrays. Arrays are indexed by numbers, with the fi rst element of the array being indexed by 0
(zero). Getting that fi rst element looks like this:

my @words = (“and”, “another”, “thing”);
print $words[0];

Remember that the sigil before the variable name indicates how you’re accessing it, not the type
of variable. This is a frequent source of confusion for newer Perl programmers, so you need to pay
careful attention to this.

On the right side of the variable name, square brackets appear around the index. When you’re using
square brackets in Perl, it usually means you’re dealing with an array.

Naturally, if you want to access all the elements, you can do this:

my @words = (“and”, “another”, “thing”);
my $first = $words[0];
my $second = $words[1];
my $third = $words[2];

As you might expect, you can also assign to individual elements of the array this way:

$words[1] = “one more”;
print “@words\n”;

That prints and one more thing.

When accessing an individual element of an array, you have a dollar sign on the left and square
brackets on the right. This will be repeated quite a bit. It’s one of the classic stumbling blocks for
new Perl programmers. If your eyes glaze over and you stop reading about the sigils and things like
that, it’s your own darn fault when you get them wrong!

Sometimes you’ll fi nd that you want some trailing elements of an array, but you’re not sure of the
length. It’s easy to fi nd out the length of the array, but there’s actually an interesting trick here. If
you access an array with a negative number, you access array elements from the end of the list going
backward, starting with -1 (because 0 would be the fi rst element).

my @words = (“and”, “another”, “thing”);
my $last = $words[-1];
print $last;

That prints thing. Of course, $words[-2] would be another and $words[-3] would be and.

c03.indd 55c03.indd 55 8/9/12 2:07 PM8/9/12 2:07 PM

56 ❘ CHAPTER 3 VARIABLES

LENGTHS OF ARRAYS

In Perl, arrays are not of a fi xed size. Consider the following array:

use strict;
use warnings;
use diagnostics;
my @words;
my $word = $words[8];

Perl will allow you to try to access an element beyond the end of the array, and it
will not issue any sort of warning. When you try to do something with the $words
variable, you’ll probably get a warning about using an “uninitialized” value. And if
you’re not careful, you’ll have a hard time trying to track it down because the warn-
ing will occur when you use the variable even though the actual problem stems
from the actual assignment.

Naturally, this also means that you can access array elements with nonexistent
negative elements, as shown here:

my @words = (“this”, “that”);
my $no_such_word = $words[-17];

Again, no warning occurs unless you do something with $no_such_word, which
causes an uninitialized warning.

When you do this you don’t actually change the length of the array. It still has the
same number of elements. However, if you assign past the end of the array, any
uninitialized elements up to that assignment will have the undef value.

use strict;
use warnings;
use diagnostics;
my @words = (“this”, “that”);
$words[5] = “bad idea”;

With this code, you now have an array with six elements:

‘this’, ‘that’, undef, undef, undef, ‘bad idea’

The only safety you get here is if you try to assign to a nonexistent negative
 element, as shown here:

use strict;
use warnings;
use diagnostics;
my @words = (“this”, “that”);
$words[-5] = “bad idea”;

c03.indd 56c03.indd 56 8/9/12 2:07 PM8/9/12 2:07 PM

Arrays ❘ 57

As a handy shortcut, so long as you assign literals to the array and not variables, you can use the
qw() operator (as in “q”uote “w”ords) like this:

my @odds = qw(1 3 5 charlie);

The qw() operator takes a string and automatically separates it on whitespace, so this line of code is
equivalent to the following:

my @odds = (1, 3, 5, ‘charlie’);

Sometimes you see something like this:

my @odds = qw(1, 3, 5, ‘charlie’);

That’s probably not what you want, and if you have warnings on, it will warn about a “Possible
attempt to separate words with commas.” Because the string in the qw() operator is separated by
whitespace, the commas will be included in the values and not be used as a list separator.

As with the qq() operator, qw()enables just about any pair of balanced delimiters. Some common
ones include the following:

my @odds = qw! 1 3 5 charlie !;
my @odds = qw<1 3 5 charlie >;
my @odds = qw{ 1 3 5 charlie };
my @odds = qw[1 3 5 charlie];

Those are useful cases when one of the words in the string might contain a delimiter, as shown here:

my @punctuation = qw[. ; ! () { }];

That generates the following output:

Modification of non-creatable array value attempted, subscript -5
at bad.pl line 5 (#1)
(F) You tried to make an array value spring into existence, and the
subscript was probably negative, even counting from end of the array
backwards.
Uncaught exception from user code:
Modification of non-creatable array value attempted, subscript -5
at bad.pl line 5.

Needless to say, this is one area you want to be careful with. Pay attention to your
data.

c03.indd 57c03.indd 57 8/9/12 2:07 PM8/9/12 2:07 PM

58 ❘ CHAPTER 3 VARIABLES

Iterating over Arrays

Naturally, you don’t want to always access array data by assigning the value of different elements
to different variables. You often want to iterate over the elements and do something with them. The
following is one way to do this (Chapter 5 goes into more detail during a discussion of control fl ow):

my @array = (‘this’, ‘is’, ‘an’, ‘array’);
for my $element (@array) {
 print “$element\n”;
}

That should print the following:

this
is
an
array

HASHES

One of the reasons Perl is so popular is because of how easy it is to sling data around. Hashes are a
perfect example of this. A hash is similar to an array, except that instead of indexing into the hash
using integers, you use strings. You refer to the strings you index into the hash as keys, and the
values they return are, well, values.

The following is a hash with three keys and their values:

my %people = (
 “Alice”, 1,
 “Bob”, 2,
 “Ovid”, “idiot”,
);
print $people{‘Alice’};

You could simulate that with an array, but it would be clumsy and require many almost useless
variable declarations:

my @people = (1, 2, ‘idiot’);
my $alice = 0;
my $bob = 1;
my $ovid = 2;
print $people[$alice];

NOTE Please refer to perldoc perlintro for more information.

c03.indd 58c03.indd 58 8/9/12 2:07 PM8/9/12 2:07 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Hashes ❘ 59

Accessing Elements

As you have already seen, accessing data in a hash is simple:

my %people = (
 “Alice”, 1,
 “Bob”, 2,
 “Ovid”, “idiot”,
);

my $number = $people{‘Bob’};
print “Bob = $number\n”;
print “Bob = $people{‘Bob’}\n”;

You’ll immediately notice a few things here. First, you can see that to access an individual element of
the hash, you have a dollar sign for the sigil (see a pattern?) and curly brackets (curly braces, curlies,
squiggly braces, or whatever you call ‘em) around the index.

Second, as mentioned, the “keys” of the hash correspond to an array’s numeric indices. You could
do that if you wanted to like this:

my %french_word_for = (
 1, ‘un’,
 2, ‘deux’,
 3, ‘trois’,
);
print “The French word for ‘3’ is $french_word_for{3}\n”;

That can be confusing, and you probably just want an array itself, although sometimes a hash might
be a good choice if the integers are widely separated (which would otherwise be a sparse array with
many empty elements).

You can also note that you retrieved the hash value without quoting the key:

my $french_word = $silly_example{3};
my $other_data = $another_example{some_key};

When accessing a single value, you are not required to quote the key, so long as it follows the rule of
an identifi er. So, this is wrong, and you must quote the key:

my $other_data = $another_example{-some_key};

NOTE Autoquoting hash keys even applies if the key appears to be a builtin or

subroutine name.

c03.indd 59c03.indd 59 8/9/12 2:07 PM8/9/12 2:07 PM

60 ❘ CHAPTER 3 VARIABLES

Iterating Over Hashes

Iterating over a hash is fairly simple. One way to do this is to use the keys function. This returns the
list of keys from the hash, as shown in the following example:

my %people = (
 “Alice”, 1,
 “Bob”, 2,
 “Ovid”, “idiot”,
);
for my $name (keys %people) {
 print “$name is $people{$name}\n”;
}

That might print something like this:

Ovid is idiot
Bob is 2
Alice is 1

The order of the hash keys is effectively random, so there’s no guarantee that your version of Perl
will print those lines in this order. It’s actually not random, but the reasons for that are beyond the
scope of this book. Just remember that you should never rely on hash order. However, you’ll learn
more about that in Chapter 10 during a discussion of sorting.

There is a corresponding values function that returns the values of the hash — again without any
predictable order.

Adding Data to Hashes

To add a new value to a hash, simply assign the new value to a key:

$people{Austen} = ‘Jane’;

That adds a new value to the hash or overwrites the value for the key Austen if it exists.

You can add multiple key/value pairs by assigning the hash and a list:

%people = (%people, Austen => ‘Jane’, Lincoln => ‘Abraham’);

If any of the keys in the list match keys in the original hash, the original values is replaced with the
new ones.

IDIOMATIC PERL

When you write Perl code, it’s generally considered nice to follow the perlstyle
document (perldoc perlstyle), but not everything is contained in there. This
section provides some tips to write hashes in a “Perlish” way.

The way the hashes were written before builds more or less on your previous
knowledge. But in Perl code you’ll usually fi nd hashes written like this:

c03.indd 60c03.indd 60 8/9/12 2:07 PM8/9/12 2:07 PM

Slices ❘ 61

my %people = (
 Alice => 1,
 Bob => 2,
 Ovid => “idiot”,
);

Or you may fi nd them written like this:

my %people = (
 ‘Alice’ => 1,
 ‘Bob’ => 2,
 ‘Ovid’ => “idiot”,
);

Those last two hash declarations are the same thing. The => operator in Perl is
sometimes known as the “fat comma” (no “fat comma” jokes, please). It generally
acts just like a normal comma, but it has the side benefi t of automatically quoting
whatever is on the left side of the fat comma, but only if it matches the rules of an
identifi er. The following is a syntax error because 2Bob would not be a valid identi-
fi er (because it begins with a digit):

my %people = (
 Alice => 1,
 2Bob => 2,
 Ovid => “idiot”,
);

You are not required to use the fat comma in hashes, but they’re a common way of
writing a hash because they make the key/value pairs more obvious. For example,
compare the following two hashes and think about which one is easier to read:

my %vegetables = (‘celery’ => ‘yuck’, ‘spinach’ => ‘delicious’);
my %vegetables = (‘celery’, ‘yuck’, ‘spinach’, ‘delicious’);

As you might imagine, if you declare a large hash, the fat comma can tremendously
improve readability.

Also, the trailing comma after the last key/value is not required, but it makes is
easier to avoid syntax errors if you decide to re-order how you wrote the hash, or if
you add more key/value pairs. It’s diffi cult to forget a comma you’ve already added.

There is no requirement to line up the key/value pairs when declaring a hash
because whitespace is usually not signifi cant. However, it’s generally considered
good style because it is easier to read.

SLICES

Sometimes you’ll get a data structure with a lot of data, but you don’t want all of it. In Perl, a slice is
a way to select a few elements of an array, list, or hash instead of the entire set of data.

c03.indd 61c03.indd 61 8/9/12 2:07 PM8/9/12 2:07 PM

62 ❘ CHAPTER 3 VARIABLES

Array Slices

You’ve already learned that “the sigil that starts the variable indicates how you’re accessing it,” so as
you might guess, to take several elements out of an array at once, you use the @ sign at the front. The
following is an example:

my @names = (‘Alice’, ‘Bill’, ‘Cathy’, ‘Doug’);
my @men = @names[1, 3]; # Bill and Doug
my @women = @names[0, 2]; # Alice and Cathy

NOTE For more information, see perldoc perlintro.

It’s the square brackets ([]) that tell you what type of variable you’re indexing into (an array, in
this case), not the leading sigil. Again, this is a concept you need to get used to because it’s core to
 understanding the Perl language. And, yes, this drum is being beaten repeatedly because everyone
gets it wrong sooner or later.

Generally, it doesn’t make sense to take a single-element slice. So, if you do this, you get a warning
(if you have warnings enabled, which you learn more about in a bit).

use warnings;
my @stuff = (‘bits’, ‘and’, ‘bobs’);
my $item = @stuff[1];
print $item;

That issues the following warning:

Scalar value @stuff[1] better written as $stuff[1] at stuff.pl line 3.

Make that recommended change and the warning goes away.

Hash Slices

Naturally, you can take a slice of a hash. Because you use the leading sigil to indicate how you’re
accessing the variable, you use the @ sign again, but with curly braces. The following is an example:

my %nationality_of = (
 ‘Ovid’ => ‘Greek’,
 ‘John Davidson’ => ‘Scottish’,
 ‘Tennyson’ => ‘English’,
 ‘Poe’ => ‘Tacky’, # Geek?
);

my @nationalities = @nationality_of{ ‘Ovid’, ‘Tennyson’ };
print “@nationalities”;

That prints “Greek English,” despite the fact that Ovid was actually a Roman poet. Garbage in,
garbage out.

c03.indd 62c03.indd 62 8/9/12 2:07 PM8/9/12 2:07 PM

Context ❘ 63

CONTEXT

Context is one of the more useful features of Perl. Context means an expression can change its
value based on what the calling code expects to receive. This sounds strange, and some new
 programmers — not you, of course — get confused by it. When you get used to it, you’ll fi nd it easy
and natural. Take care to understand this concept because you’ll see it constantly in Perl programs.

NOTE For more information, see perldoc perlglossary.

There are three main types of context: scalar, list, and void. They often mean “what the left side of
an expression wants to get.” Rather than belabor this, the following are some examples of this
beautiful craziness.

Scalar Context

This is an example of scalar context:

my $number_of_things = @things_in_common;
my $number_of_things = scalar @things_in_common;
my $number_of_things = (‘liars’, ‘fools’, ‘certain politicians’);
my $number_of_things = %hash_example;

When dealing with assigning values to variables, what you have on the left side of the = determines
the “context” on which you’re evaluating the right side. So, if you have a scalar on the left, you have
scalar context.

Arrays in Scalar Context

Following is an example of an array in scalar context:

my @things_in_common = (‘liars’, ‘fools’, ‘certain politicians’);
my $number_of_things = @things_in_common;

As you might guess from the variable name, $number_of_things is equal to 3, the number of
elements in @things_in_common. That’s because the scalar context value of an array returns the
number of elements in that array.

If you want to force scalar context, you can use the scalar keyword, as shown here:

my @things_in_common = (‘liars’, ‘fools’, ‘certain politicians’);
my $number_of_things = scalar @things_in_common;

That last line has exactly the same meaning with or without the scalar keyword, but it does make
it explicit that you meant scalar context and weren’t trying to assign an element of the array to
$number_of_things.

c03.indd 63c03.indd 63 8/9/12 2:07 PM8/9/12 2:07 PM

64 ❘ CHAPTER 3 VARIABLES

The scalar keyword is also essential when you want to force scalar context and not list context. So,
the following is probably not correct:

my @things_in_common = (‘liars’, ‘fools’, ‘certain politicians’);
my %count_for = (useless_things => @things_in_common);
print $count_for{useless_things};

With a comma operator, whether you deal with the regular comma or the fat comma (=>), you are
using list context, so you can fi x the previous snippet with the scalar keyword, as shown here:

my @things_in_common = (‘liars’, ‘fools’, ‘certain politicians’);
my %count_for = (useless_things => scalar @things_in_common);
print $count_for{useless_things};

NOTE See perldoc –f scalar for more information.

Lists in Scalar Context

If you force scalar context with a list (again, an array is a container for a list), whatever is on the
left side of each comma is evaluated, the result is thrown away, and the right side is evaluated. That
leads to common errors like this:

my $number_of_things = (‘liars’, ‘fools’, ‘certain politicians’);
print $number_of_things;

That prints certain politicians instead of the number 3. Thus, you usually don’t want to use a
list in scalar context; use an array instead.

Hashes in Scalar Context

Naturally, you can also use scalar context with a hash, as shown here:

my %hash = (1 => 2);
print scalar %hash;

However, that’s probably going to print something like 1/8, and that’s about as useful as an ashtray
on a motorcycle. In scalar context, you’re actually seeing a bit about the internal structure of the
hash. It has its uses, but they won’t be covered here.

List Context

You have list context when the left-side value expects a list. Here’s how to copy an array to another
array:

my @copy = @old_array;

This is a “shallow” copy in that you’re copying only the top-level elements. Later, when you learn
about references (Chapter 6), you learn about this in more detail.

c03.indd 64c03.indd 64 8/9/12 2:07 PM8/9/12 2:07 PM

Context ❘ 65

If you want, you can also assign a hash to an array, as shown here:

my %order_totals = (
 Charles => 13.2,
 Valerie => 17.9,
 ‘Billy Bob’ => 0,
);
my @flattened = %order_totals;

That “fl attens” the key/value pairs in the hash into a list. If you print the resulting array, you might
get something like this:

Billy Bob 0 Charles 13.2 Valerie 17.9

Again, this is because a hash is not ordered. If you need to retrieve the elements of a hash in order,
see Chapter 10, which explores sorting.

One of the nice things about list context is that you can force it with parentheses. For example, if
you want to assign the fi rst element of an array to a scalar, just put parentheses around the scalar, as
shown here:

my @swords = (‘katana’, ‘wakizashi’);

my $number_of_swords = @swords;
my ($left_hand) = @swords;

However, you aren’t limited to a single scalar. You can assign several scalars at the same time, as
shown here:

my ($left_hand, $right_hand) = @swords;

This can come in extremely handy when you learn more about subroutines in Perl.

This has an interesting side effect. When you’re facing down Toshiro Mifune and you realize that
your katana and wakizashi swords are in the wrong hands, you’re in trouble. Here’s how you might
do that in C:

other_hand = left_hand;
left_hand = right_hand;
right_hand = other_hand;

Too bad. You’re dead.

In Perl, because you can use list context with those scalars, you can do this to swap those values:

($right_hand, $left_hand) = ($left_hand, $right_hand);

Pretty handy, eh?

You can mix scalars and other variables with this:

my ($first, @extra) = (1, 2, 3, 4);

c03.indd 65c03.indd 65 8/9/12 2:07 PM8/9/12 2:07 PM

66 ❘ CHAPTER 3 VARIABLES

$first will have the value of 1 and @extra will be 2, 3, and 4. However, the scalars must come
fi rst!

my (@extra, $last) = (1, 2, 3, 4);

That doesn’t do what you want because @extra slurped up all the values and $last will be
undefi ned.

Now it’s time for you to get some experience actually working with these variables.

TRY IT OUT Printing Scalars, Arrays, and Hashes

This chapter has covered a lot of ground, so now get your hands a bit dirty to see how this works. All
the code for this Try It Out can be found in code fi le example_3-1_variables.pl.

1. Type the following program into your favorite editor, and save it as example_3_1_variables.pl:

use strict;
use warnings;
use diagnostics;

my $hero = ‘Ovid’;
my $fool = $hero;
print “$hero isn’t that much of a hero. $fool is a fool.\n”;

$hero = ‘anybody else’;
print “$hero is probably more of a hero than $fool.\n”;

my %snacks = (
 stinky => ‘limburger’,
 yummy => ‘brie’,
 surprise => ‘soap slices’,
);
my @cheese_tray = values %snacks;
print “Our cheese tray will have: “;
for my $cheese (@cheese_tray) {
 print “’$cheese’ “;
}
print “\n”;

2. Now that you’ve saved it, run it with perl example_3_1_variables.pl. It will probably print
something similar to the following:

Ovid isn’t that much of a hero. Ovid is a fool.
anybody else is probably more of a hero than Ovid.
Our cheese tray will have: ‘havarti’ ‘soap slices’ ‘brie’

If it didn’t, the inclusion of strict, warnings, and diagnostics will provide clues to where you
mistyped.

c03.indd 66c03.indd 66 8/9/12 2:07 PM8/9/12 2:07 PM

Scope ❘ 67

How It Works

Now skip the strict, warnings, and diagnostics because you’ll learn more about those in the clev-
erly named “strict, warnings, and diagnostics” section of this chapter. For now, just know that they
make writing correct code much easier. Instead, look at the fi rst assignments:

my $hero = ‘Ovid’;
my $fool = $hero;
print “$hero isn’t that much of a hero. $fool is a fool.\n”;

$hero = ‘anybody else’;
print “$hero is probably more of a hero than $fool.\n”;

That should be clear by now, but with the second assignment to the $hero variable, you can see that
it does not change the value of $fool. You’re copying the values of these variables, not the variables
themselves.

For the rest, the only new thing here is the use of the values keyword. This was mentioned earlier, but
this example shows it in action:

my @cheese_tray = values %snacks;
print “@cheese_tray\n”;

That prints limburger brie soap slices and guarantees that you have a memorable (if unpopular)
party.

SCOPE

Now it’s time to talk about scope. No, this is not about the mouthwash, but rather the scope of
 variables, or “where you can see them from.” Using scope is a way of ensuring that variables
declared in one part of your program are not available in other portions of the program. This helps
to prevent unrelated code from accidentally changing those values.

NOTE For more information about scope, see perldoc perlintro.

my Variables

Variables declared with my are referred to as lexically scoped. This means that they do not exist
outside of the scope in which they are declared. This generally means fi le scoped or block scoped.

File scoped means that any my variable declared outside of a block is visible from that point on to
the end of the fi le in which it is declared. This also means that if you have several packages in a fi le
(which you learn about in Chapter 11), the my variable in question will be visible to all packages in
that fi le. You generally want to avoid that.

c03.indd 67c03.indd 67 8/9/12 2:07 PM8/9/12 2:07 PM

68 ❘ CHAPTER 3 VARIABLES

However, if they are declared inside of a block, they remain scoped to that block. In Perl, a block
scope is simply one or more Perl statements delimited by curly braces. For example, the following is
a bare block:

my $answer = 42;
{
 my $answer = ‘forty-two’;
 print “$answer\n”;
}
print “$answer\n”;

That prints the following:

forty-two
42

This is because the my declaration inside of the block “hides” the variable from the scope outside of
the block.

NOTE You cannot declare Perl’s built-in variables like this, with one exception.

Prior to version 5.10, you were not allowed to do the following, even though it

appeared to obey the rules:

my $_;

That was not allowed because $_ is one of Perl’s built-in special variables,

which you learn about in Perl’s Built-In Variables section later in this chapter.

As of version 5.10 and after, this restriction was lifted, and you are now allowed

to use my $_, but not for the other built-ins. See perldoc perl5100delta and

search for Lexical $_ for more information.

Listing 3-1 (code fi le listing_3_1_scope.pl) provides a more real-world example with a block in a
for loop.

LISTING 3-1: Variable Scoping in Blocks

use strict;
use warnings;
use diagnostics;

my @numbers = (1, 2, 3, 4, 5);
for my $number (@numbers) {
 my $reciprocal = 1 / $number;
 print “The reciprocal of $number is $reciprocal\n”;
}
print $number;
print $reciprocal;

c03.indd 68c03.indd 68 8/9/12 2:07 PM8/9/12 2:07 PM

Scope ❘ 69

The program in Listing 3-1 will not run. Instead, you’ll get a bunch of errors similar to the
following:

Global symbol “$number” requires explicit package name at numbers.pl line 11.
Global symbol “$reciprocal” requires explicit package name at numbers.pl line 12.
Execution of /var/tmp/eval_NAVl.pl aborted due to compilation errors (#1)

(F) You’ve said “use strict” or “use strict vars”, which indicates
that all variables must either be lexically scoped (using “my” or “state”),
declared beforehand using “our”, or explicitly qualified to say
which package the global variable is in (using “::”).

Uncaught exception from user code:
Global symbol “$number” requires explicit package name at numbers.pl line 11.
Global symbol “$reciprocal” requires explicit package name at numbers.pl line 12.
Execution of $numbers.pl aborted due to compilation errors.

The @numbers variable does not appear in the error message because it’s fi le scoped and thus
 visible everywhere in this fi le. The error occurs because the $reciprocal and $number variables
are declared with my inside of the block and are not available outside of it. Note that the $number
 variable is also lexically scoped to that block, even though it might appear to be outside of it. That’s
just how for loops work.

To make the broken code run, simply delete the two print statements after the for loop.

But you may have noted the “requires explicit package name” error highlighted in the previous error
message. What exactly does that mean?

Package Variables

In Perl, a package is just a namespace to keep variables, subroutines, and other things organized. By
default, things live in the package main. You declare what package (namespace) you’re in with the
package keyword. You learn about this more indepth in Chapter 11, but for now, when you write
simple programs, you need to knowonly the basics.

Generally, you’ll fi nd that package variables are globally scoped. A globally scoped variable is
available anywhere in your program.

NOTE A namespace is just a place where any names used won’t show up in

another namespace. They’re a convenient way to organize your code. You’ll

fi nd more in-depth coverage of this in Chapter 11.

Consider the following code:

package main;
use strict;
use warnings;

c03.indd 69c03.indd 69 8/9/12 2:07 PM8/9/12 2:07 PM

70 ❘ CHAPTER 3 VARIABLES

Here, the package main; statement isn’t required because main is the default package. However,
sometimes you see code written like this:

package MyCompany::Stuff;

use strict;
use warnings;

%MyCompany::Stuff::department_number_for = (
 finance => 13,
 programming => 2,
 janitorial => 17,
 executive => 0,
);

And later, other code can reference this with the following:

my $department_number = $MyCompany::Stuff::department_number_for{finance};

It doesn’t matter if that code is in the same package, or even a different fi le, so long as the
MyCompany::Stuff package has been loaded. When addressing a package variable with the
full package name included in it, this is known as a fully qualifi ed variable. However, typing
$MyCompany::Stuff::department_number_for{finance} can be annoying. It’s also error-prone
because the following is legal but probably not what you intended (note the misspelling of “Sutff”):

my $department_number = $MyCompany::Sutff::department_number_for{finance};

Thus, you have several options to deal with this. One is to not use the strict pragma. (A pragma
is a special module, the name of which is usually written in all lowercase letters, which alters the
compile or runtime behavior of your program.) Any variable referenced without the my function is
automatically a variable in the current package.

package main;
$answer = 42
print “$anwser\n”;

That’s legal Perl, but you can see how easy it is to misspell variable names, so you shouldn’t forget
strict because that way lies madness.

The vars Pragma

Moving along, prior to Perl 5.6.0, you had the vars pragma that looked like Listing 3-2 (code fi le
listing_3_2_vars.pl).

LISTING 3-2: The vars Pragma

package MyCompany::Stuff;

use strict;
use warnings;

c03.indd 70c03.indd 70 8/9/12 2:07 PM8/9/12 2:07 PM

Scope ❘ 71

use vars (
 ‘%department_number_for’,
 ‘$some_other_package_variable’,
);

%department_number_for = (
 finance => 13,
 programming => 2,
 janitorial => 17,
 executive => 0,
);
$some_other_package_variable = 42;
print $department_number_for{finance};

Outside of the package, you would still need to refer to those variables by the fully qualifi ed variable
names, and run the risk of typos, but it saves typing inside of the package.

Declaring Package Variables with our

Starting with version 5.6.0, Perl introduced the our function. Unlike the my function that says “this
variable is mine,” the our variable says “this variable is ours.” In other words, it’s like any other
package variable, but it has a cleaner syntax.

Listing 3-3 (code fi le listing_3_3_our.pl) shows an example with the our function.

LISTING 3-3: Declaring Variables with our

package MyCompany::Stuff;

use strict;
use warnings;

our %department_number_for;
our $some_other_package_variable;

%department_number_for = (
 finance => 13,
 programming => 2,
 janitorial => 17,
 executive => 0,
);
$some_other_package_variable = 42;
print $department_number_for{finance};

Many people have a habit of declaring variables with the vars pragma or with the our function.
Do not do this unless you need to share that variable outside of your package. When someone else’s
code changes that variable’s value and breaks your code, it can be diffi cult to track down.

Using Local Variables

Of course, sometimes you want to limit the scope of your package variables. You can’t use the my
keyword to declare them, but you can use local to make it clear that they’re “localized” to a given

c03.indd 71c03.indd 71 8/9/12 2:07 PM8/9/12 2:07 PM

72 ❘ CHAPTER 3 VARIABLES

scope. They’ll retain their value in the outer scope but you’re free to change them in the inner scope,
if needed. Here is an example:

our $answer = 42;
{
 local $answer = 57;
 print “$answer\n”;
}
print “$answer\n”;

That prints the following:

57
42

Whenever you need to temporarily change the value of a package variable, use the local function.
Of course, you can do this with fully qualifi ed variable names, too, as shown here:

local $MyCompany::Stuff;

That ensures that you can do just about anything you want with $MyCompany::Stuff in your local
scope without causing problems for others who rely on the original value.

If you need to keep the original value and change it, assign it to itself with local, as shown here:

our $answer = 42;
{
 local $answer = $answer;
 print “$answer\n”;
 $answer = $answer + 2;
 print “$answer\n”;
}
print “$answer\n”;

That prints the following:

42
44
42

Be sure you understand why that works because it’s a common idiom in Perl.

STRICT, WARNINGS, AND DIAGNOSTICS

Before going much further, we need to stop for a word from our sponsors: strict, warnings, and
diagnostics.

Strictly speaking you don’t need the my in front of a variable declaration. Or perhaps that should
read “unstrictly” speaking. For most experienced Perl programmers, you’ll see the following two
lines at the top of virtually all their Perl programs:

c03.indd 72c03.indd 72 8/9/12 2:07 PM8/9/12 2:07 PM

Strict, Warnings, and Diagnostics ❘ 73

use strict;
use warnings;

And when you’re new to Perl, adding the following line is also recommended:

use diagnostics;

strict, warnings, and diagnostics are pragmas. As mentioned earlier, in Perl, a pragma is a spe-
cial module, the name of which is usually written in all lowercase letters, which alters the compile or
runtime behavior of your program.

Of course, you can leave these pragmas out when writing your software, but it’s a bad idea, and
many Perl developers will not help you if you omit these things. Why? Because they save so much
development by protecting you from silly mistakes, you’d be insane to not use them. You’re not
insane, are you? (Hmm, you are learning Perl, though).

If you actually need to, you can turn these off, as shown here:

no strict;
no warnings;

However, if you do so, it’s recommended that you do so only with two conditions:

 ➤ It’s a limited scope.

 ➤ You turn off only the bits you need.

{
 no warnings ‘uninitialized’;
 $total = $total + $some_value;
}

In the preceding code, $total might be accumulating some of your order total, but sometimes
$some_value might be allowed to be undefi ned. In that case, you might decide it’s okay to turn off
“uninitialized” warnings in that scope. (Good luck spelling “uninitialized” correctly the fi rst time,
by the way.)

NOTE You should read perldoc strict and perldoc warnings to better

understand how they work and what bits you can turn off . perldoc perllexwarn

goes into extensive detail about how the warnings pragma is structured.

You see more examples later in the book, but there’s no point in covering them in depth now. By the
time you understand them, you’ll be better prepared to understand why to do this.

Now let’s look at the individual pragmas to see the basics.

c03.indd 73c03.indd 73 8/9/12 2:07 PM8/9/12 2:07 PM

74 ❘ CHAPTER 3 VARIABLES

strict

For strict, you could actually write the following:

use strict ‘vars’;
use strict ‘subs’;
use strict ‘refs’;

However, you usually just want to write this (which means the same thing):

use strict;

The vast majority of the time, strict means “declare your variables.” If you forget to do so, your
program will not run. For example, say that you try to do this:

my $name = ‘Danny’;
my $nick = $naem;

You get a compile-time error because you misspelled $name (unless you created my $naem for some
reason).

warnings

For warnings, things are a bit different. They’re generally just warning you about bad things
your program is doing. But, in reality, these things might be okay. Your program will run, but
warnings are printed when your code thinks you’re doing something dodgy. You should look at
the warnings closely to fi nd out what they actually mean. For example, if you have warnings
enabled, the following code generates a warning about an uninitialized value in addition:

use warnings;
my $x;
my $y = $x + 2;

For versions of Perl prior to 5.6.0 (and sometimes after, for backward compatibility), you often see
the -w switch (see perldoc perlrun) on the shebang line instead:

#!/usr/bin/perl -w
use strict;

This is because the warnings pragma was introduced in version 5.6.0. If you have the misfortune to
work with an older version of Perl, be aware that 5.6.0 came out in 2000. In terms of technology,
it’s ancient, and is no longer supported.

c03.indd 74c03.indd 74 8/9/12 2:07 PM8/9/12 2:07 PM

Strict, Warnings, and Diagnostics ❘ 75

THE DIFFERENCE BETWEEN -W AND WARNINGS

One important difference between the –w switch and warnings is that –w has a
global effect (yes, it will even effect code in other fi les you’ve loaded), and
warnings affects only the scope in which it is declared. Consider this example:

#!/usr/bin/perl
use strict;
my $x;
{
 use warnings;
 my $y;
 print $y;
}
print $x;

In this code, you get a warning about the use of an uninitialized value for $y but
not for $x because in this example the warnings pragma affects only the block in
which it is used. To fi x this, declare warnings at the top of the fi le, like so:

#!/usr/bin/perl
use strict;
use warnings;

my $x;
{
 my $y;
 print $y;
}
print $x;

diagnostics

If you’re relatively new to Perl, you should also use the diagnostics pragma, as shown in
Listing 3-4 (code fi le Listing 3-4 diagnostics.pl). This gives long-winded explanations of
why you’ve been so naughty. The masochists will love it.

LISTING 3-4: Using diagnostics

use strict;
use warnings;
use diagnostics;

my $x;
my $y = $x + 2;

c03.indd 75c03.indd 75 8/9/12 2:07 PM8/9/12 2:07 PM

76 ❘ CHAPTER 3 VARIABLES

The program shown in Listing 3-4 prints out a much longer diagnostic method to help you under-
stand not only what went wrong, but also why. Reading through these diagnostic messages is a great
way to understand what Perl is doing. The following is an example:

Use of uninitialized value $x in addition (+) at diag.pl line 5 (#1)

(W uninitialized) An undefined value was used as if it were already
defined. It was interpreted as a “” or a 0, but maybe it was a mistake.
To suppress this warning assign a defined value to your variables.

To help you figure out what was undefined, perl will try to tell you the
name of the variable (if any) that was undefined. In some cases it cannot
do this, so it also tells you what operation you used the undefined value
in. Note, however, that perl optimizes your program and the operation
displayed in the warning may not necessarily appear literally in your
program. For example, “that $foo” is usually optimized into “that “
. $foo, and the warning will refer to the concatenation (.) operator,
even though there is no . in your program.

As you can see, the diagnostic information is fairly good. If you (unlike the vast majority of
 programmers out there) actually read your errors and warnings carefully, you’ll have no problem
understanding what happened.

Working Without a Net

You might think that strict and warnings aren’t that important, but consider the following
example:

$disarm_nuclear_weapon = true;

Without strict, a bareword (a st ring literal without quotes) is just a string. That snippet might
assign the string true to $disarm_nuclear_weapon. However, some terrorist programmer who has
read Chapter 7 on subroutines might add this above that line:

sub true { 0 }

And now you’ve assigned a false value (see Chapter 5) to $disarm_nuclear_weapon and started
World War III. Thanks a lot, buddy! Just use strict and warnings, and keep the world safe from
terrorism!

Now let’s get some hands-on experience with uninitialized variables.

WARNING Unfortunately, for versions of Perl prior to 5.10.0, you won’t see

the name of the variable in this warning. This meant that warnings from long

strings with many interpolated variables were a nightmare. Now they’re just an

annoyance.

c03.indd 76c03.indd 76 8/9/12 2:07 PM8/9/12 2:07 PM

Strict, Warnings, and Diagnostics ❘ 77

TRY IT OUT Understanding Uninitialized Variables

This example is simple, but sometimes seeing the warnings in action enables you to be more comfort-
able with them when you encounter real-world code. All the code in this Try It Out can be found in
code fi le example_3_2_diagnositcs.pl.

1. In your favorite text editor, enter the following code, and save as example_3_2_diagnostics.pl:

use strict;
use warnings;
use diagnostics;
my $x;
print 3 / $x;

2. Now type perl example_3_2_diagnostics.pl from the command line. You should see some-
thing similar to the following.

Use of uninitialized value $x in division (/) at diag.pl line 5 (#1)
 (W uninitialized) An undefined value was used as if it were already
defined. It was interpreted as a “” or a 0, but maybe it was a mistake.
To suppress this warning assign a defined value to your variables.

To help you figure out what was undefined, perl will try to tell you the
name of the variable (if any) that was undefined. In some cases it cannot
do this, so it also tells you what operation you used the undefined value
in. Note, however, that perl optimizes your program and the operation
displayed in the warning may not necessarily appear literally in your
program. For example, “that $foo” is usually optimized into “that “
. $foo, and the warning will refer to the concatenation (.) operator,
even though there is no . in your program.

Illegal division by zero at diag.pl line 5 (#2)
 (F) You tried to divide a number by 0. Either something was wrong in
your logic, or you need to put a conditional in to guard against
meaningless input.

Uncaught exception from user code:
Illegal division by zero at diag.pl line 5.

How It Works

If you removed the three pragmas of strict, warnings, and diagnostics (actually, removing strict
would not alter this), you’d just see the following output:

 Illegal division by zero at diag.pl line 5.

An experienced programmer can immediately understand the problem and fi x it. However, with
warnings, you’d also get an additional error message:

 Use of uninitialized value $x in division (/) at diag.pl line 5

This tells you not that $x is 0, but that you forgot to initialize it. When Perl does math, uninitialized
values are treated as a zero, and you get a warning if you have warnings enabled.

c03.indd 77c03.indd 77 8/9/12 2:07 PM8/9/12 2:07 PM

78 ❘ CHAPTER 3 VARIABLES

However, as mentioned previously, the diagnostics pragma gives you much more information about
what the problem is, and often gives you recommendations on how to resolve the problem, such as the
following:

 (F) You tried to divide a number by 0. Either something was wrong in
 your logic, or you need to put a conditional in to guard against
 meaningless input.

The (F) means it’s a trappable, fatal error. Trappable means that you can catch the error, handle it, and
try to continue running the program. You learn more about error handling in Chapter 7.

The rest of the diagnostic information informs you that you have a logic error, or perhaps that value is
expected, and you need to check for that value before trying to divide with it. You learn how to do that
in Chapter 5.

Over time, you’ll get used to the various error messages that Perl outputs, and you can stop using
diagnostics. You should try deleting the use diagnostics line in the code and running it again to
see the difference.

PERL’S BUILT-IN VARIABLES

Perl has many special built-in variables that are global in scope. Though the number of these vari-
ables can seem bewildering at fi rst, the common built-in variables are easy to memorize and can be
used to make your life simpler, including handling some common tasks that other languages might
require a library or extra code to handle. We will generally introduce these special variable as the
need arises, but a few deserve special mention upfront.

$_

One of the most common special variables is the $_ variable, sometimes referred to as dollar under-
score. This is the “default” variable and many functions automatically operate on this.

NOTE For more information about $_, see perldoc perlvar.

For example, when iterating over an array, you can do this:

for my $element (@array) {
 print $element;
}

Or you can do this:

c03.indd 78c03.indd 78 8/9/12 2:07 PM8/9/12 2:07 PM

Perl’s Built-in Variables ❘ 79

for (@array) {
 print “$_\n”;
}

That’s because, when you use a for loop and you don’t create a variable to assign the elements to,
the $_ variable is automatically populated with the value. the print function, by default, prints the
$_ variable if it doesn’t have any arguments, as shown here:

for (@array) {
 print;
}

That prints all the elements on a single line, and you probably don’t want that. Instead, if you use
Perl 5.10 or newer, you can use the feature pragma to import the say function. say is just like
print, but it automatically adds a newline to whatever you print. Like print, it automatically uses
the value of $_ as an argument if no arguments are provided.

use feature ‘say’;
for (@array) {
 say;
}

%ENV

The global %ENV hash contains environment variables. These are variables generally set outside your
program, but your program can read them to modify its behavior. For example, the $ENV{HOME}
environment variable, on most operating systems, contains the home directory of the current user
who is running the program.

Setting an environment variable in your program will not cause your operating system to see the
new value, but all other parts of your program will see it. Because this is a global variable, use
with care.

@ARGV

Another useful built-in variable is @ARGV. This built-in array contains the arguments passed in on
the command line. Listing 3-5 (code fi le Listing 3-5 hello.pl) shows a way you can rewrite
“Hello, World!” but take the arguments from the command line:

LISTING 3-5: Rewriting “Hello, World!” with @ARGV

use strict; # yes, I use these even for short programs
use warnings;

print “Hello, @ARGV”;

c03.indd 79c03.indd 79 8/9/12 2:07 PM8/9/12 2:07 PM

80 ❘ CHAPTER 3 VARIABLES

Save that as hello.pl and type this on the command line:

perl hello.pl John Q. Public

That should print out Hello, John Q. Public.

NOTE If you pass no argumentsto the hello.pl program, you won’t get an

uninitialized warning because empty arrays are simply empty. There are

no un initialized values present.

There are plenty of other special variables in Perl, and you learn about some of them as this book
progresses. For now, you can read through perldoc perlvar and weep or laugh. Fortunately, you
won’t encounter most of them.

Other Special Variables

As mentioned, Perl has many special variables built in to the language. Table 3-3 lists a few of them.
Don’t worry about their meaning for now; just be aware they exist. New ones will show up from
time to time throughout the book.

VARIABLE DESCRIPTION

@_ Parameters passed to a subroutine

$0 The name of your program

$a,$b Special global variables used in sort subroutines

%ENV Hash containing your environment variables

@INC Contains paths to look for fi les loaded with do, require, or use

%INC Contains entries for every fi le loaded with do, require, or use

$^V The current Perl version (Perl 5.6.0 or later)

$^X The executable used to execute your program

$1,$2,… Subpatterns extracted from regular expressions (Chapter 8)

$! Value of system error calls

$@ Perl syntax error trapped by eval

TABLE 3-3: Common Special Variables

c03.indd 80c03.indd 80 8/9/12 2:07 PM8/9/12 2:07 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Summary ❘ 81

SUMMARY

This chapter covered Perl's three primary data types: scalars, arrays and hashes. You learned that
Perl tends to focus on how you organize your data rather than the kind of data you have. You've
learned the basics of declaring new variables and assigning data to them. You've learned how to
iterate over arrays and hashes. You've also been introduced to context, one of the key ideas of how
data is handled in Perl. You've also been introduced to the idea of scope, a concept used to limit
what parts of your program can see which variables.

EXERCISES

 1. Whatare some diff erences between strict and warnings?

 2. Create an array with the values “Andrew,” “Andy,” and “Kaufman” (without the quotes). Write a

program that prints Andrew “Andy” Kaufman.

 3. Create a hash with the keys being names of fruits and the values being their normal color. Print

every key/value pair as a separate line similar to bananas are yellow.

NOTE You should read perldoc perlvar for more information.

c03.indd 81c03.indd 81 8/9/12 2:07 PM8/9/12 2:07 PM

82 ❘ CHAPTER 3 VARIABLES

TOPIC KEY CONCEPTS

Scalars A container for a single value.

Arrays A container for a list of values.

Hashes An unordered container for key/value pairs.

Slices Extracting a subset of data from arrays and hashes.

Scope Where you can “see” variables.

Lexical variables Variables restricted to a given scope.

Package variables Variables associated with a given package.

Built-in variables Special variables built into the language.

Context How a given expression is evaluated.

strict A pragma to require variable declaration. Also used to prevent

certain unsafe behaviors with references and subroutines.

warnings A pragma to warn about unsafe behaviors.

diagnostics A pragma to provide verbose explanations of errors and warnings.

 � WHAT YOU LEARNED IN THIS CHAPTER

c03.indd 82c03.indd 82 8/9/12 2:07 PM8/9/12 2:07 PM

Working with Data

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Working with scalars

 ➤ Working with arrays

 ➤ Working with hashes

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
on the Download Code tab. The code for this chapter is divided into the following major
examples:

 ➤ example_4_1_names.pl

This chapter shows you much of the basic data manipulation available in Perl to help you Get
Stuff Done. Quite frankly, this chapter is boring. It serves more as a reference chapter that you
can conveniently fl ip back to when you want to understand how to manipulate data in a par-
ticular way. If you like, you can think of it as an appendix slipped into the front of the book.
The builtins described here are not an exhaustive list. They’re the ones you’re most likely to
encounter in your daily work.

For many languages there is a strong distinction between operators and functions. This dis-
tinction is less clear in Perl. Some things that look like functions are sometimes referred to as
named unary operators (see perldoc perlop). To sidestep the inherent ambiguity, many Perl
developers refer to operators and functions as built-ins (sometimes spelled builtins, as is done
here). This book often uses these terms interchangeably. A builtin, in this context, means an
operator or function built in to the Perl language.

4

c04.indd 83c04.indd 83 8/9/12 8:46 AM8/9/12 8:46 AM

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://wrox.com
http://WROX.COM

84 ❘ CHAPTER 4 WORKING WITH DATA

Because Perl’s type system focuses more on how you organize your data than what kind of data that
you have, many string, numeric, bitwise, and boolean operators work on just about any kind of
data you have. Most of the time this “just works,” but you still have a responsibility as a
programmer to understand what type of data you have.

NOTE Subroutines and functions are considered distinct in some languages.

If you refer to a function as a subroutine, invariably some AD&D rules lawyer

turned programmer will come along and imperiously state, “No, no. That’s a

subroutine,” even if it has no bearing on the discussion at hand. Because Perl is

designed to be a working language, you don’t get bogged down in terminology.

That’s why sometimes you might see my described as a function (as it is in

perldoc perlfunc), even though it’s clearly not behaving like normal functions.

The print() function is sometimes described as a named unary operator when

it’s used with parentheses. Don’t be a rules lawyer and get bogged down in

terminology.

NOTE The parentheses are optional on most builtins. Your author tends to omit

parentheses because he views them as visual clutter, but other developers

prefer to be explicit. Just choose the style you prefer, and stick with it for consis-

tency. This chapter skips back and forth to get you used to each. However, when

a function name is mentioned in the body of the text, the parentheses are usually

included to avoid confusion.

Also, many of these functions and operators are prefi x, infi x, or postfi x.

 ➤ prefi x: Placed before their operand (!$var)

 ➤ infi x: Placed between two operands ($var + $var)

 ➤ postfi x: Placed after their operand ($var++)

Sometimes an operator’s meaning may change slightly if you use it as a prefi x

operator instead of as an infi x operator. I’ll describe these conditions as they

arise. They’re actually natural to use this way.

USING SCALARS

In Chapter 2, you learned that a scalar is a variable that contains a single value. Perl actually doesn’t
care what kind of data you have in that value, so stuff anything in there that you need:

my $answer = ‘forty two’;
my $num_answer = 42;

Clearly ‘forty two’ is a string and 42 is an integer, but Perl expects you (mostly) to handle them
with care and not mix them up. If you try to use 42 as a string, Perl treats it as a string composed of

c04.indd 84c04.indd 84 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 85

the characters ‘4’ and ‘2’. If you try to treat ‘forty two’ as a number, Perl treats it as the num-
ber 0, and if you have warnings enabled, Perl usually complains loudly when you try to use it as a
number.

This section starts with many of the string builtins fi rst, listed mostly in alphabetical order with
“operators” coming after. Many of these functions automatically operate on the $_ variable if no
variable is specifi ed. In Chapter 5, when you learn about control fl ow, you see many operations that
set the $_ variable if no variable is declared. This may sound strange, but it becomes clearer when
you see examples. You also see $_ being set in the map() and grep() functions, which are intro-
duced in this chapter.

Builtins are introduced with a snippet of “grammar” that shows more or less how to use it.
The grammar deliberately does not always match what you see in perlfunc. This is to avoid less
common use cases (as with the my() builtin) or to just make builtins a bit easier to read and see
common usage.

NOTE Remember, you can read more about all the builtins that are “words”

(print(), chomp(), and so on) by using perldoc -f builtin:

perldoc -f chomp

perldoc -f ucfirst

For the operator-like builtins such as +, ==, << and so on, you just have to read

the gory details in perldoc perlop.

Working with Strings

In Perl, just about anything can be coerced into a string merely by treating it as a string. The follow-
ing sections are a list of various functions and their usage in alphabetical order.

chop() and chomp()

chop (defauls to $_)
chop VARIABLE
chop(LIST)
chomp (defaults to $_)
chomp VARIABLE
chomp(LIST)

The chop()builtin removes the last character from a string and returns it.

my $name = ‘Ovid’;
my $last = chop $name;

$last is now set to ‘d’ and $name is ‘Ovi’. The chop() function was primarily used to remove the
newline from strings, but for that you now use the chomp() function.

c04.indd 85c04.indd 85 8/9/12 8:46 AM8/9/12 8:46 AM

86 ❘ CHAPTER 4 WORKING WITH DATA

chomp() removes newlines from the end of strings. It’s particularly useful when you read lines from
a fi le and want to remove the newline from each record.

NOTE Actually, chomp() removes whatever is stored in the $/ variable, also

known as the input record separator. Most of the time, $/ is equal to a newline,

but sometimes people set it to a diff erent value when they want to change how

to read records from a fi le. You learn more about this in Chapter 9. Read

perldoc perlvar and look for $INPUT_RECORD_SEPARATOR if you can’t wait.

You can also use both chop() and chomp() with lists, arrays and hashes, but this usage is less com-
monly seen in production code. For lists (and arrays), both chop() and chomp() work their magic
on each individual element, but for hashes they affect only the values of the hash and not its keys.

Both chop() and chomp() modify the variable directly. However, chop() returns whatever charac-
ter was removed from the string, and chomp() returns the number of characters removed, if any. As
a general rule, it’s recommended that you not use chop().

chr() and ord()

chr (defaults to $_)
chr NUMBER
ord (defaults to $_)
ord STRING

chr() accepts a number and returns the character associated with that number. For example, the
following code assigns the string “Ovid” to the variable $name. The dot operator (.) is used in Perl
for string concatenation.

my $name = chr(79).chr(118).chr(105).chr(100);

If the number is greater than 255, chr() returns the corresponding Unicode character.

The ord() function does the reverse: It returns the numeric value of the fi rst character in the string
passed to it.

my @values = (ord(‘O’), ord(‘v’), ord(‘i’), ord(‘d’));

@values now contains (79, 118, 105, 100).

Although the characters represented by the values 128 through 255 are not ASCII, Perl’s chr()
function does not return Unicode values for them to maintain backward compatibility.

index() and rindex()

index STR,SUBSTR,POSITION
index STR,SUBSTR
rindex STR,SUBSTR,POSITION
rindex STR,SUBSTR

c04.indd 86c04.indd 86 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 87

Given a string, index() lets you fi nd the fi rst occurrence of a substring within it, with indexing
starting at 0. If the substring is not found, it returns -1. You can also supply a starting position
from which to search. The rindex() function is identical the index() function, but it fi nds the last
occurrence of the string.

So when the word “miminypiminy” springs to your lips as the perfect description of something (it
means “delicate, mincing, or dainty,” but you knew that), you naturally wonder where the substring
iminy may be found within said word.

012345678901
my $word = ‘miminypiminy’;
my $first = index $word, ‘iminy’;
my $second = index $word, ‘iminy’, $first + 1;
my $last = rindex $word, ‘iminy’;
my $not_last = rindex $word, ‘iminy’, $last - 1;

print “First: $first\n”;
print “Second: $second\n”;
print “Last: $last\n”;
print “Not last: $not_last\n”;

And that prints out:

First: 1
Second: 7
Last: 7
Not last: 1

Now you can tell your friends you’re an expert in miminypiminy, but don’t be surprised when they
laugh.

lc(), lcfi rst(), uc(), and ucfi rst()

lc (defaults to $_)
lc EXPR
lcfirst (defaults to $_)
lcfirst EXPR
uc (defaults to $_)
uc EXPR
ucfirst (defaults to $_)
ucfirst EXPR

These handy little functions are part of the useful suite of tools that Perl provides for manipulating
data. The lc() function forces an entire string to lowercase. The uc() function forces the string to
uppercase. The lcfirst() and ucfirst() functions do the same thing, but only on the fi rst charac-
ter. Naturally you can combine all of these functions.

Following is one way to print Perl, for example:

print ucfirst lc ‘PERL’;

c04.indd 87c04.indd 87 8/9/12 8:46 AM8/9/12 8:46 AM

88 ❘ CHAPTER 4 WORKING WITH DATA

All these functions respect locale settings. You’ll see more in Chapter 9 when we discuss Unicode.

length()

length (defaults to $_)
length EXPR

The length() function returns the number of characters in a string. Due to Unicode, this is not nec-
essarily the same as the number of bytes. So the following code prints 6, as you would expect:

print length(‘danger’);

But the following code prints 9 when it tries to fi gure out the length of Japan when it’s written in
Japanese:

print length(‘ ’);

That’s because each of those characters is composed of 3 octets (bytes, but see the Unicode section
in Chapter 9), and Perl doesn’t know that you have Unicode in your source code. To handle it cor-
rectly, use the utf8 pragma. The following correctly prints 3:

use utf8;
print length(‘ ’);

Many people mistakenly use the length() function to try to determine the length of an array or
hash. Use scalar(@array) or scalar(keys(%hash)) for this, not the length() function. That’s
not what it’s for.

pack() and unpack()

pack TEMPLATE, LIST
unpack TEMPLATE, VARIABLE
unpack TEMPLATE

The pack() and unpack() builtins are two functions that nobody remembers or understands, even
though conceptually they’re simple.

The pack() function accepts a template and a list of values, “packing” that list of values into a
single value according to the template. The unpack() function does the reverse by taking the same
template and “unpacks” a scalar value into a list of values. Unlike pack(), unpack() defaults to the
$_ variable.

Read perldoc -f pack and perldoc -f unpack to understand the templates. They’re not covered
much in this book because they’re not terribly common in production code, but the following code
gives a quick example of reading fi xed-length data quickly. The code uses dots in the comment to
show you where each fi eld in the record ends.

c04.indd 88c04.indd 88 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 89

. . . .
my $record = ‘20080417john 39552027’;
my ($hired, $user, $emp_number, $dept) = unpack ‘A8A8A5A3’, $record;
print “Hired: $hired\nUser: $user\nEmp#: $emp_number\nDept: $dept\n”;

The preceding code prints out:

Hired: 20080417
User: john
Emp#: 39552
Dept: 027

And that’s probably the last you’ll see of these two functions in this book. Just be aware they exist.

NOTE If you want to know more about pack() and unpack(), see perldoc

perlpacktut.

print()

print (defaults to $_)
print FILEHANDLE LIST
print LIST

This book uses print() quite a bit and you’ve seen examples in Chapter 3, but it’s worth covering
a few things here. First, print() takes a list. With print(), you can think of a scalar variable as a
list with one element, which is why print($name) works.

my $customer = ‘Alex’;
print “Customer: $customer\n”;

This raises the obvious question of where you’re printing to and that’s where fi lehandles come in.

The optional FILEHANDLE argument is something covered more in Chapter 9, which discusses fi les.
For now be aware that a fi lehandle is usually (not always) one of three things:

 ➤ A “handle” to an actual fi le.

 ➤ STDOUT: The default place where a program writes normal output.

 ➤ STDERR: The default place where a program writes error output.

If you don’t specify a fi lehandle, print() defaults to printing to STDOUT. The following two
print() statements are identical:

print $name;
print STDOUT $name;

c04.indd 89c04.indd 89 8/9/12 8:46 AM8/9/12 8:46 AM

90 ❘ CHAPTER 4 WORKING WITH DATA

STDOUT, short for standard output, generally goes to your terminal, but you have ways to redirect
it to fi les, sockets, or other places. Not all of this is covered in this book as it’s a bit advanced. Just
remember that generally STDOUT is the “normal” printed stuff you see.

STDERR, short for standard error, also tends to show up on your terminal, but you can also redirect
it to other locations. Error handling functions like die() and warn()direct their output to STDERR.
You learn more about error handling in Chapter 7 when you deal with subroutines. For now, just
be aware that when you run a Perl program from the terminal, you usually see both STDOUT and
STDERR output written there.

sprintf() and printf()

sprintf FORMAT, LIST
printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

The sprintf() and printf() functions format data according to the printf() function of the
underlying C libraries. They are extremely useful for reporting. The sprintf() function formats
and returns the string whereas printf() formats and prints the string and the common formatting
codes are explained in Table 4-1. Any “extra” values in the list are ignored:

WARNING No comma appears after the fi lehandle argument. If it did,

Perl would assume that the fi lehandle is one of the list arguments you’re

trying to print:

print STDOUT, $name; # probably not what you wanted

This code prints something like

No comma allowed after filehandle at myprogram.pl line 1.

However, a fi lehandle can be stored in a scalar, and then Perl can’t determine

what you mean:

use strict;

use warnings;

my $name = ‘foo’;

open my $fh, ‘>’, ‘somefile.txt’

 or die “Can’t open somefile.txt for reading: $!”;

print $fh, $name;

In the previous example, Perl tries to print the fi lehandle and $name to STDOUT

instead of what you probably want:

GLOB(0x100802eb8)foo

Again, Chapter 9 covers fi lehandles in more detail.

c04.indd 90c04.indd 90 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 91

my @musketeers = qw(Aramis Athos Portos);
printf “%s,%s\n”, @musketeers; # prints “Aramis,Athos”
my $two_musketeers = sprintf “%s,%s”, @musketeers;
$two_musketeers is now “Aramis,Athos”

TABLE 4-1: Common printf() Formats

FORMAT MEANING

%% Percent sign

%c Character

%s String

%d Signed integer, in decimal

%u Unsigned integer, in decimal

%o Unsigned integer, in octal

%x Unsigned integer, in hexadecimal

%e Floating-point number, in scientifi c notation

%f Floating-point number, in fi xed decimal notation

%g Floating-point number, in %e or %f notation

In addition to the common formats, Perl also supports several commonly accepted formats that are
not part of the standard list of printf() formats. (See Table 4-2).

TABLE 4-2: Perl-Specifi c printf() Formats

FORMAT MEANING

%X Like %x, but using uppercase letters

%E Like %e, but using an uppercase “E”

%G Like %g, but with an uppercase “E” (if applicable)

%b An unsigned integer, in binary

%p A pointer (outputs the Perl value’s address in hexadecimal)

%n Special: stores the number of characters output so far into the next variable in the

parameter list

c04.indd 91c04.indd 91 8/9/12 8:46 AM8/9/12 8:46 AM

92 ❘ CHAPTER 4 WORKING WITH DATA

When using sprintf() formats, you have a percent sign and a format letter. However, you can con-
trol the output by inserting attributes, also known as fl ags, between them. For example, inserting an
integer controls the default minimum width:

my $formatted = sprintf “%20s”, ‘some name’;
print “<$formatted>\n”;

This code prints < some name> because the %20s format forces a string to be 20 charac-
ters long. That’s equivalent to:

printf “<%20s>\n”, ‘some name’;

To left-justify the string, insert a - (hyphen) after the leading % symbol:

my $formatted = sprintf “%-20s”, ‘some name’;
print “<$formatted>\n”;
<some name >

Conversely, if you want to enforce a maximum width, use a dot followed by a number:

printf “%.7s”, ‘some name’;

That prints some na. You can also combine them, if you want:

printf “%5.10s”, $some_string;

The previous code ensures that you print a minimum of 5 characters (padding with spaces,
if needed), and a maximum of 10. To force every string to be the same length — useful for
reporting — set the minimum and maximum to the same value:

printf “%10.10s”, $some_string;

You can also use the printf() formats to control numeric output, but that’s covered a bit later in
the chapter when you learn about numeric builtins.

Table 4-3 lists some of the common fl ags used with printf() formats.

TABLE 4-3: Common printf() Flags

FLAG MEANING

Space Prefi x non-negative number with a space.

+ Prefi x non-negative number with a plus sign.

- Left-justify within the fi eld.

0 Use zeros, not spaces, to right-justify.

Include a leading zero for octal, prefi x nonzero hexadecimal with 0x or 0X, and pre-

fi x nonzero binary with 0b or 0B.

c04.indd 92c04.indd 92 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 93

substr()

substr EXPR,OFFSET,LENGTH,REPLACEMENT
substr EXPR,OFFSET,LENGTH
substr EXPR,OFFSET

The substr() function takes an expression (usually a string) and an offset and returns the substring
of the string, starting at the offset. Like the index() and rindex() functions, the offset starts at 0,
not 1. The following code prints hearted:

my $string = ‘halfhearted’;
my $substr = substr $string, 4;
print $substr;

You can also specify an optional length argument after the offset. This limits the returned substring
no more than the specifi ed length. The following code prints heart:

my $string = ‘halfhearted’;
my $substr = substr $string, 4, 5;
print $substr;

An underappreciated use of substr() is its lvalue property. In Perl, an lvalue is something to which
you can assign. The “l” stands for “left” and is found on the left side of an expression. For
substr(), you can supply a replacement string for the string you return:

my $string = ‘halfhearted’;
my $substr = substr $string, 0, 4, ‘hard’;
print “$substr\n$string\n”;

The previous code prints:

half
hardhearted

The substr() function is useful, but it’s often overlooked in favor of regular expressions, something
covered in Chapter 8.

tr/// and y///

VARIABLE =~ tr/SEARCHLIST/REPLACEMENTLIST/cds
VARIABLE =~ y/SEARCHLIST/REPLACEMENTLIST/cds

The tr/// and y/// operators are identical. The y/// variant is exactly equivalent to tr/// but is
provided for those who use Perl as a replacement for sed, a stream editor utility provided in
UNIX-like environments.

NOTE See perldoc -f sprintf for a full description of the format options.

c04.indd 93c04.indd 93 8/9/12 8:46 AM8/9/12 8:46 AM

94 ❘ CHAPTER 4 WORKING WITH DATA

The tr/// builtin takes a list of characters on the left side and replaces it with the corresponding list
of characters on the right side. It returns the number of characters replaced. The string being altered
must be followed by the binding operator (=~). The binding operator is generally seen when using
regular expressions. (Refer to Chapter 8.)

This might sound strange, so some examples are in order.

To replace all commas in a string with tabs, use the following code:

my $string = “Aramis,Athos,Portos”;
$string =~ tr/,/\t/;
print $string;

If, for some reason, you want to make all vowels lowercase use:

$string =~ tr/AEIOU/aeiou/;

You can also specify a range by adding a hyphen. To make all letters lowercase (though obviously
the lc() function would be clearer here) use:

$string =~ tr/A-Z/a-z/;

The tr/// builtin also accepts several switches, c, d, and s, but you probably won’t see them much
in day-to-day usage unless you do a heavy amount of text munging (the act of making several incre-
mental changes to an item that combine to destroy it). Read perldoc perlop and see the Quote
and Quote-like Operators section.

Using String Operators

As mentioned, the difference between Perl’s functions and operators is a bit vague at times, but for
convenience, the punctuation bits are referred to as operators.

Repetition Operator: x

STRING x INTEGER
(STRING) x INTEGER

The x operator is for repetition. It’s often used to repeat a string several times:

my $santa_says = ‘ho’ x 3.7;
print $santa_says;

The previous code assigns hohoho to $santa_says.

Sometimes you’ll want to assign a single value multiple times to a list. Just put the string in paren-
theses to force list context:

my $ho = ‘ho’;
my @santa_says = ($ho) x 3;

@santa_says now contains the three strings ho, ho, and ho.

c04.indd 94c04.indd 94 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 95

NOTE In many places where Perl expects an integer, a fl oating-point number is

fi ne. Perl acts as if you’ve called the int() function on the number. This includes

using fl oating-point numbers with the x operator, or even accessing array

elements.

Concatenation Operator: .

STRING . STRING

Unlike many other languages, the dot operator (.) is used for string concatenation instead of the +
operator. Not only is this visually distinctive, but also it tells Perl to treat the data as strings instead
of numbers.

my $first = 1;
my $second = 2;
my $string = $first . $second;
my $answer = $first + $second;
print “$string - $answer”;

The previous code prints 12 - 3. This is because the concatenation operator considers the 1 and 2
to be strings and concatenates (joins) them. The addition operator, +, expects numbers and adds the
1 and 2 together, giving the answer of 3.

You can also “chain” together multiple concatenation operators. The following code shows one way
to join two strings with a space:

my $full_name = $first_name . ‘ ‘ . $last_name;

Autoincrement and Autodecrement Operators: ++ and --

++VARIABLE
--VARIABLE
VARIABLE++
VARIABLE--

The ++ and -- operators are for autoincrement and autodecrement. They return the value of the vari-
able and increase or decrease the variables value by one. They seem rather strange for strings, but they
return the next or previous letter. If they’re used as a prefi x operator (++$var), they change the value
before returning it. If they’re used as a postfi x operator ($var++), they change the value after return-
ing it. So if you want to fi nd the next character after ‘f’, you can do this with the following code:

my $letter = ‘f’;
$letter++;
print $letter;

When you get past the ‘z’, the letters double. If $letter is ‘z’ and then you call $letter++, the
$letter is now ‘aa’. You won’t see this often in code, but your author has seen it used to create
the prefi x letters in code that automatically generated outlines.

c04.indd 95c04.indd 95 8/9/12 8:46 AM8/9/12 8:46 AM

96 ❘ CHAPTER 4 WORKING WITH DATA

In the faint hope of making this clearer, the following code shows exactly what perldoc perlop
has to say on this subject:

If, however, the variable has been used in only string contexts
since it was set, and has a value that is not the empty string
and matches the pattern “/^[a-zA-Z]*[0-9]*\z/”, the increment is
done as a string, preserving each character within its range,
with carry:

 print ++($foo = ‘99’); # prints ‘100’
 print ++($foo = ‘a0’); # prints ‘a1’
 print ++($foo = ‘Az’); # prints ‘Ba’
 print ++($foo = ‘zz’); # prints ‘aaa’

The “pattern” mentioned in the previous code is a regular expression, covered in Chapter 8. For
now, understand that /^[a-zA-Z]*[0-9]*\z/ means that the string must match zero or more let-
ters, followed by zero or more numbers.

NOTE For the pedants in the audience, yes, the regular expression described

for autoincrement/autodecrement matching can match a string consisting of zero

letters and zero numbers, but the correct way to write it would have been a bit

more cumbersome and probably obscured this even more:

/^(?:[a-zA-Z]*[0-9]+|[a-zA-Z]+[0-9]*)\z/

NOTE Be careful when using the ++ and -- operators. perldoc perlop has this

to say on the subject:

Note that just as in C, Perl doesn’t define when the variable

is incremented or decremented. You just know it will be done

sometime before or after the value is returned. This also

means that modifying a variable twice in the same statement

will lead to undefined behaviour. Avoid statements like:

 $i = $i ++;

 print ++ $i + $i ++;

Perl will not guarantee what the result of the above statements is.

To use these operators safely, don’t use them more than once with the same vari-

able in the same expression. It’s often safer to place them on a line by

themselves because they modify the variable in place, and you don’t need to use

the return value:

my $i = 7;

$i++;

more code here

The main reason I mention autoincrement and autodecrement operators for strings is to introduce
the range operators. Understanding that some operators are used with both numbers and strings is
essential to understanding some of the unusual aspects of Perl.

c04.indd 96c04.indd 96 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 97

The “Whatever” Operator

STRING .. STRING

The double dots, .., are the range operator. Although the range operator is usually used for num-
bers, it can also be used for letters. Here’s how to assign the lowercase letters ‘a’ through ‘z’ to an
array:

my @alphabet = (‘a’ .. ‘z’);

Of course, you can do this with uppercase letters, too:

my @alphabet = (‘A’ .. ‘Z’);

If the left string is greater than the right string, nothing is returned.

Internally, when used with strings, the range operator uses the special autoincrement behavior dis-
cussed with ++ and --.

NOTE The range operators actually have a tremendous amount of power and

are useful in many more ways than shown here. Read the “Range Operators”

section of perldoc perlop to learn more about them.

NOTE As usual, type perldoc Scalar::Util for more information. If you use a

version of Perl before 5.7.3, you may need to install this module from the CPAN.

Scalar::Util

In Perl 5.7.3, the Scalar::Util module was included in the Perl core. This module implements a
number of useful functions. The two most common are blessed() and looks_like_number(). The
blessed() function is useful to determine if a scalar is actually an object (see Chapter 12) and the
looks_like_number() function returns a boolean (true or false) value indicating whether a string,
well, looks like a number. To use these functions, you must explicitly import them as follows:

use Scalar::Util ‘blessed’;
or
use Scalar::Util ‘looks_like_number’;
or both
use Scalar::Util qw(blessed looks_like_number);
my $is_number = looks_like_number(‘3fred’); # false
my $is_number = looks_like_number(‘3e7’); # true!

Chapter 5 covers boolean values in more detail and discusses conditionals.

c04.indd 97c04.indd 97 8/9/12 8:46 AM8/9/12 8:46 AM

98 ❘ CHAPTER 4 WORKING WITH DATA

Numeric Builtins

Naturally, Perl has plenty of numeric functions. It wouldn’t be much of a programming language if
it didn’t! Many of the functions are the basic arithmetic operators you’re familiar with.

Arithmetic Operators: +, -, *, /, and **

NUMBER + NUMBER
NUMBER - NUMBER
NUMBER * NUMBER
NUMBER / NUMBER
NUMBER ** NUMBER

The +, -, *, and / operators are for addition, subtraction, multiplication, and division, respectively.
In terms of precedence, multiplication and division are calculated fi rst, left to right, and addition
and subtraction are calculated last, left to right. The following code prints 11:

my $answer = 8 + 6 / 4 * 2;
print $answer;

Although your author generally avoids parentheses to prevent visual clutter, they are strongly rec-
ommended when you’re doing math to avert confusion. The previous code is equivalent to:

my $answer = 8 + ((6 / 4) * 2);
print $answer;

If you want the addition fi rst, followed by the multiplication and then division, just use parentheses
to group things logically:

my $answer = (8 + 6) / (4 * 2);
print $answer;

Now you have 1.75 as the answer instead.

Exponentiation is handled with the ** operator. To calculate the cube of 25, use the following code:

print 25 ** 3;

That prints 15625.

NOTE The arithmetic operators are infi x operators. This means that they are

placed in between a left and right operand. They have no meaning as postfi x

operators, but the + and - operators are special.

You can use the - operator to reverse the sign of a number:

my $num1 = -17;

print -$num1;

my $num2 = 42;

print -$num2;

c04.indd 98c04.indd 98 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 99

The Modulus Operator: %

INTEGER % INTEGER

The % is the modulus operator. It returns the remainder of the division between the left and right
operands. Like many operators and functions that take integers, if fl oating-point numbers are used,
their integer value (see the int() function later in this chapter) is used. Thus, because 25 divided by
9 is 2 with a remainder of 7, this means that 25 modulus 9 is 7.

print 25 % 9; # prints 7

abs()

abs (defaults to $_)
abs NUMBER

The abs() function returns the absolute value for a number. Thus, if the number is greater or equal
to zero, you get the number back. If it’s less than zero, you get the number multiplied by -1.

exp()

exp (defaults to $_)
exp NUMBER

The exp() function returns e (approximately 2.718281828) to the power of the number passed to it.
See also: log() (later in this chapter).

Those two print() statements print 17 and -42, respectively.

A prefi x plus (referred to as a unary plus) has no distinct meaning, but it is some-

times placed after a function name and before parentheses to indicate grouping.

For example, the following code doesn’t do what you want; it prints 3 and throws

away the 4:

print (1 + 2) * 4;

Perl will interpret that as:

print(3) * 4;

Instead, use a unary plus to make it clear to Perl that the parentheses are for

grouping and not for the function call.

print +(1 + 2) * 4;

c04.indd 99c04.indd 99 8/9/12 8:46 AM8/9/12 8:46 AM

100 ❘ CHAPTER 4 WORKING WITH DATA

hex() and oct()

hex (defaults to $_)
hex STRING
oct (defaults to $_)
oct STRING

Given a string, hex() attempts to interpret the string as a hexadecimal value and to print the base 10
value. For example, the following two lines are equivalent and each prints the decimal number 2363.

print hex(“0x93B”);
print hex “93B”; # same thing

This works on strings, not numbers. The following code prints 9059:

print hex 0x93B;

Why does it print that? Because 0x93B is a hexadecimal number, and it’s evaluated as 2363.
The hex() function then sees it as the string 2363, which, if interpreted as a hexadecimal number,
is 9059.

The oct() function is almost identical, but it expects strings that it considers to be octal numbers
instead of hexadecimal numbers. This means that each of the following lines print the decimal
number 63:

print oct(“77”);
print oct(“077”);

NOTE If you need to go from decimal to either hexadecimal or octal, use the %h

or %o format for sprintf() and printf(), respectively:

printf “%x”, 2363;

printf “%o”, 63;

To format the hexadecimal number with a leading 0x, just add it to the string

before the % character:

printf “0x%x”, 2363;

0x93b

To format the octal number with a leading 0, use the # fl ag after the % character:

printf “%#o”, 63;

077

c04.indd 100c04.indd 100 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 101

int()

int (defaults to $_)
int NUMBER

The int() function returns the integer value of the number. In other words, it truncates everything
after a decimal point.

print int(73.2); # prints 73

For some programming languages, if all numbers in a mathematical operation are integers, an inte-
ger result is returned. For example, in Ruby, the following code prints 3 instead of 3.5:

print 7/2;

Perl assumes that you don’t want do discard this extra information, so it prints 3.5, as expected. To
force an integer response, you can use the int() function:

print int(7/2); # prints 3

NOTE To force integer math, you can also use the integer pragma. See

perldoc integer for more information.

log()

log (defaults to $_)
log NUMBER

The log() function, as with most programming languages, returns the natural logarithm of NUMBER
(the number raised to the power of e). See also exp()(later in this chapter).

rand() and srand()

rand NUMBER
srand NUMBER

The rand() function returns a random fractional number between 0 and the number passed to it. If
no number is passed, it assumes 1. If you prefer integer numbers, use the int() function with
it. Thus, to simulate the roll of a six-sided die, you could do this:

print 1 + int(rand(6));

Adding 1 to it is necessary because if you don’t, you get numbers between 0 and 5.

The srand() function is used to set the seed for the random number generator. As of Perl version
5.004 (released in 1997), Perl calls srand() for you the fi rst time that rand() is called. You want to
set only the seed if you want to generate predictable “random” results for testing or debugging. As
of Perl 5.10, srand()also returns the seed used.

c04.indd 101c04.indd 101 8/9/12 8:46 AM8/9/12 8:46 AM

102 ❘ CHAPTER 4 WORKING WITH DATA

sprintf() and printf()

sprintf FORMAT, LIST
printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

You’v e already seen the sprintf() function in relation to strings and seen that it can be used to
format numbers, but you should know that it can also round numbers when you use it with the %f
template. You merely specify how many digits (optional) you want before the decimal point and how
many digits you want after. Some examples follow:

printf “%1.0f”, 5.2; # prints 5
printf “%1.0f”, 5.7; # prints 6
printf “%.2f”, 6.248; # prints 6.25

Often you see people recommending that you add .5 to a number and call the int() function to
round off, but this fails with negative numbers. Just use printf() or sprintf().

sqrt()

sqrt (defaults to $_)
sqrt NUMBER

The preceding code returns the positive square root of the number, which does not work with nega-
tive numbers unless the Math::Complex module is loaded.

use Math::Complex;
print sqrt(-25);

That prints 5i. If you are not familiar with imaginary numbers, you will probably never need (or
want) the Math::Complex module.

Trigonometric Function: atan2(), cos(), and sin()

atan2 (defaults to $_);
atan2 NUMBER
cos (defaults to $_)
cos NUMBER
sin (defaults to $_)
sin NUMBER

NOTE The rand() function is for convenience, but it’s not strong enough

for cryptography. The CPAN lists several useful modules, including

Math::Random::Secure, Math::Random::MT::Perl, and Math::TrulyRandom

that are intended for this purpose. Your author has no background in cryptogra-

phy, so he can’t comment on their eff ectiveness.

c04.indd 102c04.indd 102 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 103

The atan2(), cos(), and sin() functions return the arcus tangent, cosine, and sine of a number,
respectively. If you need other trigonometric functions, see the Math::Trig or POSIX modules.

Bitwise Operators

As you might expect, Perl also provides a variety of bitwise operators. Bitwise operators don’t work
directly on the values, but they allow you to manipulate individual bits within those values. We
don’t cover them in this book, but we include them here for completeness.

Table 4-4 explains these operators.

TABLE 4-4: Common printf() Flags

NOTE See Bitwise String Operators in perldoc perlop if you need to do bit

manipulation. You may also use bitwise operators on strings.

OPERATORS TYPE GRAMMAR DESCRIPTION

& Infi x NUMBER & NUMBER Bitwise “and”

| Infi x NUMBER | NUMBER Bitwise “or”

^ Infi x NUMBER ^ NUMBER Bitwise “xor”

~ Prefi x ~NUMBER Bitwise negation

<< Infi x NUMBER << NUMBER Left shift operator

>> Infi x NUMBER >> NUMBER Right shift operator

If you’re familiar with bitwise operators, these behave as you would expect. For example, a quick
check to see if a number is even follows:

print “Even\n” if 0 == ($number & 1);

This is identical to the following modulus check:

print “Even\n” if 0 == ($number % 2);

Understanding Booleans

You use boolean operators to determine if a value or expression is true or false. Because Perl lets you
assign strings and numbers to variables, the boolean operators are separated into string and numeric
versions. You learn the string versions fi rst.

Although their use is covered in Chapter 5, you see the if/else statement now just so you can
understand how they work.

c04.indd 103c04.indd 103 8/9/12 8:46 AM8/9/12 8:46 AM

104 ❘ CHAPTER 4 WORKING WITH DATA

The if statement takes an expression in parentheses and, if it evaluates as true, executes the code in
the block following it. If an else block follows the if block, the else block executes only if the if
expression evaluates as false. For example:

my ($num1, $num2) = (7, 5);
if ($num1 < $num2) {
 print “$num1 is less than $num2\n”;
}
else {
 print “$num1 is not less than $num2\n”;
}

That code prints 7 is not less than 5. The < boolean operator is the boolean “less than” opera-
tor and returns true if the left operand is less than the right operand.

Now that you have this small example out of the way, the following sections discuss the boolean
operators.

eq, ne, lt, le, gt, ge, and cmp

All these are infi x operators. They are “spelled out” in Perl to make it clear that they are for strings.
Table 4-5 explains them.

TABLE 4-5: Boolean String Operators

OPERATOR MEANING

eq Equal

ne Not equal

lt Less than

le Less than or equal to

gt Greater than

ge Greater than or equal to

cmp String compare

A string is considered “less than” another string if, depending on your current locale settings, an
alphabetical sorting of that string causes it to come before another string. This means that a comes
before b, punctuation tends to come before and numbers and numbers come before letters. Also, zzz
comes before zzza because the fi rst three letters of each match, but zzz is shorter than zzza. This
also means that 100 comes before 99 when doing a string compare because 1 comes before 9. It’s a
frequent trap that inexperienced Perl programmers fall into.

For example, the following prints yes because a comes before bb:

c04.indd 104c04.indd 104 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 105

if (‘a’ le ‘bb’) {
 print ‘yes’;
}
else {
 print ‘no’;
}

The special cmp infi x operator returns -1 if the left operand is less than the right operand. It returns
0 if the two operands are equal, and it returns 1 if the left operand is greater than the right operand.
The following, for example, prints -1:

print ‘a’ cmp ‘b’

This seems strange, but it comes in handy when you sort lists. Chapter 10 discusses sorting issues in
more detail, but for now be aware that you can sort a list alphabetically with the following code:

my @sorted = sort { $a cmp $b } @words;

Actually, the sort() function defaults to sorting alphabetically, so that’s equivalent to this:

my @sorted = sort @words;

Naturally, all these have numeric equivalents, as detailed in Table 4-6.

TABLE 4-6: Boolean Numeric Operators

OPERATOR MEANING

== Equal

!= Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<=> Numeric compare

The operators in Table 4-6 all behave as you expect. The numeric compare operator, <=> (sometimes
affectionately referred to as the spaceship operator), has the same rules as the cmp operator but does
numeric sorting rather than alphabetical sorting. So to sort a list of numbers in ascending order:

my @sorted = sort { $a <=> $b } @numbers;

c04.indd 105c04.indd 105 8/9/12 8:46 AM8/9/12 8:46 AM

106 ❘ CHAPTER 4 WORKING WITH DATA

Finally, you have the boolean operators which do not compare strings or numbers but simply return
true or false. Table 4-7 explains them:

TABLE 4-7: Boolean Operators

NOTE You can sort numbers in reverse order by reversing the $a and $b:

my @descending = sort { $b <=> $a } @numbers;

OPERATOR TYPE MEANING

! Prefi x Equal

&& Infi x And

|| Infi x Or

// Infi x Defi ned or

not Infi x Not

and Infi x And

or Infi x Or

xor Infi x Exclusive or

WHAT IS “TRUTH”?

Sometimes people get confused about true/false values in Perl. It’s actually quite
simple. The following scalar values are all false in Perl:

 ➤ undef

 ➤ “” (the empty string)

 ➤ 0

 ➤ 0.0

 ➤ “0” (the “string” zero)

Any other scalar value is true.

These operators return true or false depending on the true and false values of their operands. The
following code gives some examples that should make their meaning clear:

if (! $value) {
 print “$value is false”;
}

c04.indd 106c04.indd 106 8/9/12 8:46 AM8/9/12 8:46 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Using Scalars ❘ 107

if ($value1 && $value2) {
 print “both values are true”;
}
if ($value1 || $value2) {
 print “One or both of the values are true”;
}
if ($value1 // $value2) {
 print “One or both of the values are defined”;
}
if ($value1 xor $value2) {
 print “Either $value1 or $value2 is true, but not both”;
}

The not, and, and or operators are the equivalent of the corresponding !, &&, and || operators,
but they have a lower precedence. See the section on “Precedence and Associativity” for more
information.

NOTE The // operator is a bit special. Introduced in Perl version 5.10.0, it’s the

defi ned or operator. The || operator evaluates the left operand to see if it’s true.

The // operator evaluates the left operand to see if it’s defi ned (that is, if it has

a value assigned to it) and if the left operand has any value, including one that is

ordinarily considered to be false; then it is returned. Otherwise, the right operand

is returned.

It avoids many bugs where you would ordinarily use the || operator but might

accidentally ignore a valid value that happens to evaluate as false.

This feature is not available prior to version 5.10.0.

One useful feature is that boolean operators all return the fi rst value evaluated that allows Perl to
determine the condition is satisfi ed. For example, the && operator returns the left operand if it’s
false. Otherwise, it returns the right operand.

my $zero = 0;
my $two = 2;
my $three = 3;
my $x = $zero && $two; # $x is 0
my $y = $three && $zero; # $y is 0
my $z = $two && $three; # $z is 3

However, this is more commonly used with the || and // operators (remember, // is only available
on Perl version 5.10.0 and up) by assigning the fi rst value that is not false (or not defi ned, in the case
of the // operator):

use 5.10.0; # tell Perl we want the // operator
my $zero = 0;
my $two = 2;
my $three = 3;

c04.indd 107c04.indd 107 8/9/12 8:46 AM8/9/12 8:46 AM

108 ❘ CHAPTER 4 WORKING WITH DATA

my $undef;
my $w = $zero || $two; # $w is 2
my $x = $undef || $zero; # $x is 0
my $y = $zero // $two; # $y is 0!
my $z = $undef // $three; # $z is 3

Assignment Operators

Perl offers a wide variety of assignment operators, including many shortcut operators to handle
common tasks. Table 4-8 lists these operators. The lvalue is the left hand side of the operator and
the rvalue is the expression on the right.

TABLE 4-8: Assignment Operators

OPERATOR EQUIVALENT EXPRESSION

= Assign rvalue to lvalue

+= lvalue = lvalue + rvalue

-= lvalue = lvalue - rvalue

*= lvalue = lvalue * rvalue

/= lvalue = lvalue / rvalue

||= lvalue = rvalue if ! lvalue

//= lvalue = rvalue if ! defi ned lvalue

&&= lvalue = lvalue && rvalue

|= lvalue = lvalue | rvalue

&= lvalue = lvalue & rvalue

**= lvalue = lvalue ** rvalue

x= lvalue = lvalue x rvalue

<<= lvalue = lvalue << rvalue

>>= lvalue = lvalue >> rvalue

^= lvalue = lvalue ^ rvalue

You’ve already seen the = assignment operator. It just tells Perl to evaluate the expression on the
right and assign the resulting value to the variable or variables on the left. However, there are many
shortcut assignment operators available. These operators save you a bit of typing. They’re in the
form of ‘operator’ and the equals sign (=), and they tell Perl to treat the operator like an infi x opera-
tor with the value you assign to be the left operand, the value on the right to be the right operand,
and assign the results to the left operand.

c04.indd 108c04.indd 108 8/9/12 8:46 AM8/9/12 8:46 AM

Using Scalars ❘ 109

The following examples all have the equivalent expression in the comment after the assignment.

$x += 4; # $x = $x + 4;
$y .= “foo”; # $y = $y . “foo”;
$z x= 4; # $z = $z x 4;

Precedence and Associativity

What does the following code do?

print -4**.5;

If you remember your math, raising a number to .5 is equivalent to take the square root of the num-
ber. If Perl evaluates the infi x exponentiation operator (**) fi rst, it means the following:

print -sqrt(4);

If Perl evaluates the prefi x negation operator (-) fi rst, it means this:

print sqrt(-4);

The fi rst version prints -2, but the second version, depending on how you wrote it and which version
of Perl you use, prints something like Can’t take the sqrt of -4, or perhaps nan (which means
“not a number”).

In this case, the exponentiation operator has a higher precedence than the prefi x negation operator
and thus is evaluated fi rst.

The main precedence rules that you need to remember are that math operations generally have the
same precedence you learned in math class. Thus, multiplication and division (* and /) have a higher
precedence than addition and subtraction (+ and -). So the following assigns 13 to $x, not 25.

my $x = 3 + 2 * 5;

But what happens when you have several of the same operator in the same expression? That’s when
associativity kicks in. Associativity is the side from which the operations are fi rst evaluated.
For example, subtraction has left associativity, meaning that the leftmost operations are evaluated
fi rst. So 20 - 5 - 2 means 15 - 2, not 20 - 3.

On the other hand, exponentiation is right associative. The following code prints 512 (2 raised to
the 9th power), and not 64 (8 squared).

my $x = 2 ** 3 ** 2;
print $x;

If you actually want to print 64, use parentheses to force the precedence. Parenthesized items always
have the highest precedence.

my $x = (2 ** 3) ** 2;

c04.indd 109c04.indd 109 8/9/12 8:46 AM8/9/12 8:46 AM

110 ❘ CHAPTER 4 WORKING WITH DATA

Table 4-9 lists the associativity of various operators, in descending order of precedence. Operators
are separated by spaces rather than commas to avoid confusion with the comma operator.

TABLE 4-9: Operator Associativity

OPERATOR ASSOCIATIVITY

Terms and list operators Left

-> Left

++ -- Nonassoc

** Right

! ~ \ and unary + and - Right

=~ !~ Left

* / % x Left

+ - . Left

<< >> Left

Named unary operators Nonassoc

< > <= >= lt gt le gr Nonassoc

== != <=> eq ne cmp ~~ Nonassoc

& Left

| ^ Left

&& Left

|| // Left

.. ... Nonassoc

?: Right

= += -= *= and so on Right

, => Left

List operators (rightward) Nonassoc

not Right

and Left

or xor left

c04.indd 110c04.indd 110 8/9/12 8:46 AM8/9/12 8:46 AM

Array and List Functions ❘ 111

The fi rst item, “Terms and list operators,” might sound strange. Terms are variables, quotes and
quote-like operators, anything in parentheses, and functions that enclose their arguments in
parentheses.

NOTE If you’re familiar with C, operators found in C retain the same precedence

in Perl, making them a bit easier to learn.

Table 4-9 is a daunting list, and memorizing it might seem like a scary proposition. Many program-
mers recommend memorizing it. That’s not a bad idea, but there are a couple of issues with memo-
rizing precedence levels:

 ➤ You may simply forget the precedence levels.

 ➤ When the maintenance programmer behind you sees you abusing precedence and associativ-
ity, she’s not going to be happy to stumble across the following:

print 8**2 / 7 ^ 2 + 3 | 4;

Using parentheses can clarify this code. The following means exactly the same thing:

print((((8**2) / 7) ^ (2 + 3)) | 4);

(Both of those lines print 12, by the way).

No, I’m not advocating making such a complicated bit of code, but even for simple expressions, it
can come in handy to make it clearer exactly what you intended.

ARRAY AND LIST FUNCTIONS

Arrays and lists have a variety of useful functions that make them easy to manipulate. Because Perl
focuses more on data structures than the kinds of data you have, it’s very important to have a rich
variety of tools to make manipulating these data structures as easy as possible.

Built-in Array Functions

Many years ago your author was asked if Perl supports linked lists (a type of data structure that
makes it easy to manipulate lists). I replied “of course it does, but we rarely need them.” This is
because Perl has a wide variety of builtins for array manipulation.

pop() and push()

pop (defaults to @_)
pop ARRAY
push ARRAY, LIST

c04.indd 111c04.indd 111 8/9/12 8:46 AM8/9/12 8:46 AM

112 ❘ CHAPTER 4 WORKING WITH DATA

The pop() function pops and returns the last value off the end of an array. The array length is
shortened by one element.

my $last_element = pop @array;

The push() function pushes one or more values onto the end of an array, making it longer.

my @array = (1 .. 5);
push @array, (6 .. 10);

In the preceding example, @array now contains ten elements, the numbers 1 through 10, in the cor-
rect order.

NOTE The @_ special variable hasn’t been covered yet. It contains the argu-

ments to subroutines, which are explained more in Chapter 7.

shift() and unshift()

shift (defaults to @_)
shift ARRAY
unshift ARRAY, LIST

The shift() and unshift() functions behave like the pop() and push() functions, but they oper-
ate on the beginning of the list.

splice()

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET
splice ARRAY

The splice() function allows you to remove and return items from a list, starting with the OFFSET.
If LENGTH is supplied, only LENGTH elements are removed. If a LIST is supplied, the removed elements
are replaced with the LIST (possibly changing the length of the array). As usual, OFFSET, starting
with 0, is the fi rst element of the list.

my @writers = qw(Horace Ovid Virgil Asimov Heinlein Dante);
my @contemporary = splice @writers, 3, 2;

The preceding example assigns Asimov and Heinlein to @contemporary and leaves Horace, Ovid,
Virgil, and Dante in @writers.

If you do not specify an offset, the splice() function removes all elements from the array.

There are also a variety of list functions, some of which are covered in far more depth in
Chapter 10, when you learn about sort, grep, and map in greater detail. Some basics appear a little
later in this chapter, though.

c04.indd 112c04.indd 112 8/9/12 8:46 AM8/9/12 8:46 AM

Array and List Functions ❘ 113

join() and split()

join STRING, LIST
split PATTERN, STRING
split PATTERN, STRING, LIMIT

The join() builtin takes a string and a list and joins every element in the list into a single string,
with each element separated by the string value.

my $result = join “-”, (‘this’, ‘that’, ‘other’);

NOTE Don’t be confused by the diff erences between arrays and lists in Perl. A

list is either a list of values literally defi ned in the code, using the comma opera-

tor, or the return value of something evaluated in list context.

Here, you have an array on the left and a list on the right:

my @words = (‘this’, ‘that’, ‘other’);

And here is the split function splitting a string into a list and assigning it to an

array:

my @array = split ‘-’, $string;

This sounds silly and pedantic, but as Larry Wall himself has said, “There is no

general rule for converting a list into a scalar.” However, you can safely use sca-

lar context with arrays.

Further more, lists are immutable (they cannot be changed), but arrays are.

This assigns this-that-other to $result. As you might expect, you can use an array for the list.
The following is identical behavior:

my @array = qw(this that other);
my $result = join ‘-’, @list;

The opposite of join() is split(). However, the fi rst argument to split is a regular expression pat-
tern, and you won’t be covering those until Chapter 8, so the following just gives you a quick (and
incomplete) example of splitting a string on tabs:

my @fields = split /\t/, @string;

The previous code takes a string, splits it on the tabs (discarding the tab characters), and returns the
individual fi elds into the @fields array. The split() function is powerful due to the power of regu-
lar expressions, but it has traps for the unwary, so it’s not covered for now.

c04.indd 113c04.indd 113 8/9/12 8:46 AM8/9/12 8:46 AM

114 ❘ CHAPTER 4 WORKING WITH DATA

reverse()

reverse LIST

Does what it says on the tin: It reverses a list. However, in scalar context it concatenates the list
elements and prints the reverse of the resulting string. The latter behavior can be confusing in
some cases.

my @array = (7, 8, 9);
my @reversed = reverse @array;
my $scalar = reverse @array;

In the preceding example, although the @reversed array now contains 9, 8, and 7 (in that order),
the $scalar variable now contains the string 987. However, this behavior is useful if you want to
reverse a single word:

my $desserts = reverse ‘stressed’;

Or if you prefer to be explicit:

my $desserts = scalar reverse ‘stressed’;

sort()

sort LIST

Although this chapter briefl y touched on sort() earlier, it’s covered it more in-depth in Chapter 10,
but following are a few examples to get your started. In these examples, an optional block occurs
after the sort() function. As the sort function walks through the list, the special variables $a and
$b contain the two elements to be compared while sorting. If you reverse them ($b, then $a), then
the sort occurs in the reverse order than normal.

sorting alphabetically
my @sorted = sort @array;
sorting alphabetically in reverse order
my @sorted = sort { $b <=> $a } @array;
sorting numerically
my @sorted = sort { $a <=> $b } @array;
sorting numerically in reverse order
my @sorted = sort { $b <=> $a } @array;

Reversing the $a and $b to reverse the sort looks strange, and you might be tempted to do this to
sort a list in reverse alphabetical order:

my @sorted_descending = reverse sort @array;

That works and it’s easy to read, but it must sort the entire list and then iterate over the list again
to reverse it (note that this has been fi xed in Perl versions 5.10.0 and newer). It’s not as effi cient,
 particularly for huge lists. That being said, it may not be a big deal. If your program runs fast

c04.indd 114c04.indd 114 8/9/12 8:46 AM8/9/12 8:46 AM

Array and List Functions ❘ 115

enough with the “reverse sort” construct, don’t sweat it. Making your programs easy to read is a
good thing.

grep()

grep EXPR, LIST
grep BLOCK, LIST

The grep() function fi lters a list of values according to whatever is in the BLOCK or EXPR
(EXPRESSION). The name comes from an old UNIX command of the same name, but it operates a bit
differently in Perl. It’s covered more in Chapter 10, but the basic usage is simple. Each item in the list
is aliased to $_ and you can compare $_ to a value to determine if you want the selected value. For
example, to get all values greater than 5:

my @list = grep { $_ > 5 } @array;

You can use this to rewrite an array in place. To remove all values less than 100, use this code:

@array = grep { $_ < 100 } @array;

The grep() function is extremely powerful, but I’ll wait until you know more about Perl to show
you the full power of this tool. The preceding syntax is the most common syntax for grep(), but it’s
not the only syntax.

map()

map EXPR, LIST
map BLOCK, LIST

The map() function, like the grep() function, takes a list and creates a new list. However,
unlike the grep() function, it doesn’t fi lter a list; it applies a function to each element of a list,
returning the result of the function. It aliases each element in a list to $_. To multiply every value in
a list by 2, use this code:

my @doubled = map { $_ * 2 } @array;

Or to uppercase every element in a list, use this:

my @upper = map { uc($_) @array;

If you remember the uc() function, you know it defaults to operate on $_, so the preceding can be
written as follows:

my @upper = map { uc } @array;

The map() and grep() functions can also be chained. If you want to take the square root of all val-
ues in a list that are greater than zero, just use map() and grep() together:

my @roots = map { sqrt } grep { $_ > 0 } @numbers;

c04.indd 115c04.indd 115 8/9/12 8:46 AM8/9/12 8:46 AM

116 ❘ CHAPTER 4 WORKING WITH DATA

Many programmers like to put the map() and grep() on separate lines based on the theory that
it makes the code easier to read. This is true, particularly if your map() and grep() blocks are
complicated.

my @roots = map { sqrt }
 grep { $_ > 0 }
 @numbers;

Like grep(), there’s a huge amount of power here that I’ve barely touched upon and will cover more
in Chapter 10.

The map() and grep() functions are often confusing to new Perl programmers, but they are core to
the power of Perl. You must take the time to understand them and know completely how they work.

One caveat about map() and grep(): They operate on every element of a list. If you need to operate
only on a few of the elements or if your map() and grep() statements are complicated, it’s better to
use a for loop with the array. Chapter 5 covers these.

List::Util

Starting with Perl 5.8.0 (released in March 2002), the List::Util module was bundled with Perl.
This module includes many list functions that provide even more power when you deal with lists
and arrays. For example, to sum all elements in a list together, you can use the following code:

use List::Util ‘sum’;
my $total = sum @numbers;

Because sum() accepts lists and not just a single array, you can use multiple arrays as follows:

my $total = sum @weight_supplies, @weights_food;

See perldoc List::Util for a full list of useful functions. There’s also the List::MoreUtils mod-
ule, but you need to install that from the CPAN.

BUILT-IN HASH FUNCTIONS

Hashes, of course, also have useful functions to help you work with them. A hash is often called a
dictionary in other languages. Instead of looking up values with numeric indices, you look them up
with strings.

delete()

delete KEY

The delete() function removes a key/value pair from a hash.

c04.indd 116c04.indd 116 8/9/12 8:46 AM8/9/12 8:46 AM

Built-in Hash Functions ❘ 117

my %birth_year_for = (
 Virgil => ‘70 BCE’,
 Shakespeare => ‘1564 CE’,
 ‘Elizabeth Barrett Browning’ => ‘1806 CE’,
 ‘Carrot Top’ => ‘1965 CE’,
);
delete $birth_year_for{‘Carrot Top’};

That, thankfully, removes Carrot Top from your list of birth years.

exists()

exists KEY

But how do you know that you actually deleted a given key/value pair in a hash? You can check it
with the exists() function. The following code prints Carrot Top not found! because the string
Carrot Top does not exist as a hash key:

my %birth_year_for;
if (exists $birth_year_for{‘Carrot Top’}) {
 print “Carrot Top not expurgated!”;
}
else {
 print “Carrot Top not found!”;
}

keys()

keys HASH

Sometimes you just want to iterate over all the keys to the hash. This is easy with the keys() function:

for my $key (keys %hash) {
 if ($hash{$key} < 10) {
 delete $hash{$key};
 }
}

values()

values HASH

Or if you want to just inspect the values of a hash, use the values() function:

my @large_enough = grep { $_ >= 10 } values %hash;

each()

each HASH

c04.indd 117c04.indd 117 8/9/12 8:46 AM8/9/12 8:46 AM

118 ❘ CHAPTER 4 WORKING WITH DATA

If you prefer, you can iterate over the keys and values at the same time using the each() function
and a while loop. You’ll learn while loops in Chapter 5, but for now, just know that it looks like
the following code:

while (my ($key, $value) = each %hash) {
 print “$key: $value\n”;
}

In the previous example with keys(), you saw how to delete items from the hash. It is generally
okay to do this even when using the each() function, but do not add key/value pairs to the hash.
This breaks the each() function, and you’ll get unpredictable results. Also, don’t call the each
 function if you call other code at the same time (typically via a subroutine — discussed in
Chapter 7) if you can’t guarantee that it won’t also try to iterate over the same hash. This is because
calling each() twice on the same hash at the same time means that the each() function cannot
fi gure out what you meant to do. When in doubt, just use keys().

this is always safe
for my $key (keys %hash) {
 my $value = $hash{$key};
}

TRY IT OUT Printing Your Name in Various Cases

This is a good time to take a break and see how some of the builtins you’ve learned work in actual
code. In this Try It Out, you combine a couple things you learned to build more powerful structures.
In this case, you take uppercase and lowercase versions of a name and both lowercase, but with an
uppercase (initial-capped) fi rst letter. For example, PUBLIUS OVIDIUS NASO should convert to Publius
Ovidius Naso. All the code in this Try It Out can be found in code fi le example_4_1_names.pl.

1. In your wrox/chapter4/ directory, enter the following program, and save it as example_4_1_
names.pl:

#!perl

use strict;
use warnings;
use diagnostics;

my @upper = qw(PUBLIUS OVIDIUS NASO);
my @lower = qw(publius ovidius naso);

print join “ “, map { ucfi rst lc } @upper;
print “\n”;

my $name = join ‘ ‘, map(ucfi rst(lc($_)), @lower);
$name .= “\n”;
print $name;

2. Run the program with perl example_4_1_names.pl. You should see the following output:

c04.indd 118c04.indd 118 8/9/12 8:46 AM8/9/12 8:46 AM

Scoping Keywords ❘ 119

$ perl example_4_1_names.pl
Publius Ovidius Naso
Publius Ovidius Naso

How It Works

Although the @upper and @lower arrays are different, you have virtually identical code manipulating
arrays into the wanted output. You can also see how Perl combines many simple functions together to
make this task easy. The author has deliberately used slighting different syntax with each to show you
different styles of Perl.

As you’ve seen, the map() function applies its changes to every element of a list, returning a new list. In
this example, you can see the code fi rst applying lc() to every element, but in the fi rst argument, you
don’t even specify the $_ because lc() defaults to operating on $_.

The ucfirst() function is applied to the value returned by lc(). Finally, you use join() to join the
resulting values with a space for printing. The second version uses the .= to show appending the new-
line to a variable.

If you are more familiar with lower-level languages such as C, or static languages such as Java, this
code might seem strange, but it shows how to pack a lot of power into a single line of code. When you
get comfortable with the language, you’ll fi nd it easy to read this code and appreciate its power.

SCOPING KEYWORDS

A variety of keywords in Perl can affect the scope of variables or are related to scoping issues.
You’ve already seen some of these, but this section covers them for completeness.

my()

my VARIABLE
my (LIST OF VARIABLES)

The my() builtin declares a new variable or list of variables. They are locally scoped to the fi le,
block, or eval in which they are declared. Scoped means that code outside of the given fi le, block or
eval cannot see those variables.

local()

local VARIABLE
local (LIST OF VARIABLES)

The local() builtin scopes the value of a package variable or list of package variables to the current
fi le, block, or eval. Any changes made to “localized” variables inside of that scope are forgotten
outside of that scope.

c04.indd 119c04.indd 119 8/9/12 8:46 AM8/9/12 8:46 AM

120 ❘ CHAPTER 4 WORKING WITH DATA

$Foo::bar = 3;
{
 local $Foo::bar = 5;
 print $Foo::bar; # prints 5
}
print $Foo::bar; # prints 3

As of Perl version 5.10.0, you can use local() to safely make changes hash values and they’ll be
reverted to their original value when the scope ends. Prior to 5.10.0, there were a few bugs with this
feature (namely when using variables as hash keys).

As a general rule, you want to minimize your use of local(), but it’s important to use it when
working with Perl’s global variables, fi lehandles, globs, or package variables. It’s useful when you
want to temporarily override a value and ensure that called subroutines see your new value, or to
make sure that you don’t accidentally change a global value. You’ll see more of this in subsequent
chapters, particularly the chapter on subroutines, Chapter 7.

our()

our VARIABLE
our (LIST OF VARIABLES)

The our() builtin allows you to declare package variables in the current package without needing to
use the full package name. The following code declares the package variable $Foo::manchu:

package Foo;
our $manchu = ‘Computer Criminal’;

You could do the following, but note how the author accidentally misspelled the package name:

package Foo;
$Fu::manchu = ‘Computer Criminal’;

The our builtin makes package variables safer to use because accidentally misspelling the variable
name will result in a compile time error when you use strict. Be aware that code outside of
the package containing the our variable can still access that variable if it uses the fully qualifi ed
package name.

Many developers use the our keyword to declare package variables at the top of a package. This is a
bad habit. The use of our should be discouraged unless you absolutely need to share a variable value
outside of your package. Even then, it’s better to do this through a subroutine to preserve encapsula-
tion and help avoid typos. Chapter 11 describes packages and modules in more details.

state()

state VARIABLE

c04.indd 120c04.indd 120 8/9/12 8:46 AM8/9/12 8:46 AM

Summary ❘ 121

Beginning with Perl version 5.10.0, you could declare state variables. These are like declaring vari-
ables with my(), but they are initialized only once and retain their value. For example, writing a
subroutine (refer to Chapter 7) that tracks how many times it’s been called is easy:

sub counter {
 state $counter = 1;
 print “This sub was called $counter times\n”;
 $counter++;
}
for (1..10) { counter() }

Prior to version 5.10.0, you would have had to write that subroutine like the following:

{
 my $counter = 1;
 sub counter {
 print “This sub was called $counter times\n”;
 $counter++;
 }
}
for (1..10) { counter() }

That’s ugly and can obscure the intent of what’s going on. The state() builtin makes this clear.

For reasons of backward compatibility, you cannot use the state() builtin unless you ask for it:

use feature ‘state’;

Or you specify a minimum version of Perl:

use 5.10.0;

The latter syntax asserts that your code can use all features available in that version of Perl.

State variables are generally used in subroutines, so we’ll cover them in Chapter 7.

SUMMARY

In this chapter, you've learned the basics of manipulating data in Perl. You've learned more about the
three primary data types: scalars, arrays and hashes. You've seen the most common functions and
operators used to manipulate those data types. You've also learned the basics of precedence — the
order in which Perl evaluates parts of an expression — and associativity — the order in which multiple
uses of a single operator are evaluated. You've also saw how variables get aliased to other variables,
causing changes in one variable to affect the other.

c04.indd 121c04.indd 121 8/9/12 8:46 AM8/9/12 8:46 AM

122 ❘ CHAPTER 4 WORKING WITH DATA

EXERCISES

 1. Which of the following variables evaluate to true?

my $fi rst = undef;
my $second = ‘ ‘; # a single space
my $third = 0.0;
my $fourth = ‘0.0’;
my $fi fth = 0;
my $sixth = ‘false’;

 2. Given the following array of Fahrenheit values, create a new array, @celsius, containing the

Fahrenheit temperatures converted to Celsius. Remember that to convert Fahrenheit to Celsius,

you must fi rst subtract 32 and then multiply the number by 5/9.

my @fahrenheit = (0, 32, 65, 80, 212);
my @celsius = ...

 3. Given an array called @ids, create a new array called @upper containing only the values in @ids

that were all uppercase to begin with.

my @ids = qw(AAA bbb Ccc ddD EEE);
my @upper = ...

 When you fi nish, @upper should have only the values AAA and EEE.

 4. What values do $answer1, $answer2, and $answer3 contain after all these statements have been

executed?

my $answer1 = 3 + 5 * 5;
my $answer2 = 9 - 2 - 1;
my $answer3 = 10 - $answer2++;

c04.indd 122c04.indd 122 8/9/12 8:46 AM8/9/12 8:46 AM

Summary ❘ 123

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

String/Numeric builtins Core data manipulation.

Bitwise operators Manipulating binary data.

Boolean operators How “truth” works in Perl.

Assignment operators How to assign data to variables.

Precedence The order in which builtins are evaluated.

Associativity The direction in which identical operators are evaluated.

Array and list functions Manipulating arrays and lists.

Hash functions Manipulating hashes.

c04.indd 123c04.indd 123 8/9/12 8:46 AM8/9/12 8:46 AM

c04.indd 124c04.indd 124 8/9/12 8:46 AM8/9/12 8:46 AM

Control Flow

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Working with if/elsif/else expressions

 ➤ What are and when to use for/foreach loops

 ➤ Understanding and working with while/until loops

 ➤ Understanding the various statement modifi ers and how to use do

while/do until

 ➤ What are given/when statements and statement modifi ers and when

to use them

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
on the Download Code tab. The code for this chapter is divided into the following major
examples:

 ➤ Example_5_1_unique.pl

 ➤ Example_5_2_arrays.pl

From previous chapters, you now understand some of the basics of Perl, but now you get closer
to the heart of programming. When you program, you constantly make decisions loop over
data based on those decisions. That’s what this chapter is all about: how Perl makes decisions
and looping over data.

5

c05.indd 125c05.indd 125 8/9/12 9:03 AM8/9/12 9:03 AM

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://WROX.COM
http://wrox.com

126 ❘ CHAPTER 5 CONTROL FLOW

USING THE IF STATEMENT

This section starts with boolean logic. As explained in Chapter 4, the following values are consid-
ered “false” in Perl:

 ➤ undef

 ➤ “” (the empty string)

 ➤ 0

 ➤ 0.0

 ➤ “0” (the “string” zero)

Some languages have specifi c boolean objects, or TRUE and FALSE identifi ers. Perl does things a
little differently. As you work through the examples, try to see what Perl does and why. If you have
experience with programming languages that have a different approach, consider the strengths and
weaknesses of the different approaches; then you can appreciate what Perl does and why.

Understanding Basic Conditionals

Conditionals are statements that make decisions. You use these statements in real life, for example:
“If I have lemons, make lemonade” and “while I have lemonade, drink it.”

We’ll start with the if statement. A basic if statement looks like if (EXPRESSION) BLOCK:

if (EXPRESSION) {
 # 0 or more statements
}

An expression might have a simple boolean operation in there. The following code guarantees that
$y will be greater than $x by swapping their values if $x < $y evaluates as true.

if ($x < $y) {
 ($y, $x) = ($x, $y);
}

You can even put compound conditionals in there if you like:

if ($x < $y && $y > 10) {
 # do something
}

The previous code works because the < and > operators have a higher precedence than the && opera-
tor (refer to Chapter 4). However, many programmers prefer parentheses to be explicit:

if (($x < $y) && ($y > 10)) {
 # do something
}

c05.indd 126c05.indd 126 8/9/12 9:03 AM8/9/12 9:03 AM

Using the if Statement ❘ 127

Because this is Perl, you’re not limited to simple boolean constructs in if statements. The expression
inside of the parentheses in the if statement is evaluated in scalar context, and the result is then
evaluated as true or false, This is sometimes referred to as boolean context. Consider the following:

if (@names) {
 # do something
}

As you may recall, an array evaluated in scalar context returns the number of elements in the array.
In the case of if (@names) BLOCK, if the @names array is empty, the if block does not execute. This
works for hashes, too:

if (%names) {
 # will not execute if %names is empty
}

Optionally, you can use the and, or, xor, and not forms of various boolean operations because
those have the lowest precedence of all operations, and you don’t need to memorize the precedence
order:

if ($x < $y and $y > 10) {
 # do something
}

It reads nicer, too. Just remember the golden rule of precedence: When in doubt, consider using
 parentheses to force precedence. Even if you get it right, another programmer reading your code
might not.

CURLY BRACES AND THE IF STATEMENT

Some programmers familiar with other languages ask why Perl requires curly braces
around the body of code associated with the if statement. For some programming
languages, the curly braces are optional if only a single statement is executed:

if (x == y)

 x++;

For Perl, the curly braces are always required. A common source of bugs in pro-
gramming languages such as C is when a developer tries to add an extra statement
to an if block, not noticing that no curly braces are delimiting the block:

if (x == y)

 x++;

 y++;

Never again will you try to add an extra statement to an if block and wonder why
your code is broken.

c05.indd 127c05.indd 127 8/9/12 9:03 AM8/9/12 9:03 AM

128 ❘ CHAPTER 5 CONTROL FLOW

else/elsif/unless

Sometimes, you want to take a different action depending on whether a value is true or false. You
can follow the if block with an else block.

if ($temperature > 0) {
 print “The temperature is above freezing: $temperature\n”;
}
else {
 print “The temperature is not above freezing. Exiting the program.”;
 exit;
}

Or if you want to test other conditions if the fi rst if fails, you can use an elsif block.

if ($temperature >= 100) {
 print “It’s boiling in here!\n”;
 cool_things_down($temperature);
}
elsif ($temperature < 0) {
 print “It’s freezing in here!. Exiting.\n”;
 exit;
}
elsif ($temperature > 13 and $temperature < 21) {
 print “It’s perfect weather for outdoor exercise. Impromptu holiday!\n”;
 exit;
}
else {
 print “The temperature is acceptable. Proceed.\n”;
}

NOTE The if (%names) { ... } construct is a bit weird. Internally, a hash creates

buckets used to determine where a given key’s values are to be found. In scalar con-

text, a hash returns a string with the number of buckets used, followed by a forward

slash, and then followed by the number of buckets allocated for that hash. This is

sometimes useful for debugging hash problems but otherwise has little practical use.

However, if the hash is empty, it returns 0 (zero) in scalar context, allowing the

if (%names) { ... } construct to work. The following prints 3/8 and 0 and

should make it clear what’s happening:

my %hash1 = (foo => 1, bar => 2, baz => 3);

my %hash2;

my $scalar1 = %hash1;

my $scalar2 = %hash2;

print “$scalar1 and $scalar2”;

You can also use the if statement with assignment. The following evaluates to

false if no customer is returned:

if (my $customer = get_customer($id)) {

 # only executed if $customer evaluates to true

}

c05.indd 128c05.indd 128 8/9/12 9:03 AM8/9/12 9:03 AM

Using the if Statement ❘ 129

The fi nal else is optional:

if ($customer_is_male) {
 redirect_to_male_apparel();
}
elsif ($customer_is_female) {
 redirect_to_female_apparel();
}

Many (including your author) recommend that a fi nal else block be supplied — even if it does
 nothing — to make it clear to other programmers who work on your code that you did not make a
mistake and overlook a condition. Adding a comment to that else block makes it even more clear.

if ($customer_is_adult) {
 redirect_to_adult_apparel();
}
elsif ($customer_is_teen) {
 redirect_to_teen_apparel();
}
else {
 # TODO: implement redirect_to_preteen_apparel()
}

You can also use multiple elsif statements:

if (!$color) {
 print “No color found”;
}
elsif (‘blue’ eq $color) {
 print “#0000FF”;
}
elsif (‘green’ eq $color) {
 print “#00FF00”;
}
elsif (‘red’ eq $color) {
 print “#FF0000”;
}
else {
 print “I don’t know what to do with color ($color)”;
}

Long if/elsif/else chains should be avoided, if possible, because they start to make to code harder
to read. For example, with the previous code it’s better to use a hash:

my %color_code_for = (
 blue => ‘#0000FF’,
 green => ‘#00FF00’,
 red => ‘#FF0000’,
);
if (!$color) {
 print “No color found”;
}
elsif (my $code = $color_code_for{$color}) {
 print $code;
}

c05.indd 129c05.indd 129 8/9/12 9:03 AM8/9/12 9:03 AM

130 ❘ CHAPTER 5 CONTROL FLOW

else {
 print “I don’t have a code for the color ‘$color’”;
}

Using the hash, if you want to support new color codes, you can just add a new entry to the hash
rather than create new elsif blocks for every color.

my %color_code_for = (
 black => ‘#000000’,
 blue => ‘#0000FF’,
 green => ‘#00FF00’,
 red => ‘#FF0000’,
 white => ‘#FFFFFF’,
);
if (!$color) {
 print “No color found”;
}
elsif (my $code = $color_code_for{$color}) {
 print $code;
}
else {
 # print “I don’t know what to do with color ($color)”;
 print “I don’t have a code for color ($color)”;
}

NOTE As with many languages, the whitespace is not particularly signifi cant.

Your author prefers uncuddled else statements because he fi nds them easier to

read. Others prefer a more compact format:

if ($temperature >= 100) {

 print “It’s boiling in here!\n”;

 cool_things_down($temperature);

} elsif ($temperature > 0) {

 print “The temperature is acceptable. Proceed.\n”;

} else {

 print “It’s freezing in here!. Exiting.\n”;

 exit;

}

Still others prefer all braces to be aligned vertically:

if ($temperature > 0)

{

 print “The temperature is above freezing: $temperature\n”;

}

else

{

 print “The temperature is not above freezing. Exiting.”;

 exit;

}

All these are perfectly acceptable, and arguments for or against one

 notwithstanding, don’t stress about it. Just pick one style and stick with it.

c05.indd 130c05.indd 130 8/9/12 9:03 AM8/9/12 9:03 AM

Using the if Statement ❘ 131

Of course, as already seen, you can also reverse the sense of a condition with the ! or not operators:

if (!$allowed) {
 print “You can’t do that!”;
}
if (not $found) {
 print “I didn’t find it!”;
}

Perl also has a rather curious unless statement. It’s the opposite of the if statement. The previous
statements can be rewritten as follows:

unless ($allowed) {
 print “You can’t do that!”;
}
unless ($found) {
 print “I didn’t find it!”;
}

As with the if statement, you can use elsif and else, but as you might imagine, it can be
confusing:

unless ($condition) {
 # ...
}
elsif ($some_other_condition) {
 # ...
}
else {
 # ...
}

The use of the unless check is sometimes discouraged. The logic can be confusing, and many
developers cheerfully fantasize about using pliers to extract your fi ngernails if you abuse the unless
statement.

The Ternary Operator ?:

As with many other programming languages, Perl also provides a ternary operator as a “shortcut”
for an if/else statement. The ternary operator’s syntax looks like the following:

VALUE = CONDITION ? IFTRUE : IFFALSE

You can write this:

my $max = ($num1 < $num2) ? $num2 : $num1;

That’s the same as writing:

my $max;
if ($num1 < $num2) {

c05.indd 131c05.indd 131 8/9/12 9:03 AM8/9/12 9:03 AM

132 ❘ CHAPTER 5 CONTROL FLOW

 $max = $num2;
}
else {
 $max = $num1;
}

But as you can see, the ternary operator is much more compact. With the ternary operator, you
don’t need to predeclare the $max variable because the ternary operator does not introduce a new
scope.

You can also chain ternary operators:

my $max = ($num1 < $num3 and $num2 < $num3) ? $num3
 : ($num1 < $num2) ? $num2
 : $num1;

With good formatting this construct is easy to read and has the advantage of the fi nal else being
required, which is a syntax error if you omit it. The only caution is to be careful about abusing ter-
nary operators because said abuse can be hard to read. For example:

my %has_thirty_days = (
 4 => 1,
 6 => 1,
 9 => 1,
 11 => 1,
);

my $days_in_month = 2 == $month ? $year % 100 ? 29
 : $year % 400 ? 28
 : 29
 : $has_thirty_days{$month} ? 30
 : 31;

Does that work or not? Yes it does (with major caveats about Gregorian and Julian calendars), but
do you really want to maintain that? Don’t write code like that. We only show this to make it clear
that ternary operators are hard to read if you’re not careful.

FOR/FOREACH LOOPS

Often, you need to go through each element in a data structure and decide to do something with
that element. You often use loops to do this, and in Perl you accomplish it in a variety of ways, using
a lot of tips and tricks. This section starts by looking at for/foreach loops with arrays and lists.

Arrays

A for loop iterates over every element in an array or list. A basic for loop in Perl looks like the
following:

c05.indd 132c05.indd 132 8/9/12 9:03 AM8/9/12 9:03 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

for/foreach Loops ❘ 133

The for/foreach loop is one builtin that assigns to the $_ by default. If you don’t specify a variable
name, $_ is assumed. The following code prints the numbers 5, 6, and 7.

my @numbers = (5, 6, 7);
foreach (@numbers) {
 print “$_\n”;
}

When you combine the loop with builtins, which operate on $_ by default, you can shorten your
code a bit. The following code removes newlines from each element and if the element evaluates as
true prints the element.

foreach (@names) {
 chomp;
 if ($_) {
 print;
 }
}

By contrast, the following is the same code using a named variable (remember that the foreach here
could be written as for):

foreach my $name (@names) {
 chomp $name;
 if ($name) {
 print $name;
 }
}

for my $number (@numbers) {
 print “$number\n”;
}

There’s also a foreach version:

foreach my $number (@numbers) {
 print “$number\n”;
}

In Perl, for and foreach are identical. There is no difference aside from the spelling. Your author
likes foreach because he feels it reads better, but it’s a matter of personal preference.

NOTE If you read perldoc perlintro and perldoc perlsyn on this subject,

there’s a strong implication that for and foreach loops are somehow diff erent.

The docs generally describe for as being used with C-style for loops (covered

later) and foreach loops for lists. Unfortunately, the documentation is mislead-

ing on this point (this has been fi xed in the documentation for 5.16.0). There is no

diff erence between the two.

c05.indd 133c05.indd 133 8/9/12 9:03 AM8/9/12 9:03 AM

134 ❘ CHAPTER 5 CONTROL FLOW

Whichever method you prefer, just be aware that it’s common to see experienced Perl developers
know when to use the $_ variable and take advantage of this fact. If you are not familiar with the
builtins that default to assigning a value to $_, you will fi nd some Perl code harder to read.

One important thing to remember about for loops is that the variable you use to designate each ele-
ment, whether it’s $_ or a named variable, is an alias to the element in question. This allows you to
modify an array in place. For example, if you want all elements in an array that are less than zero
to be set to zero, you can take advantage of aliasing:

my @numbers = (-7, -5, -1, 0, 3, 6, 29);
foreach my $number (@numbers) {
 if ($number < 0) {
 $number = 0;
 }
}
print join ‘,’, @numbers;

The previous code snippet prints 0,0,0,0,3,6,29. If you want to manipulate the value but not
change the original array, just assign the element to a new variable. This is one case in which the
$_ default can be clearer.

my @numbers = (-7, -5, -1, 0, 3, 6, 29);
foreach (@numbers) {
 my $number = $_; # don’t use an alias
 if ($number < 0) {
 $number = 0;
 }
}
print join ‘,’, @numbers;

Running the previous code shows you that the array has escaped unchanged.

WARNING A subtle trap occurs with for loops when you forget that the list ele-

ments are aliased:

for my $number (1,2,3) {

 $number++;

}

While appearing to be legal Perl, the previous code, generates the following

error at run time:

Modification of a read-only value attempted at ...

Because for loops alias the elements in a list to a variable ($number, in this

case), any changes to that variable eff ect the list elements themselves. The

 numbers 1, 2, and 3 in the list above are hard-coded verbatim values and they

cannot be changed, hence the error message.

c05.indd 134c05.indd 134 8/9/12 9:03 AM8/9/12 9:03 AM

for/foreach Loops ❘ 135

Lists

The for loop is useful for arrays, but you can use them with anything that returns a list.

my %economic_description = (
 libertarians => ‘Anarchists with jobs’,
 anarchists => ‘Libertarians without jobs’,
 randroids => ‘Closet libertarians’,
 democrats => ‘the tax and spend party’,
 republicans => ‘the tax cut and spend party’,
);
foreach (sort keys %economic_description) {
 my $description = lc $economic_description{$_};
 $_ = ucfirst;
 print “$_ are $description.\n”;
}

And that allows you to offend just about everyone by printing:

Anarchists are libertarians without jobs.
Democrats are the tax and spend party.
Libertarians are anarchists with jobs.
Randroids are closet libertarians.
Republicans are the tax cut and spend party.

Even though you have the $_ = ucfirst line in there, this code does not change the hash keys;
although the for loop aliases its arguments. This is because keys() (like the sort() function in the
loop) returns a new list.

Range operators, when used in list context, also return a list.

for my $number (-10 .. 10) {
 $number++;
 print $number;
}

The previous code prints the numbers from -9 to 11. Although it may appear that you have numeric
literals here and thus $number++ should throw a Modification of read-only value error, you
don’t have that problem. This is because the range operator returns a list. If the values of the list are
not assigned to anything, they are anonymous variables. This means that you can change them like
any other variable, even if it looks strange.

USING THE DEVEL::PEEK MODULE TO PEEK INTO A SCALAR

Okay; for those who must understand why the range operator works even when
modifying the variable, following is some advanced magic.

perl -MDevel::Peek -e ‘Dump(1)’

The previous code should output something similar to:
continues

c05.indd 135c05.indd 135 8/9/12 9:03 AM8/9/12 9:03 AM

136 ❘ CHAPTER 5 CONTROL FLOW

C-Style

Of course, there’s also the C-style for loop (how for loops would be written the C language), with
the syntax:

for (EXPRESSION ; EXPRESSION ; EXPRESSION) BLOCK

This, for example, prints the numbers 0 through 9:

for (my $i = 0; $i < 10; $i++) {
 print “$i\n”;
}

For those not familiar with this style of loop, the three semicolon separated expressions correspond
to loop initialization, the loop test, and the loop change.

All three of these expressions are optional. The following code is almost equivalent to the previous
code, except that the $i variable is no longer lexically scoped to the for loop.

my $i = 0;
for (;$i < 10;) {
 $i++;
 print “$i\n”;
}

SV = IV(0x100827d10) at 0x100827d20

 REFCNT = 1

 FLAGS = (IOK,READONLY,pIOK)

 IV = 1

The Devel::Peek module was released with Perl in version 5.6.0. It exports a
Dump() function that enables you to “peek” into a scalar to see what it looks like to
Perl. In this case, you call Dump() on the literal value 1 and you can notice on the
FLAGS line that it says READONLY.

Now try this again with 1..1. This range operator returns a 1 element list contain-
ing the number one. The code is as follows:

perl -MDevel::Peek -e ‘Dump(1..1)’

And here’s the output:

SV = IV(0x100802f98) at 0x100802fa8

 REFCNT = 1

 FLAGS = (IOK,pIOK)

 IV = 1

FLAGS does not contain READONLY and thus can be modifi ed. See perldoc
Devel::Peek for more information.

(continued)

c05.indd 136c05.indd 136 8/9/12 9:03 AM8/9/12 9:03 AM

for/foreach Loops ❘ 137

An example of a handy C-style for loop is when you must iterate over a range of numbers not easily
generated by the range operator. The following code prints a vertical sine wave in your terminal:

for (my $i = 0 ; $i <= 25 ; $i += .25) {
 my $amplitude = int(40 + 35 * sin($i));

You can even omit that loop test with a last() command, which you will learn about in this chap-
ter in the section “last/next/redo/continue.”

C-style for loops are not popular in Perl and often not needed. For example, sometimes you need
the index of an array, so you do the following:

for (my $i = 0; $i < @array; $i++) {
 print “$i: $array[$i]\n”;
}

But you can write the previous code cleaner, which is more commonly seen like the following:

for my $i (0 .. $#array) {
 print “$i: $array[$i]\n”;
}

The special $# syntax at the front of the array name means “the index of the last element of an
array.” So if an array has four elements, $#array returns 3.

WARNING You should use the $#some_array only for iterating over the indexes

of an array, as shown previously. Inexperienced Perl programmers sometimes

write code like the following and wonder why it seems to randomly fail.

if ($#array) {

 # do something with array

}

The $#array syntax returns a true value (-1) if there are no elements in the

array; a false value (0) if there is one element in the array; and a true value (1 or

greater) if there is more than one element in the array. The following example

should make this clear:

#!perl -l

print “$#array\n”;

@array = (‘fail!’);

print “$#array\n”;

push @array, ‘not fail!’;

print “$#array\n”;

That prints -1, 0, and 1. If you want to know if an array is empty, just use the

array in scalar context:

if (@array) { ... }

c05.indd 137c05.indd 137 8/9/12 9:03 AM8/9/12 9:03 AM

138 ❘ CHAPTER 5 CONTROL FLOW

 print “ “ x $amplitude;
 print “.\n”;
}

You can write the previous code without the C-style for loop, but you might fi nd it harder to
understand.

for my $i (0 .. 100) {
 $i = $i / 4;
 my $amplitude = int(40 + 35 * sin($i));
 print “ “ x $amplitude;
 print “.\n”;
}

Or perhaps the variable increment is set within the program:

for (my $i = 7; $i < 10; $i += $user_choice) {
 print “$i\n”;
}

Which you prefer in any context is just a matter of preference.

TRY IT OUT Finding Duplicate Array Elements

Sometimes, an array has repeated elements you want to remove, and preserving the order of the array is
important. Using a hash and a for loop makes this easy. The following is a simple trick to fi nd unique
elements when you don’t care about the order. All the code in this Try It Out is found in code fi le
example_5_1_unique.pl.

 1. Type the following program into your editor as example_5_1_unique.pl:

#!/usr/bin/perl
use strict;
use warnings;
use diagnostics;

my @array = (3, 4, 1, 4, 7, 7, 4, 1, 3, 8);
my %unordered;
@unordered{@array} = undef;

foreach my $key (keys %unordered) {
 print “Unordered: $key\n”;
}

my %seen;
my @ordered;

foreach my $element (@array) {
 if (not $seen{$element}++) {
 push @ordered, $element;
 }
}

c05.indd 138c05.indd 138 8/9/12 9:03 AM8/9/12 9:03 AM

for/foreach Loops ❘ 139

foreach my $element (@ordered) {
 print “Ordered: $element\n”;
}

 2. Run the program with perl example_5_1_unique.pl and you should see something similar to
the following:

Unordered: 8
Unordered: 1
Unordered: 4
Unordered: 3
Unordered: 7
Ordered: 3
Ordered: 4
Ordered: 1
Ordered: 7
Ordered: 8

How It Works

Look at the unordered code fi rst because it may look a bit strange.

my @array = (3, 4, 1, 4, 7, 7, 4, 1, 3, 8);
my %unordered;
@unordered{@array} = undef;

foreach my $key (keys %unordered) {
 print “Unordered: $key\n”;
}

The line @unordered{@array} = undef uses a hash slice as described in Chapter 3. Because you don’t
care about the values and because hashes cannot have unique keys, the right side of the assignment
operator is not important. You now have an array with the keys 1, 3, 4, 7, and 8. However, because
hashes do not have an order, printing the keys shows an apparent random order.

You can, of course, sort the keys:

foreach my $key (sort { $a <=> $b } keys %unordered) {
 print “Unordered: $key\n”;
}

But that merely prints the keys in ascending numeric order, not in the order of the original array. You
can see how to do that next. The following code puts together many of the concepts you’ve already
learned.

my %seen;
my @ordered;

foreach my $element (@array) {

c05.indd 139c05.indd 139 8/9/12 9:03 AM8/9/12 9:03 AM

140 ❘ CHAPTER 5 CONTROL FLOW

 if (not $seen{$element}++) {
 push @ordered, $element;
 }
}

foreach my $element (@ordered) {
 print “Ordered: $element\n”;
}

The key to this is the not $seen{$element}++ expression. The $seen{$element} when fi rst encoun-
tered has an undefi ned value. Perl interprets this value as 0 and the ++ postfi x operator increments it by
1. However, because it’s the postfi x ++ and not the prefi x ++, the increment operation happens after the
value is returned, thus ensuring that not $seen{$element}++ is effectively not 0, which evaluates as
true. The next time that $element has a previously seen value, the $seen{$element} already has
a value of 1 or higher, thus causing the not $seen{$element}++ to be the equivalent of not 1
(or a higher number). Because not 1 evaluates as false, the if block does not execute after the fi rst
time the $element appears.

This is a common idiom in Perl and is worth studying and practicing.

DISABLING UNINITIALIZED WARNINGS

You might wonder why $seen{$element}++ does not issue a warning about incre-
menting an uninitialized value. The following three statements have identical behav-
ior, but only the last one issues an uninitialized warning:

$seen{$element}++;

$seen{$element} += 1;

$seen{$element} = $seen{$element} + 1;

The fi rst two do not issue a warning as described in the Declarations section of
perldoc perlsyn:

If you enable warnings, you’ll be notified of an uninitialized value

whenever you treat undef as a string or a number. Well, usually.
Boolean contexts, such as:

 my $a;

 if ($a) {}

are exempt from warnings (because they care about truth rather than

definedness). Operators such as “++”, “--”, “+=”, “-=”, and “.=”,

that operate on undefined left values such as:

 my $a;

 $a++;

are also always exempt from such warnings.

If you must use a statement that might issue a warning and you do not want that
warning, you can do the following:

c05.indd 140c05.indd 140 8/9/12 9:03 AM8/9/12 9:03 AM

for/foreach Loops ❘ 141

TRY IT OUT Splitting an Array

Sometimes, you want to split up an array into separate arrays based on the data in the array. This Try It
Out code walks through an array of numbers, creating two new arrays with positive and negative num-
bers and skipping zero. All the code in this Try It Out is found in code fi le example_5_2_arrays.pl.

1. First, type the following program and save it as example_5_2_arrays.pl:

#!perl
use strict;
use warnings;
use diagnostics;

my @numbers = (-1, 3, 8, -17, 42, 0, 13, -3);
my (@negative, @positive);

foreach my $number (@numbers) {
 if ($number < 0) {
 push @negative, $number;
 }
 elsif ($number > 0) {
 push @positive, $number;
 }
 else {
 # skip zero
 }
}

print “Negative: @negative\nPositive: @positive\n”;

2. Run the code with perl example_5_2_arrays.pl. You should have the following output:

Negative: -1 -17 -3
Positive: 3 8 42 13

{

 no warnings ‘uninitialized’;

 $seen{$element} = $seen{$element} + 1;

}

The no warnings ‘uninitialized’ statement disables uninitialized warnings in
the scope of that block. You can deliberately use a block here to ensure that you
don’t suppress other uninitialized warnings that you care about. You could also do
this:

$seen{$element} ||= 0;

$seen{$element} = $seen{$element} + 1;

In Perl, there are usually multiple ways to get the job done.

c05.indd 141c05.indd 141 8/9/12 9:03 AM8/9/12 9:03 AM

142 ❘ CHAPTER 5 CONTROL FLOW

USING WHILE/UNTIL LOOPS

The while statement has the general syntax of while (EXPRESSION) BLOCK. The block is exe-
cuted while the EXPRESSION is true.

my $i = 10;

while ($i > 0) {
 if (rand(3) > 2) {
 $i++;
 }
 else {
 $i--;
 }
 print $i,$/;
}

The previous code gradually lowers the value of $i until the expression $i > 0 evaluates as false.

The main difference between while loops and for loops is that while loops iterate until a condition
is false, whereas for loops iterate over a list.

You commonly use the while loop in Perl with iterators. The one you know now is the each() itera-
tor for hashes.

my %odd_couples = (
 ‘Abbott’ => ‘Costello’,
 ‘Martin’ => ‘Lewis’,
 ‘Lemmon’ => ‘Matthau’,
);

How It Works

At this point, things should be fairly clear. You walk through the @numbers array and push each ele-
ment on the corresponding @negative or @positive array, depending on whether it is negative or posi-
tive. The trailing else block is not required, but it is a nice hint to future programmers that you did not
accidentally skip the number zero.

NOTE What’s a future programmer? It might be the person the company hires

after they promote you for having the foresight to read this book. However, that

future programmer might be you! Just because the code is clear now doesn’t

mean it’ll be clear six months from now. This means that your code should be

as clear as possible, and you should try to avoid clever tricks in your code. Many

of the best programmers write code that looks simple because they know that

reading code is just as important as writing it.

c05.indd 142c05.indd 142 8/9/12 9:03 AM8/9/12 9:03 AM

Using while/until Loops ❘ 143

while (my ($star1, $star2) = each %odd_couples) {
 print “$star1: $star2\n”;
}

You’ll see more of while loops as you go through the book. Chapter 9 covers iterating over lines in a
fi le, and you’ll see other forms of iterators as you work through various examples.

The opposite of the while loop is the until loop. The syntax is the same, replacing while with
until. The while loop iterates while its condition is true and the until loop iterates while its con-
dition is false. The following code computes the factorial of the number 5 (5 * 4 * 3 * 2 * 1):

my $factorial = 1;
my $counter = 1;

until ($counter > 5) {
 $factorial *= $counter++;
}

print $factorial;

Like the unless statement, you should use the until statement cautiously because of the potential
to confuse programmers. The previous code is probably better written as:

my $factorial = 1;
my $counter = 1;

while ($counter <= 5) {
 $factorial *= $counter++;
}

print $factorial;

Lists

Programmers often try to use while or until loops with lists instead of iterators or boolean condi-
tions. You can do this but it is fraught with danger and should be avoided. The following are several
ways you can fail spectacularly:

my $total = 0;
while (my $price = shift @orders) {
 $total += $price;
}
print $total;

Most of the time, the previous code works just fi ne until you have a sale item with a price of zero.

my @orders = (5,5,0,5);
my $total = 0;

c05.indd 143c05.indd 143 8/9/12 9:03 AM8/9/12 9:03 AM

144 ❘ CHAPTER 5 CONTROL FLOW

while (my $price = shift @orders) {
 $total += $price;
}
print $total;

The previous code prints 10 instead of the (probably) wanted 15. So you decide to get clever to
ensure the price is defi ned:

my @orders = (5, 5, 0, undef, 5);
my $total = 0;
while (defined(my $price = shift @orders)) {
 $total += $price;
}
print $total;

This previous code is also going to fail because you’ve managed to sneak an undefi ned value into the
array. If you need to use a while loop here, do it like this:

my @orders = (5, 5, 0, undef, 5);
my $total = 0;
while (@orders) {
 my $price = shift @orders;
 $total += $price;
}
print $total;

If you insist on using a while/until loop here (perhaps because you want the array empty at the
end), you should still consider rewriting with a for loop.

my $total = 0;
for my $price (@orders) {
 $total += $price;
}
@orders = ();

As you can see, the for loop is shorter and easier to read.

last/next/redo/continue

When you work with loops, it’s often useful to have fi ne-grained control over how the loops behave.
The last(), next(), redo(), and continue() builtins help with this.

Using last ()

The last() builtin automatically exits a loop. For example, to fi nd the fi rst perfect square (a square
number that is the square of an integer) in an array, you could do the following:

my @numbers = (3, 7, 9, 99, 25);
my $first;
for my $number (@numbers) {
 my $root = sqrt($number);

c05.indd 144c05.indd 144 8/9/12 9:03 AM8/9/12 9:03 AM

Using while/until Loops ❘ 145

 if (int($root) == $root) {
 $first = $number;
 last;
 }
}
if (defined $first) {
 print “The first perfect square in the array is $first\n”;
}
else {
 print “No perfect square found in array\n”;
}

The previous code exits the loop when $number equals 9 and prints the following:

The first perfect square in the array is 9

The last builtin is handy when you want to process a loop until you reach a wanted condition and
then terminate the loop.

Using next()

The next() statement is useful when you want to skip the processing of some elements. You can use
this to rewrite the previous code to fi nd all perfect squares in a loop:

my @numbers = (3, 7, 9, 99, 25);
my @perfect_squares;

for my $number (@numbers) {
 my $root = sqrt($number);

 if (int($root) != $root) {
 next; # skip the rest of the loop BLOCK
 }

 print “Found perfect square: $number\n”;
 push @perfect_squares, $number;
}

Using the continue Statement

The continue statement is not common, but it’s useful if you have a block of code that must be
executed every time through a loop, before the loop check occurs again. The syntax looks like this:

for (EXPRESSION) BLOCK continue BLOCK
while (EXPRESSION) BLOCK continue BLOCK

Regardless of a next or last statement in the loop body, the continue always executes after the
last statement in the loop body executes:

use strict;
use warnings;

c05.indd 145c05.indd 145 8/9/12 9:03 AM8/9/12 9:03 AM

146 ❘ CHAPTER 5 CONTROL FLOW

my @numbers = (3, 7, 9, 99, 25);
my @perfect_squares;

for my $number (@numbers) {
 my $root = sqrt($number);

 if (int($root) != $root) {
 next; # skip the rest of the loop BLOCK
 }

 print “Found perfect square: $number\n”;
 push @perfect_squares, $number;
}
continue {
 print “Processed $number\n”;
}

The previous example prints the following:

Processed 3
Processed 7
Found perfect square: 9
Processed 9
Processed 99
Found perfect square: 25
Processed 25

Using the redo Statement

The redo statement is even less common. What it does is redo the body of the loop without testing
the condition or executing the continue block. It’s a bit confusing to people, and even the
perldoc -f redo documentation sheds little light on the matter. It’s used seldom enough that I
won’t mention further, aside from using it in one of the exercises at the end of this chapter.

Labels

When I listed examples of the for/foreach/while/until syntax, I omitted labels. Labels can be use-
ful for cleaning up code. A label is a bare identifi er followed by a colon. The next, last, and redo
builtins take an optional label as an argument. If that label is present, control jumps to that label.
Labels can be used to make your code a bit more self-documenting:

NUMBER: foreach my $number (@numbers) {
 # lots of code
 if ($some_condition) {
 next NUMBER;
 }
 # more code
}

However, the real power of labels lies in controlling the behavior of next, last, and redo when you
use nested loops. Say that you have two arrays of strings, @strings1 and @strings2, and you want

c05.indd 146c05.indd 146 8/9/12 9:03 AM8/9/12 9:03 AM

Statement Modifi ers ❘ 147

to fi nd any strings in the fi rst array that are substrings of any strings in the second array. The fol-
lowing code shows one way to write that:

my @strings1 = qw(aa bb cc dd ee);
my @strings2 = qw(
 an
 intelligent
 robber
 needs
 a
 good
 ladder
);

my @found;

DOUBLED_LETTER: foreach my $double (@strings1) {
 foreach my $word (@strings2) {
 if (index($word, $double) != -1) {
 push @found, $double;
 next DOUBLED_LETTER;
 }
 }
}

print “@found”;

The previous code prints bb dd ee. If the next DOUBLED_LETTER; statement were not present, the
code would continue searching for words containing the double letter, even if the double letter were
already found. If your arrays were large, this could be extremely ineffi cient by processing more data
than is needed.

STATEMENT MODIFIERS

As an alternative to the previously described if/while/for blocks, you can add the if/while/for to
the end of a single statement:

print “We can haz cheez” if $trite;

You may fi nd them a bit cleaner:

if ($trite) {
 print “We can haz cheez”;
}

Types of Statement Modifi ers

The allowed modifi ers follow:

STATEMENT if EXPRESSION;
STATEMENT unless EXPRESSION;

c05.indd 147c05.indd 147 8/9/12 9:03 AM8/9/12 9:03 AM

148 ❘ CHAPTER 5 CONTROL FLOW

STATEMENT while EXPRESSION;
STATEMENT until EXPRESSION;
STATEMENT for LIST;
STATEMENT foreach LIST;

Unlike the block form of these keywords that you’ve already seen, parentheses are optional around
the EXPRESSION or LIST, for example:

print “We have a valid user: $user\n” if $user;

When using a for/foreach loop, $_ is aliased to the variable. The following code prints the num-
bers 1 through 5 on successive lines.

my @array = (1 .. 5);
print “$_\n” foreach @array;

The while and until loops behave similarly. The EXPRESSION is evaluated before the statement.
Thus, the following code prints 9 through 0, not 10 to 1.

my $countdown = 10;
print “$countdown\n” while $countdown--;

The STATEMENT may be a compound statement. The example from perldoc perlsyn follows:

go_outside() and play() unless $is_raining;

The previous code reads nicely, but it does have a subtle trap. The play() subroutine is not called if
go_outside() returns false. You can replace the and with a comma if you want to avoid this:

go_outside(), play() unless $is_raining;

Statement modifi ers should be used sparingly. It’s recommended that you use them when the empha-
sis is to be placed on the statement and not on the modifi er.

print “Using config data” if $config;

For the preceding code, printing Using config data is the expected behavior and is what the pro-
grammer should focus on when skimming code. The if $config modifi er is easily overlooked. If
if $config is a normal condition that the programmer should be more aware of, avoid using the
modifi er.

if ($config) {
 print “Using config data”;
}

Use of keyword (EXPRESSION or LIST) BLOCK versus a statement modifi er is largely a matter of
preference, but if you have a compound statement or the condition is what needs the emphasis, avoid
the statement modifi er.

c05.indd 148c05.indd 148 8/9/12 9:03 AM8/9/12 9:03 AM

Statement Modifi ers ❘ 149

do while/do until

The do builtin (perldoc -f do) isn’t covered much in this book because the common uses for it
belongs to Perl version 4, which should have been put to death when Perl 5 was released in 1994, but
there is one form of the do builtin that is still in use:

do BLOCK

This form of do executes the statements in the BLOCK and returns the value of the last executed
EXPRESSION. You most commonly use this form with a while or until statement modifi er. The
grammar looks like this:

do BLOCK while EXPRESSION;
do BLOCK until EXPRESSION;

For example:

my $factorial = 1;
my $counter = 1;
do {
 $factorial *= $counter++;
} while $counter <= 5;
print $factorial;

The do/while, do/until syntax has two major differences between while and until statements.
First, it guarantees that the BLOCK executes at least once. Second, it’s not actually a loop. Many peo-
ple mistakenly think it’s a loop, but it’s just a standard do BLOCK statement followed by a statement
modifi er. As a result, next, last, redo, and continue statements do not apply.

TRY IT OUT while versus do {} while

The while versus do {} while difference is subtle; the following small program shows how the differ-
ence can trip you up.

 1. Save the following as example_5_3_while.pl.

use strict;
use warnings;

my $number = 0; # a deliberately false value

while ($number > 0) {
 print “You should never see this\n”;
}
do {
 print “Unfortunately, you do see this\n”;
} while $number > 0;

 2. Run the program with perl example_5_3_while.pl. You should see the following:

Unfortunately, you do see this

c05.indd 149c05.indd 149 8/9/12 9:03 AM8/9/12 9:03 AM

150 ❘ CHAPTER 5 CONTROL FLOW

How It Works

The while (EXPRESSION) BLOCK tests the EXPRESSION prior to executing the block. However, the
do BLOCK while EXPRESSION version always executes the block at least once. Thus, subtle logic errors
can creep into your code if you are not careful. Combine that with the fact that do BLOCK while
EXPRESSION is not actually a loop, and you can get more errors. Consider this while loop:

while (1) {
 last if $counter < 0;
 if (rand() < .5) {
 $counter--;
 }
}

The while (1) BLOCK is sometimes used to create an infi nite loop; using a last() in the previous code
gives you a chance to break out of that loop. However, you can’t use last with a do/while block:

use strict;
use warnings;
my $counter = 2;
do {
 last if $counter < 0;
 # do something else
 $counter--;
} while 1;

The previous code results in a fatal and confusing error because it’s not actually a loop:

Can’t “last” outside a loop block at program.pl line 6 (#1)

If you add use diagnostics, you get the following extended error message:

(F) A “last” statement was executed to break out of the current block,

except that there’s this itty bitty problem called there isn’t a current

block. Note that an “if” or “else” block doesn’t count as a “loopish”

block, as doesn’t a block given to sort(), map() or grep(). You can

usually double the curlies to get the same effect though, because the

inner curlies will be considered a block that loops once. See

perlfunc/last.

The mention of “double curlies” is unfortunate. It suggests that you can do something like the follow-
ing code:

use strict;
use warnings;
my $counter = 2;
do {{
 last if $counter < 0;
 # do something else
 $counter--;
 print $counter,$/l
}} while 1;

c05.indd 150c05.indd 150 8/9/12 9:03 AM8/9/12 9:03 AM

given/when ❘ 151

Except that actually is an infi nite loop because the last affects the innermost block, but the while 1
is still looping forever over the outermost block. Allowing doubled curly braces to be abused like this is
like pouring a 20-year-old single malt whisky into cola: Just because you can doesn’t mean you should.

If you’re tempted to use double curly braces with last, use a subroutine (Chapter 7) and a return
statement instead.

GIVEN/WHEN

Many languages offer a switch statement. These statements are used to easily choose one or more
of several alternatives. A switch statement tends to look like the following:

switch(number) {
 case(0):
 printf(“The number is 0”);
 break;
 case(1):
 printf(“The number is 1”);
 break;
 case(2):
 printf(“The number is 2”);
 break;
 default:
 printf(“The number is unexpected”);
}

There are a number of historical reasons why a switch statement tends to be written in this manner,
but I’ll skip over those and go straight to Perl’s given/when statement, which is available in Perl ver-
sion 5.10.0 or better.

Basic Syntax

The syntax of given/when looks like the following code:

given (EXPRESSION) BLOCK

And BLOCK is composed of zero or more when statements:

when (EXPRESSION) BLOCK

Those statements can be followed by a default BLOCK statement. The previous switch statement can
be written in Perl as follows:

use 5.10.0;
my $number = 1;
given ($number) {

c05.indd 151c05.indd 151 8/9/12 9:03 AM8/9/12 9:03 AM

152 ❘ CHAPTER 5 CONTROL FLOW

If you actually want the when statement to test subsequent when statements, you can use the
continue keyword:

given ($word) {
 when (lc $_ eq scalar reverse $_) {
 print “’$word’ is a palindrome\n”;
 continue;
 }
 when (length($_) > 10) {
 print “The length of ‘$word’ is greater than 10 characters\n”;
 }
}

 when(0) { print “The number is 0”; }
 when(1) { print “The number is 1”; }
 when(2) { print “The number is 2”; }
 default { print “The number is unexpected”; }
}

If you read the code aloud, it actually reads much better than the switch version. For some lan-
guages, the switch statement can operate only on integers (part of a historical discussion I am side-
stepping). In Perl, the given keyword assigns the value of EXPRESSION to $_ and the EXPRESSION in
when (EXPRESSION) BLOCK tests the value of $_. Thus, you can do things like
the following code:

given ($number) {
 when ($_ < 0) {
 print “The number is negative”;
 }
 when ($_ > 0) {
 print “The number is positive”;
 }
 default {
 print “The number is 0”;
 }
}

WARNING Like say and state, the given/when construct is new for Perl version

5.10.0. To use it, you must explicitly state your minimum required Perl version

number:

use 5.10.0;

Or use the feature pragma:

use feature “:5.10”; # all new features
use feature “switch”; # or only given/when

Why it’s use feature “switch” and not use feature “given” is one of life’s

little mysteries.

c05.indd 152c05.indd 152 8/9/12 9:03 AM8/9/12 9:03 AM

given/when ❘ 153

The Switch Module

Don’t use this module.

Added in Perl version 5.7.2 and removed in Perl version 5.13.1, the Switch module allowed you to
write switch statements in Perl:

use Switch;
switch ($val) {
 case 1 { print “number 1” }
 case “a” { print “string a” }
 case [1..10,42] { print “number in list” }
 case (\@array) { print “number in list” }
 case /\w+/ { print “pattern” }
 case qr/\w+/ { print “pattern” }
 case (\%hash) { print “entry in hash” }
 case (\&sub) { print “arg to subroutine” }
 else { print “previous case not true” }
}

Unfortunately, this was implemented as something known as a source fi lter. Source fi lters rewrite
your code before it’s compiled, but due to the heuristic nature of Perl’s parser, they’re considered

WARNING Without going into too much detail, you should be cautious about

using given/when for the time being. The following blog post explains more

(though it’s probably a bit advanced for you at this point): http://blogs.perl

.org/users/komarov/2011/09/givenwhen-and-lexical.html.

If you want to avoid bugs, you can usually replace the when with a for and it

works just fi ne:

for ($number) {

 when ($_ < 0) {

 print “The number is negative”;

 }

 when ($_ > 0) {

 print “The number is positive”;

 }

 default {

 print “The number is 0”;

 }

}

Just make sure that you don’t use a variable name with the for loop to ensure

you’re setting the $_ variable.

To understand more about given/when, you can read perldoc persyn if you

have version 5.10.0 or better. Also, if you want to use given/when without the

other useful features of newer versions of Perl, see perldoc feature.

c05.indd 153c05.indd 153 8/9/12 9:03 AM8/9/12 9:03 AM

http://blogs.perl.org/users/komarov/2011/09/givenwhen-and-lexical.html
http://blogs.perl.org/users/komarov/2011/09/givenwhen-and-lexical.html

154 ❘ CHAPTER 5 CONTROL FLOW

extremely unreliable. In fact, the Switch module, though useful, has a variety of bugs and limita-
tions that, although obscure, are nonetheless diffi cult to work around.

Switch was eventually removed from the Perl core because its functionality is replaced with the
given/when statement. Your author strongly recommends that you do not use the Switch module.

SUMMARY

In this chapter you learned the basics of control fl ow in Perl. The if statement and for and while
loops make up the bulk of control fl ow for Perl; although, many variations exist. Control fl ow
enables your programs to make decisions about what to do and how to do it.

EXERCISES

 1. What does the following line of code do? How might you improve it?

print for 1..10;

 2. The following code has a syntax error. Fix it.

my $temperature = 22;
print $temperature < 15? “Too cold!\n”
 : $temperature > 35? “Too hot!\n”;

 3. Create an array called @numbers and assign some numbers to it. Write the code to print the aver-

age value of the numbers.

 4. Developers new to Perl who have experience with languages such as Java or C might write the

following bit of code. However, it has a logic error. Explain what the logic error is and what

the programmer might have done to see the logic error when running the code. Then rewrite the

code in a simpler format.

my @array = qw(fee fie foe fum);
my $num_elements = @array;

foreach (my $i = 0; $i <= $num_elements; $i++) {
 print “$array[$i]\n”;
}

 5. You’re writing a game and want to randomly generate a character’s statistics for strength, intel-

ligence, and dexterity. Each statistic is determined by summing the values of two rolls of a six-

sided die. For example, if you determine the character’s strength and roll the die twice and get

the values 2 and 6, the characters strength is 8 (2 + 6). Write the code to generate a new char-

acter. Remember that the code to simulate one roll of a six-sided die is 1 + int(rand(6)) (from

Chapter 4). You use a “heredoc” (see Chapter 3) to print the character’s statistics.

c05.indd 154c05.indd 154 8/9/12 9:03 AM8/9/12 9:03 AM

Summary ❘ 155

 my %stat_for = (
 strength => undef,
 intelligence => undef,
 dexterity => undef,
);

add your code here

print <<”END_CHARACTER”;
Strength: $stat_for{strength}
Intelligence: $stat_for{intelligence}
Dexterity: $stat_for{dexterity}
END_CHARACTER

 6. For extra credit, imagine that the character is considered “exceptional” and you don’t want to

allow any statistic with a value less than 6. Hint: This is one case in which a redo() statement

can come in handy.

c05.indd 155c05.indd 155 8/9/12 9:03 AM8/9/12 9:03 AM

156 ❘ CHAPTER 5 CONTROL FLOW

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

if/elsif/else Do diff erent things based on whether or not something is true or false.

?: The ternary operator is a shortcut for if/else that some programmers

use.

foreach Used to iterate over a list.

while/until Used for looping while some expression is true or until some expression is

false.

last/next/redo/

continue

Used to control restarting or exiting loops.

Statement

modifi ers

if/foreach/while expressions put after a statement to modify its

behavior.

given/when A clean way of picking one or more statements to execute, based on a

particular condition.

c05.indd 156c05.indd 156 8/9/12 9:03 AM8/9/12 9:03 AM

6
References

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Creating and understanding array, hash, anonymous, and other

references

 ➤ Manipulating references

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD

.html on the Download Code tab. The code for this chapter is divided into the following
major examples:

 ➤ example_6_1_complex.pl

 ➤ listing_6_1_sales.pl

 ➤ listing_6_2_dclone.pl

In Perl, you tend to care more about how you organize your data than the kinds of data
you have. As a result, Perl enables rich, complex data structures and imposes few limits on
how you can organize your data. When you get used to the syntax, you may be pleasantly
 surprised. Memory management is handled for you; there is no pointer math to get
wrong; and there are no external libraries to choose from and load. You just use the
references.

c06.indd 157c06.indd 157 8/9/12 9:15 AM8/9/12 9:15 AM

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://wrox.com
http://WROX.COM

158 ❘ CHAPTER 6 REFERENCES

REFERENCES 101

In some languages, complex data structures are built up via pointers (something that “points” to a
variable’s location in memory) stored in other data structures, with perhaps pointers to those data
structures, in turn, stored in other data structures. Then you can have fun with pointer math,
memory management, and obscure compiler errors.

Some languages, on the other hand, offer a bewildering array of different classes to implement a
variety of different data structures, depending on what you need and how much time you have to
spend reading obscure documentation.

Perl makes it simple. Put any kind of data in any kind of data structure. You, the programmer, are
expected to know what to do with it, and Perl (usually) handles the garbage collection and pointer
math for you. Like many things in Perl, it just works. A reference in Perl doesn’t directly contain
data; it is just a scalar variable that tells Perl where some data is kept. To access that data, you need
to dereference it.

There are two ways of creating a reference in Perl. You can take a reference to an existing variable
by putting a backslash, \, in front of it. The other way is to create an anonymous reference and
assign it to a variable.

NOTE There’s actually a third way to take a reference. It’s called the

*foo{THING} syntax. (Apparently because Perl doesn’t have enough weird

names for things.) It accesses the value of a typeglob, which isn’t discussed here

because it’s somewhat advanced magic. See perldoc perlref. Typeglobs

should not be confused with the glob() function (Chapter 9).

Array References

As you recall, an array is just a container for a list. To assign a reference to that array to a scalar,
prepend it with a backslash:

my @fools = qw(jester clown motley);
my $fools = \@fools;

The $fools variable now contains a reference to the @fools array. You can copy the values to
another array by prepending it with the @ sign (the array sigil).

my @copy_of_fools = @$fools;

To access individual elements of the $fools array reference, you use the same syntax as you would
to access the original array, but you use the dereferencing operator, ->, between the array name and
the square brackets. The following prints jester - motley:

c06.indd 158c06.indd 158 8/9/12 9:15 AM8/9/12 9:15 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

References 101 ❘ 159

NOTE You often see Perl programmers refer to array references as arefs.

Hash references are hrefs. Subroutines (Chapter 7) are subrefs or coderefs.

Sometimes you can just say ref when you are talking about references in

general. Hence, the $aref and $href variable names are used in some of this

book’s examples. Although these are not great variable names, the following is

often considered worse:

my $fools = \@fools;

It’s okay in Perl to have multiple variables named $fools, @fools, and %fools,

but it’s confusing and should be avoided whenever possible.

my @fools = qw(jester clown motley);
my $aref = \@fools;
my $first_fool = $aref->[0];
my $last_fool = $aref->[2];
print “$first_fool - $last_fool”;

Naturally, you can iterate over an array reference just like you would an array:

foreach my $fool (@$aref) {
 print “$fool\n”;
}

And if you need to iterate over the indexes, use the $# syntax in front of the array reference. The
following code does the same thing as the previous code;

my @fools = qw(jester clown motley);
my $fools = \@fools;
foreach my $i (0 .. $#$fools) {
 my $fool = $fools->[$i];
 print “$fool\n”;
}

Although your author generally does not recommend the following (it can be confusing), be aware
that you can dereference the value and interpolate it into a string just as you would a regular scalar:

foreach my $i (0 .. $#$fools) {
 print “$fools->[$i]\n”;
}

Hash References

You take a reference to a hash the same way you take a reference to an array. Like an array
reference, you access individual elements using the dereference operator after the variable name.

c06.indd 159c06.indd 159 8/9/12 9:15 AM8/9/12 9:15 AM

160 ❘ CHAPTER 6 REFERENCES

my %words = (
 dog => ‘chien’,
 eat => ‘manger’,
 clown => ‘clown’,
);
my $english_to_french = \%words;
my %copy = %$english_to_french;
my $eat = $english_to_french->{eat};
while (my ($english, $french) = each %$english_to_french) {
 print “The french word for ‘$english’ is ‘$french’\n”;
}

The previous code snippet should print something like this:

The french word for ‘eat’ is ‘manger’
The french word for ‘clown’ is ‘clown’
The french word for ‘dog’ is ‘chien’

NOTE Although it’s been stated that the proper way to access elements in a

reference is to use the dereferencing operator, it’s not the only way. You can

prepend a $ sign to the variable and skip the dereferencing operator, optionally

wrapping the variable in curly braces:

$foo->[7];
$$foo[7]; # same thing
${$foo}[7]; # same thing
$word_for->{laughter};
$$word_for{laughter}; # same thing
${$word_for}{laughter}; # same thing

You might notice the lack of the dereferencing operators. With these alternative

ways to dereference, Perl can be much harder to read, particularly if the mainte-

nance programmer is not familiar with this syntax or fails to note that something

is dereferenced.

It’s recommended that you limit your use of this syntax to those cases in

which it’s absolutely needed (as with reference slices, explained in the “Slices”

section later in this chapter).

Anonymous References

Anonymous references are commonly used to create rich data structures in Perl. They seem strange
at fi rst, but they’re easy to use.

When you access an individual array or hash element, you wrap the index value in [] or {}
respectively. Those braces are also used to construct anonymous hashes and arrays:

c06.indd 160c06.indd 160 8/9/12 9:15 AM8/9/12 9:15 AM

References 101 ❘ 161

my $stuff = [‘foo’, ‘bar’, ‘baz’];
my $colors = { red => ‘#FF0000’, green => ‘#00FF00’, blue => ‘#0000FF’ };

However, it doesn’t make much sense to construct an anonymous array or hash and assign it directly
to a scalar just so you can dereference it again. Instead, they are powerful when you use them inside
of other data structures.

Anonymous Arrays

The following is an array of arrays (sometimes referred to as an AoA). The formatting, as usual, is
optional and used primarily to make these easier to read:

my @results = (
 [12, 19, 4],
 [454, 2, 42],
 [6, 9, 13, 44],
);

An array can contain three anonymous arrays, the last of which has four elements instead of three.
Accessing each of these array references is as easy as you might expect:

my $aref1 = $results[0];
my $aref2 = $results[1];
my $aref3 = $results[2];

And then you can access individual elements with the normal dereferencing syntax:

my $number = $aref2->[2];

By this time, $number should contain 42. However, you can directly access that variable from the
@results array by simply dereferencing it directly:

my @results = (
 [12, 19, 4],
 [454, 2, 42],
 [6, 9, 13, 44],
);
my $number = $results[1]->[2]; # number is now 42
my $results = \@results;

If you have an array of arrays of arrays (AoAoA), you would repeat this:

my $number = $aoaoa[3]->[1]->[0];

As a shortcut, Perl enables you to omit the dereferencing operator if you’re already accessing an indi-
vidual element in a data structure:

my $number = $aoaoa[3]->[1]->[0];
my $number = $aoaoa[3][1][0]; # same thing

The latter syntax is more common than the former, but be wary of creating data structures too
complex because they’re often diffi cult to read.

c06.indd 161c06.indd 161 8/9/12 9:15 AM8/9/12 9:15 AM

162 ❘ CHAPTER 6 REFERENCES

When using normal data manipulation builtins, just dereference the array and use it as you normally
would:

push @$array, $value;

If you have a more complex data structure, use curly braces to tell Perl exactly what you’re
dereferencing:

push @{ $some_array[3][0] }, $some_value;

Anonymous Hashes

Anonymous hashes work the same way, but you use curly braces instead of square brackets. The
following is a hash of hashes (HoH), but you can make the top-level hash an anonymous hash
assigned to a scalar:

my $sales = {
 monday => { jim => 2, mary => 1 },
 tuesday => { jim => 3, mary => 5 },
 wednesday => { jim => 7, mary => 3 },
 thursday => { jim => 4, mary => 5 },
 friday => { jim => 1, mary => 2 },
};

As you might expect, these are easier to read. What are Mary’s sales for Friday?

my $num_sales = $sales->{friday}{mary};

You must use the dereference operator on the fi rst element, but subsequent elements no longer
require said dereferencing. Of course, you can use the dereference operator multiple times, if you
prefer:

my $num_sales = $sales->{friday}->{mary};

Mixing and matching anonymous data structures enable you to create powerful data structures.
Listing 6-1 (code fi le listing_6_1_sales.pl) is a smaller version of the previously shown $sales
data structure, but instead of showing the number of sales for Jim and Mary, you can
provide anonymous array references showing the commission per sale.

LISTING 6-1: Working with Data Structures

use strict;
use warnings;
use diagnostics;

my $sales = {
 monday => {
 jim => [3, 4],
 mary => [4],

c06.indd 162c06.indd 162 8/9/12 9:15 AM8/9/12 9:15 AM

References 101 ❘ 163

 },
 tuesday => {
 jim => [3, 5, 1],
 mary => [1, 1, 1, 1, 9],
 },
};

my $commissions = $sales->{tuesday}{jim};
my $num_sales = @$commissions;
my $total = 0;

foreach (@$commissions) {
 $total += $_;
}

print “Jim made $num_sales sales on Tuesday and earned \$$total commission\n”;

That tells you that Jim isn’t earning a lot of money.

Jim made 3 sales on Tuesday and earned $9 commission

You can escape the fi rst dollar sign on $total to tell Perl not to interpolate that dollar sign as part
of a variable, but merely print it.

As with arrays, data manipulation builtins behave as normal, so long as you dereference the item
fi rst.

my @days_of_the_week = keys %$sales;
my @sales_people = keys %{ $sales->{monday} };

Other References

Arrays and hashes are the two most common types of references, but there are a variety of other
references that can prove useful from time to time. The most popular is a subroutine reference. The
following prints the number 9:

my $add_two = sub {
 my $number = shift;
 return $number + 2;
};
print $add_two->(7);

Don’t worry about how that works for now. Chapter 7 covers subroutine references, but it’s included
it here for completeness.

Naturally, you can take a reference to a scalar. The following prints Ovid:

my $name = ‘Ovid’;
my $ref = \$name;
print $$ref;

Scalar references might seem odd, but they do have uses at times.

c06.indd 163c06.indd 163 8/9/12 9:15 AM8/9/12 9:15 AM

164 ❘ CHAPTER 6 REFERENCES

TRY IT OUT Walking Complex Data Structures

You haven’t had many pages to read, but you covered a lot of ground. Now this Try It Out walks through
a compound data structure to make a simple report. You want to print a report showing the top salesper-
son per day. All the code in this Try It Out is found in code fi le example_6_1_complex.pl.

1. Save the following code as example_6_1_complex.pl:

use strict;
use warnings;
use diagnostics;

my @day_of_week = qw(
 monday
 tuesday
 wednesday
 thursday
 friday
);

my @sales = (
 { jim => 2, john => 7, mary => 1 },
 { alice => 4, jim => 3, mary => 5 },
 { jim => 7, mary => 3, pablo => 10 },
 { jim => 4, mary => 5 },
 { jim => 1, katherine => 4, mary => 2 },
);

print “Top sales per day report\n\n”;
printf “%10s %10s %s\n”, ‘Weekday’, ‘Person’, ‘Num sales’;

get the name of the day and sales for that day
foreach my $i (0 .. $#day_of_week) {
 my $day = ucfirst $day_of_week[$i];
 my $daily_sales = $sales[$i];

 # find top salesperson for the current day
 my $top_sales = 0;
 my $top_person;
 while (my ($salesperson, $num_sales) = each %$daily_sales) {
 if ($num_sales > $top_sales) {
 $top_sales = $num_sales;
 $top_person = $salesperson;
 }
 }
 printf “%10s: %10s %-3d\n”, $day, $top_person, $top_sales;
}

2. Run the code with perl example_6_1_complex.pl, and if you’ve copied it correctly, it should
output the following:

Top sales per day report
 Weekday Person Num sales
 Monday: john 7

c06.indd 164c06.indd 164 8/9/12 9:15 AM8/9/12 9:15 AM

References 101 ❘ 165

 Tuesday: mary 5
 Wednesday: pablo 10
 Thursday: mary 5
 Friday: katherine 4

How It Works

All things considered, this is actually a fairly simple data structure (they’re so easy in Perl that people
often create far more complicated ones), but look at the top two arrays.

my @day_of_week = qw(
 monday
 tuesday
 wednesday
 thursday
 friday
);
my @sales = (
 { jim => 2, john => 7, mary => 1 },
 { alice => 4, jim => 3, mary => 5 },
 { jim => 7, mary => 3, pablo => 10 },
 { jim => 4, mary => 5 },
 { jim => 1, katherine => 4, mary => 2 },
);

You can write this example in many ways, but in this case, assume that the @sales in the second array
are for Monday, Tuesday, Wednesday, Thursday, and Friday. Each entry in @sales is a hashref with the
fi rst name of the salesperson as the key and the number of sales as the value.

The next two lines print out the top of your report:

print “Top sales per day report\n\n”;
printf “%10s %10s %s\n”, ‘Weekday’, ‘Person’, ‘Num sales’;

The printf() formats were carefully chosen to match the printf() formats for each day’s entry on
the report.

Now you have a strange bit at the top of the for loop:

get the name of the day and sales for that day
foreach my $i (0 .. $#day_of_week) {
 my $day = ucfirst $day_of_week[$i];
 my $daily_sales = $sales[$i];

The reason you use the $i variable and assign values from 0 to $#day_of_week (remember, that’s the
value of the last index in that array) is that by using this index, you can fetch the name of the day from
@day_of_week and fetch the daily sales in the @sales array.

Next, use a while loop to iterates over the $daily_sales hash reference:

 # find top salesperson for the current day
 my $top_sales = 0;
 my $top_person;

c06.indd 165c06.indd 165 8/9/12 9:15 AM8/9/12 9:15 AM

166 ❘ CHAPTER 6 REFERENCES

 while (my ($salesperson, $num_sales) = each %$daily_sales) {
 if ($num_sales > $top_sales) {
 $top_sales = $num_sales;
 $top_person = $salesperson;
 }
 }
 printf “%10s: %10s %-3d\n”, $day, $top_person, $top_sales;
}

Simply keep track of the highest sale for that day and the name of the sales person associated with it. At
the end of the while loop, print that information out.

Of course, you can write the preceding code in many different ways. It’s also not robust. What if more
than one salesperson makes the same number of sales? What if the length of the @day_of_week and
@sales arrays do not match? (Refer to the subroutines discussing in Chapter 7.)

WORKING WITH REFERENCES

Knowing how to create references and fetch data out of them is one thing. However, many times you
need to copy all or part of a reference without changing the original reference. Or perhaps you can’t
fi gure out why you’re not getting the right data, so you need to debug your reference. The next
sections cover several ways to handle these issues.

 Debugging

In the fi rst Try It Out in this chapter, you saw how to work with references and even print them out.
However, sometimes they’re a bit confusing, and you’re not sure what you have. For example, say
you have the following line as line 23 of your program:

print $aref->[0]{sales};

And your program dies with the error message:

Not a HASH reference at some_program.pl line 23.

Now you want to know what you actually have in the $aref variable.

One way to handle this is to just print $aref->[0]. In this case, it might print something such as
ARRAY(0xc51220). When you print a reference, you see the type of reference (ARRAY in this case)
followed by its hexadecimal address in memory.

Another way to deal with this is the ref() function:

print ref $aref->[0];

For something that is not a reference, ref() returns the empty string. The following is a handy little
program that shows various reference types. You won’t understand all these yet, but that’s okay.
When you’re done with the book, this will be clear:

c06.indd 166c06.indd 166 8/9/12 9:15 AM8/9/12 9:15 AM

Working with References ❘ 167

use strict;
use warnings;
use CGI;

my $foo;
sub handler {}

my $scalar = ref $foo;
my $scalarref = ref \$foo;
my $arrayref = ref \@ARGV;
my $hashref = ref \%ENV;
my $coderef = ref \&handler;
my $globref = ref *foo;
my $regexref = ref qr//;
my $objectref = ref CGI->new;

print <<”END_REFERENCES”;
Scalar: $scalar
Scalar ref: $scalarref
Array ref: $arrayref
Hash ref: $hashref
Code ref: $coderef
Glob ref: $globref
Regex ref: $regexref
Object ref: $objectref
END_REFERENCES

And that prints:

Name “main::foo” used only once: possible typo at refs.pl line 10.
Scalar:
Scalar ref: SCALAR
Array ref: ARRAY
Hash ref: HASH
Code ref: CODE
Glob ref: GLOB
Regex ref: Regexp
Object ref: CGI

You see nothing printed for $scalar because ref() returns the empty string if called with an
 argument that is not a reference. The strange main::foo warning happens because you take the
reference to something called a typeglob. We won’t cover them much in this book, but you can read
perldoc perldata for more information if you’re curious.

The rest of the names should be straightforward, even though we’ve not covered all the types yet.
Chapter 9 covers globs (slightly), and Chapter 8, covers regular expressions (the $regexref).
Calling ref() on an object (Chapter 12) merely returns the name of the object’s class.

c06.indd 167c06.indd 167 8/9/12 9:15 AM8/9/12 9:15 AM

168 ❘ CHAPTER 6 REFERENCES

For large data structures, you might fi nd it frustrating to keep printing individual elements to fi nd
out what they are. This is where the useful Data::Dumper module comes in handy. Data::Dumper
has been shipped with Perl since version 5.005 (released July 1998).

You can add the following before the offending line to see what you have:

use Data::Dumper;
print Dumper($aref);

That might print out something like this:

$VAR1 = [
 [
 1,
 3
],
 [
 2,
 5
]
];

As you can see by reading this data structure, you have an array ref of array refs, not an array ref
of hashrefs. Data::Dumper is an invaluable debugging tool when trying to fi gure out just what went
wrong with your code. See perldoc Data::Dumper to understand how to customize its output.

If you want to print out the values of arrays and hashes that are not references, you must pass them
by reference to Data::Dumper and your output may look confusing:

use Data::Dumper;
my @words = qw(this that other);
print Dumper(@words);

That prints out:

$VAR1 = ‘this’;
$VAR2 = ‘that’;
$VAR3 = ‘other’;

However, when you pass the array by reference, you get a cleaner output, so long as you understand
references:

WARNING All the references used in this chapter have been hard references.

Hard references tell Perl where to fi nd some data. However, there’s also a soft

reference, sometimes referred to as a symbolic reference. Rather than telling

Perl where some data is kept, it contains the name of a variable or subroutine

that Perl can then access or call to get the data you want. Soft references are

considered dangerous because they’re easy to get wrong. As a result, they

are illegal when you use strict, which isn’t discussed further in this book. See

perldoc strict and perldoc perlref for more information.

c06.indd 168c06.indd 168 8/9/12 9:15 AM8/9/12 9:15 AM

Working with References ❘ 169

print Dumper(\@words);
$VAR1 = [
 ‘this’,
 ‘that’,
 ‘other’
];

Copying

Sometimes you need to copy a data structure. For example, you might want to change some data in
a data structure, but leave the original data structure unchanged. Ordinarily you can copy a
variable like this:

my $x = 3;
my $y = $x;
$y = 4;
print “$x - $y”;

That prints 3 - 4. This is because the assignment operator copies the value from one expression to
a variable (or variables). However, what happens when that value is a reference?

use Data::Dumper;
my $aref1 = [1, 3, 7];
my $aref2 = $aref1;
$aref2->[0] = 9;
print Dumper($aref1, $aref2);

That prints:

$VAR1 = [
 9,
 3,
 7
];
$VAR2 = $VAR1;

But how can the two variables be the same? You only changed the fi rst value of the second array
reference.

That’s because when you did $aref2 = $aref1, you copied the reference (not the data!) from
$aref1 to $aref2. In Perl, copying a reference is automatically a shallow copy. A shallow copy
copies only top-level values. The data any references point to will be shared between the variables.
To do a deep copy of an array reference and not share the values, you must dereference the array. In
this case, dereference the array and use [] to create a new array reference.

use Data::Dumper;
my $aref1 = [1, 3, 7];
my $aref2 = [@$aref1];
$aref2->[0] = 9;
print Dumper($aref1, $aref2);

c06.indd 169c06.indd 169 8/9/12 9:15 AM8/9/12 9:15 AM

170 ❘ CHAPTER 6 REFERENCES

That prints:

$VAR1 = [
 1,
 3,
 7
];
$VAR2 = [
 9,
 3,
 7
];

And as you can see, the two variables no longer share the same array reference.

This can particularly confuse programmers who are not aware of this. The following is some broken
code attempting to copy a data structure and clear out the sales in the new structures:

use Data::Dumper;

my %old_sales = (
 monday => { jim => 2, mary => 1 },
 tuesday => { jim => 3, mary => 5 },
 wednesday => { jim => 7, mary => 3 },
 thursday => { jim => 4, mary => 5 },
 friday => { jim => 1, mary => 2 },
);

my %new_sales = %old_sales;
while (my ($day, $sales) = each %new_sales) {
 $sales->{jim} = 0;
 $sales->{mary} = 0;
}
print Dumper(\%old_sales, \%new_sales);

And that prints (reformatted for clarity):

$VAR1 = {
 ‘monday’ => { ‘jim’ => 0, ‘mary’ => 0 }
 ‘tuesday’ => { ‘jim’ => 0, ‘mary’ => 0 },
 ‘wednesday’ => { ‘jim’ => 0, ‘mary’ => 0 },
 ‘thursday’ => { ‘jim’ => 0, ‘mary’ => 0 },
 ‘friday’ => { ‘jim’ => 0, ‘mary’ => 0 },
};
$VAR2 = {
 ‘monday’ => $VAR1->{‘monday’},
 ‘tuesday’ => $VAR1->{‘tuesday’}
 ‘wednesday’ => $VAR1->{‘wednesday’},
 ‘thursday’ => $VAR1->{‘thursday’},
 ‘friday’ => $VAR1->{‘friday’},
};

As you can see, you have overwritten the values in the %old_sales hash. It would be tedious to
dereference each hashref and take a reference to each hash, but it’s also error prone. A much simpler

c06.indd 170c06.indd 170 8/9/12 9:15 AM8/9/12 9:15 AM

Working with References ❘ 171

way to handle this is to use the Storable ‘dclone’ (deep clone) function. It does a deep copy of a
reference. Listing 6-2 (code fi le listing_6_2_dclone.pl) shows how it’s done.

LISTING 6-2: Using dclone to Deep Copy Data Structures

use strict;
use warnings;
use diagnostics;
use Data::Dumper;
use Storable ‘dclone’;

my %old_sales = (
 monday => { jim => 2, mary => 1 },
 tuesday => { jim => 3, mary => 5 },
 wednesday => { jim => 7, mary => 3 },
 thursday => { jim => 4, mary => 5 },
 friday => { jim => 1, mary => 2 },
);

my %new_sales = %{ dclone(\%old_sales) };
while (my ($day, $sales) = each %new_sales) {
 $sales->{jim} = 0;
 $sales->{mary} = 0;
}
print Dumper(\%old_sales, \%new_sales);

And running listing_6_1_dclone.pl shows that you have the wanted result (again, reformatted
for clarity);

$VAR1 = {
 ‘monday’ => { ‘jim’ => 2, ‘mary’ => 1 }
 ‘tuesday’ => { ‘jim’ => 3, ‘mary’ => 5 },
 ‘wednesday’ => { ‘jim’ => 7, ‘mary’ => 3 },
 ‘thursday’ => { ‘jim’ => 4, ‘mary’ => 5 },
 ‘friday’ => { ‘jim’ => 1, ‘mary’ => 2 },
};
$VAR2 = {
 ‘monday’ => { ‘jim’ => 0, ‘mary’ => 0 }
 ‘tuesday’ => { ‘jim’ => 0, ‘mary’ => 0 },
 ‘wednesday’ => { ‘jim’ => 0, ‘mary’ => 0 },
 ‘thursday’ => { ‘jim’ => 0, ‘mary’ => 0 },
 ‘friday’ => { ‘jim’ => 0, ‘mary’ => 0 },
};

Remember, when copying references, if it’s a fl at data structure like an array or hash, you can just
dereference and assign the values (optionally creating a new reference):

my $acopy = [@$aref];
my %hcopy = %$href;

But if there are references in there, you have a shallow copy and possibly unwanted side effects.

c06.indd 171c06.indd 171 8/9/12 9:15 AM8/9/12 9:15 AM

172 ❘ CHAPTER 6 REFERENCES

Slices

When working with arrays and hashes, you sometimes want to fetch several items from the array or
hash at once. For example, if you have an array with sales for each day of the month and you only
want sales for the fi rst seven days, you don’t need the rest of the array. You might recall that the syn-
tax is to prefi x the variable name with an @ (array) symbol and provide two or more indexes/keys.

array slice
my @array = qw(foo bar baz quux);
my ($var1, $var2) = @array[1, 2];

hash slice
my %hash = (
 this => ‘is’,
 another => ‘boring’,
 example => ‘innit?’
);

my ($first, $second) = @hash{ ‘another’, ‘example’ };
print “$var1, $var2\n”;
print “$first, $second\n”;

And that prints:

bar, baz
boring, innit?

When you have references, you must, as expected, dereference the variables fi rst. The following code
prints the same output as the previous code. You dereference the variables to get the slices:

array slice
my $arrayref = [qw(foo bar baz quux)];
my ($var1, $var2) = @$arrayref[1, 2];
hash slice
my $hashref = {
 this => ‘is’,
 another => ‘boring’,
 example => ‘innit’
};
my ($first, $second) = @$hashref{ ‘another’, ‘example’ };
print “$var1, $var2\n”;
print “$first, $second\n”;

However, if you want to take a slice of a complex data structure, you must use curly braces to make
it clear what you take a slice of:

my ($jim, $mary, $alice)
 = @{ $sales->[12]{tuesday} }{qw/ jim mary alice /};

Yes, the syntax is painful and ugly. Taking slices from references is something that often confuses
newer programmers. You may want to avoid this feature.

c06.indd 172c06.indd 172 8/9/12 9:15 AM8/9/12 9:15 AM

Summary ❘ 173

SUMMARY

References are Perl’s answer to pointers. Instead of containing data, they tell Perl where the data is
contained. The syntax is a bit different from using a normal variable, but it’s clear what’s going on
after you get used to it. References are also the key to building up complex data structures. If you
want to know far more than you ever wanted to know about references, you can read the following
docs included with Perl:

 ➤ References: perldoc perlref

 ➤ Reference tutorial: perldoc perlreftut

 ➤ Data structures cookbook: perldoc perldsc

 ➤ Lists of lists: perldoc perllol

EXERCISES

 1. Create an array called @first and assign several values to it. Take a reference to that array, and

then dereference it into an array named @second. Print both arrays to ensure that you’ve copied

it correctly.

 2. Write the code to fi nd the individual number of sales Jim made on Friday and the total number of

the sales he made on Friday. Assume each number is the total for an individual sale.

my $sales = {
 monday => { jim => [2], mary => [1, 3, 7] },
 tuesday => { jim => [3, 8], mary => [5, 5] },
 wednesday => { jim => [7, 0], mary => [3] },
 thursday => { jim => [4], mary => [5, 7, 2, 5, 2] },
 friday => { jim => [1, 1, 5], mary => [2] },
};

 3. You want to print out the score for Jim and Mary, but the following code is wrong. What’s wrong

with it? Show two ways to fi x it.

my $score_for = {
 jim => 89,
 mary => 73,
 alice => 100,
 bob => 83.
};
my ($jim, $mary) = %$score_for{ qw{jim mary} };
print “$jim $mary”;

c06.indd 173c06.indd 173 8/9/12 9:15 AM8/9/12 9:15 AM

174 ❘ CHAPTER 6 REFERENCES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Basic References A shared data structure, which is Perl’s answer to pointers.

Anonymous References The building blocks of complex data structures.

Data::Dumper A powerful debugging tool to examine variables.

Copying How to safely copy a reference.

Slices How to retrieve a subset of items from a reference.

c06.indd 174c06.indd 174 8/9/12 9:15 AM8/9/12 9:15 AM

Subroutines

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Declaringa subroutine

 ➤ Passing data to subroutines

 ➤ Returning data from subroutines

 ➤ Using prototypes

 ➤ Using subroutine references

 ➤ Understanding recursion

 ➤ Implementing error checking

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
on the Download Code tab. The code for this chapter is divided into the following major
examples:

 ➤ example_7_1_running_total.pl

 ➤ example_7_2_length.pl

 ➤ example_7_3_zip.pl

 ➤ example_7_4_maze.pl

 ➤ listing_7_1_fi bonacci.pl

 ➤ listing_7_2_binary_search.pl

7

c07.indd 175c07.indd 175 8/9/12 9:30 AM8/9/12 9:30 AM

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Perl.productCd-1118013847,descCd-DOWNLOAD.html
http://WROX.COM
http://wrox.com

176 ❘ CHAPTER 7 SUBROUTINES

A subroutine is just a way of providing a “name” to a piece of code. This is useful when you need to
execute the same piece of code in several different places in your program, but you don’t want to just
“cut-n-drool” the same code all over the place.

Even if you don’t want to reuse a piece of code, applying a name is useful. Compare the following
two lines of code:

my $result = 1 + int(rand(6));
my $result = random_die_roll();

Just by intelligently naming a subroutine, you can see that the second line of code much clearer than
the fi rst. Thus, you can use subroutines to make your code more self-documenting. As an added
benefi t, the name of a subroutine is documentation that you don’t forget to add.

SUBROUTINE SYNTAX

A basic subroutine (often just called a sub) is declared with the syntax of

sub IDENTIFIER BLOCK

IDENTIFIER is the name of the subroutine, and BLOCK is the block of code that is executed. So if you
want to write a subroutine that simulates the roll of one six-sided die, you can write it like this:

sub random_die_roll {
 return 1 + int(rand(6));
}

The return()builtin is used to return data from a subroutine.

Now that you have assigned a name to that block of code, you can use it more or less like any Perl
builtin. This code prints a random number from 1 to 6:

my $result = random_die_roll();
print $result;

sub random_die_roll {
 return 1 + int(rand(6));
}

NOTE In Perl, there is no formal distinction between a subroutine and a func-

tion. In some programming languages, a function and a subroutine are the

same, but a function returns a value and a subroutine does not. There is no such

distinction in Perl. As a result, people sometimes refer to subroutines as func-

tions. Again, don’t get hung up on terminology. Functionality (pun probably not

intended) is what you should pay attention to.

c07.indd 176c07.indd 176 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine Syntax ❘ 177

Argument Handling

Subroutines are often used when you want to reuse some code but with different data. The data
you pass to subroutines is an argument. For example, whereas six-sided dice are the most common,
many games have dice with a different number of sides. So you might want to pass to random_die_
roll() the number of sides of the die you want to roll:

my $result = random_die_roll(10);

The arguments to a subroutine are stored in the special @_ array. The following is how to write the
sub that enables you to optionally pass the number of sides of the die you want to roll:

sub random_die_roll {
 my ($number_of_sides) = @_;
 # have a useful default if called with no arguments
 $number_of_sides ||= 6;
 return 1 + int(rand($number_of_sides));
}

WARNING Use parentheses around the variables you assign the subroutine

arguments to. This is just normal Perl syntax for force-list context. The following

code is a common mistake many Perl beginners make:

sub random_die_roll {
 my $number_of_sides = @_;
 # ... more code
}

That evaluates the @_ array in scalar context, setting $number_of_sides to the

number of elements in @_. That’s probably not what you want.

If you prefer, you can also write the argument handling like this:

sub random_die_roll {
 my $number_of_sides = shift;
 # ... more code here
}

The shift() builtin (and the pop() builtin), when used in a subroutine and called with no argu-
ments, default to shifting off the fi rst value of @_. You can be explicit if you prefer:

my $number_of_sides = shift @_;

Sometimes you see subroutine calls prefi xed with an ampersand:

my $result = &random_die_roll();

c07.indd 177c07.indd 177 8/9/12 9:30 AM8/9/12 9:30 AM

178 ❘ CHAPTER 7 SUBROUTINES

Although valid, this is an older form of subroutine syntax the author recommends you do not use
except in one special case:

my $result = &random_die_roll;

You called &random_die_roll without parentheses. When you do that, the current value of @_, if
any, is passed to the new subroutine. This is sometimes useful, but it’s confusing because it looks
like you called the subroutine without any arguments.

Multiple Arguments

Sometimes you want to roll a die more than once and add up the value of each die roll. Passing mul-
tiple arguments to an array is simple. The following is how to roll a six-sided die three times and
print the result:

sub random_die_roll {
 my ($number_of_sides, $number_of_rolls) = @_;

 # have a useful default if called with no arguments
 $number_of_sides ||= 6;

 # the number of times to roll the die defaults to 1
 $number_of_rolls ||= 1;
 my $total = 0;
 for (1 .. $number_of_rolls) {
 $total += 1 + int(rand($number_of_sides));
 }
 return $total;
}

print random_die_roll(6, 3);

Because there is more than one way to do it, you can handle the arguments like this:

my $number_of_sides = shift;
my $number_of_rolls = shift;

Or if you prefer to be explicit:

my $number_of_sides = shift @_;
my $number_of_rolls = shift @_;

Subroutines in Perl are variadic. That means they can take a variable number of arguments. So if
you pass too many arguments to a subroutine, Perl usually ignores the extra arguments. The follow-
ing prints a random number from 1 to 10 and ignores the second argument:

sub random_die_roll {
 my ($number_of_sides) = @_;
 # have a useful default if called with no arguments
 $number_of_sides ||= 6;

c07.indd 178c07.indd 178 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine Syntax ❘ 179

 return 1 + int(rand($number_of_sides));
}
print random_die_roll(10, 3);

You can pass as many arguments as you like and Perl still happily ignores them:

print random_die_roll(10, 3, $some_val, @foobar);

This is a legacy of Perl’s roots that you still have today. There are modules such as
Params::Validate to help deal with this, but Perl programmers usually just read the documenta-
tion and know how they’re supposed to call the subroutines.

Named Arguments

When you start passing multiple arguments to a subroutine, it can be confusing to know what the argu-
ments mean. Is the following telling you to roll a six-sided die four times or a four-sided die six times?

print random_die_roll(6, 4);

One way to do that is to use named arguments. In Perl, you handle this by passing a hash:

print random_die_roll(
 number_of_sides => 6,
 number_of_rolls => 4,
);

sub random_die_roll {
 my %arg_for = @_;

 # assign useful defaults
 my $number_of_sides = $arg_for{number_of_sides} || 6;
 my $number_of_rolls = $arg_for{number_of_rolls} || 1;
 my $total = 0;

 for (1 .. $number_of_rolls) {
 $total += (1 + int(rand($number_of_sides)));
 }
 return $total;
}

This is useful because not only is it more self-documenting, but it also makes it easy for any argu-
ment to be optional. When you called random_die_roll(6,3), what if you want the default num-
ber of sides but to have it rolled three times? You’d have to write something like the following:

my $result = random_die_roll(undef, 3);
or
my $result = random_die_roll(0, 3);

Both of those can be confusing because their intent may not be clear. Instead, you can write the
following:

print random_die_roll(number_of_rolls => 4);

c07.indd 179c07.indd 179 8/9/12 9:30 AM8/9/12 9:30 AM

180 ❘ CHAPTER 7 SUBROUTINES

There is a slight problem with this, though. What if someone doesn’t read your documentation (you
write documentation, don’t you?) and they try to call it like this?

print random_die_roll(2);
sub random_die_roll {
 my %arg_for = @_;

 # assign useful defaults
 my $number_of_sides = $arg_for{number_of_sides} || 6;
 my $number_of_rolls = $arg_for{number_of_rolls} || 1;
 my $total = 0;

 for (1 .. $number_of_rolls) {
 $total += (1 + int(rand($number_of_sides)));
 }
 return $total;
}

Enabled warnings warn about Odd number of elements in hash assignment. You also get the
default values for the $number_of_sides and $number_of_rolls. Quite often programmers over-
look warnings, forget to enable them, or have so many other warnings that they miss simple ones
like this. A better way to handle named arguments is to pass a hash reference instead.

print random_die_roll(
 {
 number_of_sides => 6,
 number_of_rolls => 4,
 }
);

sub random_die_roll {
 my ($arg_for) = @_;

 # assign useful defaults
 my $number_of_sides = $arg_for->{number_of_sides} || 6;
 my $number_of_rolls = $arg_for->{number_of_rolls} || 1;
 my $total = 0;

for (1 .. $number_of_rolls) {
 $total += (1 + int(rand($number_of_sides)));
 }
 return $total;
}

With this code, if you use strict (and you should), then calling random_die_roll(6) results in the
following fatal error:

Can’t use string (“6”) as a HASH ref while “strict refs” in use

It’s far better to have your program die horribly than to return bad data.

c07.indd 180c07.indd 180 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine Syntax ❘ 181

Aliasing

One thing to be aware of when using subroutines is that the @_ array aliases its arguments, just like
we saw with foreach loops in Chapter 6. Thus, you can write the following:

my $number = 40;
inc_by_two($number);
print $number;
sub inc_by_two {
 $_[0] += 2;
}

That modifi es the $number variable in place and prints 42. However, if you call it like this:

inc_by_two(40);

That generates the following error:

Modification of a read-only value attempted at ...

Naturally, the aliasing cascades, so this throws the same error:

inc_list(3,2,1);

sub inc_list {
 foreach (@_) {
 $_++;
 }
}

As a general rule, subroutines are safest when they don’t have side effects like this. Instead of trying
to rely on aliasing to change variables in place, you should generally assign @_ to new variables and
return new values.

sub inc_list {
 my @numbers = @_;
 foreach (@numbers) {
 $_++;
 }
 return @numbers;
}

State Variables (Pre- and Post-5.10)

When you call a subroutine, variables declared in that sub are reinitialized every time you call the
subroutine. However, sometimes you only want to initialize the variable once and have it retain its
value between subroutine invocations. If you use Perl version 5.10.0 or better, you can declare a
state variable. The following is a subroutine that tracks the number of times it has been called:

c07.indd 181c07.indd 181 8/9/12 9:30 AM8/9/12 9:30 AM

182 ❘ CHAPTER 7 SUBROUTINES

use 5.010;

sub how_many {
 state $count = 0; # this is initialized only once
 $count++;
 print “I have been called $count time(s)\n”;
}

how_many() for 1 .. 5;

That prints:

I have been called 1 time(s)
I have been called 2 time(s)
I have been called 3 time(s)
I have been called 4 time(s)
I have been called 5 time(s)

On versions of Perl older than 5.10.0, you can still do this, but you wrap the subroutine in a block
and declare the $count variable in that block, but outside of the subroutine:

{
 my $count = 0;

 sub how_many {
 $count++;
 print “I have been called $count time(s)\n”;
 }
}
how_many() for 1 .. 5;

That prints the same thing.

The reason it works is because the subroutine is in the block in which the $count variable has
been declared. It is said to “close over” the scope of that variable and is thus known as a closure.
Closures are common in Perl but are usually used with anonymous subroutines, as discussed in the
“Closures” section of this chapter.

The $count variable doesn’t need to be declared in a block like that, but if you don’t, other sections
of code might see the $count variable and accidentally change its value. The block is just there to
safely restrict the scope of $count.

WARNING It’s generally a bad idea to have a subroutine referring to variables

not explicitly passed to the subroutine. This is because if some other code

changes those variables in the way the subroutine does not expect, it can be

diffi cult to fi nd out which part of the code is responsible for making that change.

This is why for older Perl’s you put the $count variable in a limited scope to

make sure that other code can’t touch it.

c07.indd 182c07.indd 182 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine Syntax ❘ 183

However, this style to make state variables is clumsy and error prone. Consider a subroutine that
ensures it’s never called with the same argument twice in a row:

use strict;
use warnings;

do_stuff($_) for 1 .. 5;

{
 my $last = 0;
 sub do_stuff {
 my $arg = shift;
 if ($arg == $last) {
 print “You called me twice in a row with $arg\n”;
 }
 $last = $arg;
 }
}

That code generates the following warning:

Use of uninitialized value $last in numeric eq (==) at ...

Why? Variable declaration happens at compile time before the code is run. However, variable
assignment happens at runtime and the assignment of 0 to $last doesn’t happen until after the calls
to do_stuff(). Thus, the fi rst time do_stuff() is called, $last is declared but has no
value assigned to it! This is not an issue with state variables:

use strict;
use warnings;

do_stuff($_) for 1 .. 5;

sub do_stuff {
 state $last = 0;
 my $arg = shift;
 if ($arg == $last) {
 print “You called me twice in a row with $arg\n”;
 }
 $last = $arg;
}

That doesn’t have the warning because at compile time $last is declared, but the fi rst time you
enter the do_stuff() subroutine, the $last = 0 assignment happens.

NOTE See perldoc feature and perldoc -f state for more information

about using state variables.

c07.indd 183c07.indd 183 8/9/12 9:30 AM8/9/12 9:30 AM

184 ❘ CHAPTER 7 SUBROUTINES

Passing a List, Hash, or Hashref?

This section isn’t actually about Perl but about good coding style. You can skip it if you want, but if
you’re new to programming, it’s worth reading.

Many times when writing a subroutine, you must decide if you want to pass single arguments, mul-
tiple arguments, references, and so on. this section offers a few good rules to consider.

If you have more than two arguments to pass to a subroutine, consider using a hash reference to use
named arguments, especially if some of the arguments are optional. Consider the following sub-
routine call where the account number may be optional. If the customer has only one account, the
subroutine might default to that account. If you want to check the balance and there is no amount to
$debit, that might also be optional. Named arguments are warranted here:

probably bad
my $balance = get_balance($customer, $account_number, $debit);

better
my $balance = get_balance({
 account_number => $account_number,
 customer => $customer,
 debit => $debit,
});

With that, you can omit the account_number and debit and still have code that is easy to read.
Plus, the order of the arguments becomes irrelevant.

But you might think that passing a hash reference is overkill here. It’s perfectly easy to read with
good variable names, right? Well, you may fi nd yourself in a section of your code where the variable
names are not so clear:

my $balance = get_balance({
 account_number => $acct,
 customer => $co,
});

Well-chosen named arguments make code much easier to read. So is there ever a reason to pass a list
to a subroutine? Sure! If you pass only one or two items, or if every item in the list is conceptually
the same, passing a list is fi ne:

sub sum {
 my @numbers = @_;
 my $total = 0;
 $total += $_ foreach @numbers;
 return $total;
}
print sum(4, 7, 2, 100);

In this case, using named arguments would be silly because you’re just summing a list of numbers.

Sometimes passing a list would be a bad idea. Imagine if the numbers you passed into sum() were
two million order totals you’ve just read from a CSV fi le. When you pass the list to sum(), Perl must
copy every value, and this might eat up a lot of memory. Instead, you can pass a reference, and Perl
copies only the single value of the reference:

c07.indd 184c07.indd 184 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine Syntax ❘ 185

sub sum {
 my $numbers = @_;
 my $total = 0;
 $total += $_ foreach @$numbers;
 return $total;
}
print sum(\@two_million_numbers);

Sometimes you might want to pass a hash to a sub, but as explained previously, there is nothing to
stop one from passing something that isn’t a hash. As a result, hard-to-fi nd bugs can creep into your
code. Using a hashref when you want a hash is much safer.

TRY IT OUT Writing a running_total() Subroutine

Imagine that you’re reading a bunch of data and need to sum the results of some data, but do this
repeatedly while keeping a running total. You might just write a sum() subroutine and keep the run-
ning total of the results, or you might have a running_total() subroutine that does this for you.
In this Try It Out, you write such a subroutine to see how it works. This example requires Perl version
5.10 or better, but you’ll also see how to rewrite it with Perl 5.8. All the code in this Try It Out uses
example_7_1_running_total.pl

 1. Type in the following program, and save it as example_7_1_running_total.pl:

use strict;
use warnings;
use diagnostics;
use 5.010;

my @numbers = (
 [3, 1, 4, 9, 32], # total 49
 [5, 200], # total 205
 [22, 75, 100, -3], # total 194
);

foreach my $group (@numbers) {
 my ($total, $running_total) = _running_total($group);
 print “Total is $total and running total is $running_total\n”;
}

sub _running_total {
 state $running_total = 0;
 my $numbers = shift;
 my $total = 0;
 $total += $_ for @$numbers;
 $running_total += $total;
 return $total, $running_total;
}

 2. Run the program with perl example_7_1_running_total.pl. You should see the following
output:

Total is 49 and running total is 49
Total is 205 and running total is 254
Total is 194 and running total is 448

c07.indd 185c07.indd 185 8/9/12 9:30 AM8/9/12 9:30 AM

186 ❘ CHAPTER 7 SUBROUTINES

How It Works

This one is straightforward, but it has a quirk. There is nothing unusual about this, but the subroutine
name is prefi xed with an underscore (_). This it a Perl convention that says, “This subroutine is private
and you can’t use it.” This is important because if other code were to call this subroutine, the running
total would increase for all areas of the code that called it, and there’s a good chance you didn’t want
that.

The use 5.010 statement is what tells Perl that it can use all syntactic constructs available in Perl 5.10.
(Yes; the version number is annoying.)

If you use a version of Perl less that version 5.10, you could write the running total subroutine like this:

{
 my $running_total = 0;

 sub _running_total {
 my $numbers = shift;
 my $total = 0;
 $total += $_ for @$numbers;
 $running_total += $total;
 return $total, $running_total;
 }
}

The extra block around the variable and subroutine is to ensure that no code outside of the subroutine
can accidentally change the $running_total value. That’s ugly because of the extra block, but it gets
the job done.

RETURNING DATA

When writing subroutines, it’s not helpful if you can’t return data. The following section explains
many of the ways to do this that you’ll encounter in real code. The clearest way to do this is to use
the return builtin.

Returning True/False

Many of the most basic subroutines return a true or false value. The following is one way to write
an is_palindrome() subroutine, ignoring the case of the word:

sub is_palindrome {
 my $word = lc shift;
 if ($word eq scalar reverse $word) {
 return 1;
 }
 else {
 # a bare return returns an empty list which evaluates to false
 return;
 }
}

c07.indd 186c07.indd 186 8/9/12 9:30 AM8/9/12 9:30 AM

Returning Data ❘ 187

for my $word (qw/Abba abba notabba/) {
 # remember that the ternary ?: operator is a shortcut for if/else
 my $maybe = is_palindrome($word) ? “” : “not”;
 print “$word is $maybe a palindrome\n”;
}

And that prints:

Abba is a palindrome
abba is a palindrome
notabba is not a palindrome

Unlike some other languages, you can put a return statement anywhere in the body of the subrou-
tine. However, you can make this subroutine even simpler:

sub is_palindrome {
 my $word = lc shift;
 return $word eq scalar reverse $word;
}

If you don’t include an explicit return statement in a subroutine, the subroutine returns the result of
the last expression to be evaluated, allowing you to write is_palindrome() as follows:

sub is_palindrome {
 my $word = lc shift;
 $word eq scalar reverse $word;
}

It’s strongly recommended that you use an explicit return on all but the simplest subroutines because
in a complicated subroutine, explicit return statements clarify fl ow control.

WARNING Some developers prefer to return undef, an empty string or a zero

for false.

sub is_palindrome {
 my $word = lc shift;
 return $word eq scalar reverse $word ? 1 : 0;
}

That’s okay, but consider the following:

if (my @result = is_palindrome($word)) {
 # do something
}

That’s a silly example, but if you return an empty string or a zero for false, then

@result will now be a one-element array and evaluate to true! This can cause

strange bugs in your code if you don’t consider this.

c07.indd 187c07.indd 187 8/9/12 9:30 AM8/9/12 9:30 AM

188 ❘ CHAPTER 7 SUBROUTINES

Ret urning Single and Multiple Values

As you might guess from the preceding examples, returning a single value is as simple as returning
$some_value:

use constant PI => 3.1415927;
sub area_of_circle {
 my $radius = shift;
 return PI * ($radius ** 2);
}
print area_of_circle(3);

The previous code prints 28.2743343, the area of a circle with a radius of 3 (of whatever units you
use).

Returning multiple values is simple. Just return them!

return ($first, $second, $third);

Be aware, though, that if you return an array or hash, its data is fl attened into a list:

sub double_it {
 my @array = @_;
 $_ *= 2 for @array;
 return @array;
}

This code returns a new list with the values doubled. However, if you want to return two arrays, or
two hashes, or an array and a hash, and so on, you want to return references:

sub some_function {
 my @args = @_;
 # do stuff
 return \@array1, \@array2;
}
my ($arrayref1, $arrayref2) = some_function(@some_data);

Be careful with returning multiple values. Many languages allowonly a single value to be returned
from a subroutine. This is actually not a bad idea. If you try to return too much from a single sub-
routine, it’s often a sign that the subroutine is trying to do too much.

NOTE If you need a review of true and false values, see “Using the If Statement”

section in Chapter 5.

c07.indd 188c07.indd 188 8/9/12 9:30 AM8/9/12 9:30 AM

Returning Data ❘ 189

wantarray

The wantarray builtin (perldoc -f wantarray) gives you some information about how the
 subroutine was called. It returns undef if you don’t use the return value, 0 if you use it in scalar
 context, and 1 if you expect a list. The following should make this clear:

sub how_was_i_called {
 if (not defined wantarray) {
 # no return value expected
 print “I was called in void context\n”;
 }
 elsif (not wantarray) {
 # one return value expected
 print “I was called in scalar context\n”;
 }
 else {
 # a list is expected
 print “I was called in list context\n”;
 }
}

RETURNING A LIST WITHOUT PARENTHESES

You may have noticed the last line of the _running_total subroutine you used
earlier:

sub _running_total {
 state $running_total = 0;

 my $numbers = shift;
 my $total = 0;

 $total += $_ for @$numbers;
 $running_total += $total;
 return $total, $running_total;
}

Note that this returns a list of values but you’re not using parentheses around the
list. In Perl, it’s fi ne to return a list like this. The comma operator is what defi nes
a list (not the parentheses, like many people believe) and because return has a
fairly low precedence (Chapter 4), there is no need to wrap the list in parentheses.
However, many people feel more comfortable with using parentheses here, and
that’s fi ne:

return ($total, $running_total);

With or without parentheses, returning a list this way is the same thing. Just
remember that you need the parentheses when assigning the values to variables:

my ($total, $running_total) = _running_total(\@numbers);

c07.indd 189c07.indd 189 8/9/12 9:30 AM8/9/12 9:30 AM

190 ❘ CHAPTER 7 SUBROUTINES

how_was_i_called();
my $foo = how_was_i_called();
my ($foo) = how_was_i_called();
my @bar = how_was_i_called();
my ($this, $that) = how_was_i_called();
my %corned_beef = how_was_i_called();

The previous code prints:

I was called in void context
I was called in scalar context
I was called in list context
I was called in list context
I was called in list context
I was called in list context

Note the following about the previous code:

 ➤ The fi rst how_was_i_called() did not assign the result to any values, so it’s in “void”
context.

 ➤ The second how_was_i_called() assigns to my $foo and results in a scalar context.

 ➤ The my ($foo) results in a list context because the parentheses force a list context. Also,
the my @bar, my ($this, $that), and my %corned_beef result in the subroutine being
called in list context.

There are a variety of uses for wantarray, but it is usually used for returning a reference when
called in scalar context:

sub double_it {
 my @array = @_;
 $_ *= 2 for @array;
 return wantarray ? @array : \@array;
}

With that, if you call double_it() in scalar context, you get an array reference back.

Use of the wantarray builtin is controversial, and many programmers recommend against it
because it can lead to surprising code when developers are not expecting the subroutine to behave
differently just because they’re calling it with a different context.

FAIL!

Subroutines never know how they’re going to be called (or at least, they shouldn’t), but they should
handle problems. The following is a great example of a problem:

sub reciprocal {
 my $number = shift;
 return 1 / $number;
}

c07.indd 190c07.indd 190 8/9/12 9:30 AM8/9/12 9:30 AM

FAIL! ❘ 191

As you may recall from math class, the reciprocal of a number is 1 divided by that number (or that
number raised to the power of –1). However, what happens when you pass a zero to your recipro-
cal subroutine? Your program dies with an Illegal division by zero error. Or what happens if
you pass a reference instead of a number? Or maybe you passed a string? That’s where you want to
check the error and handle it appropriately.

“Wake Up! Time to Die!”

Sometimes you need your program to die rather than spit out bad data. You can use the die builtin
for this. The die builtin optionally accepts a string. It prints that string to STDERR (refer to Chapter 4)
and halts the programs execution at that point. (Although you can trap this with eval {...} as you
see in the “eval” section of this chapter.) So, say you have a program that should be executed via the
command line as follows:

perl count_to.pl 7

And that should count from 1 to the number supplied. You want that number to look like a num-
ber and to be greater than 0. Otherwise, you want the program to die. Arguments to programs are
passed via the @ARGV variable. (Chapter 18 covers command=line handling.) You also use the
looks_like_number() subroutine exported from the standard Scalar::Util module.

use strict;
use warnings;
use Scalar::Util ‘looks_like_number’;
my $number = $ARGV[0];
if (not @ARGV or not looks_like_number($number) or $number < 1) {
 die “Usage: $0 positivenumber”}
print “$_\n” for 1 .. $number;

If you run that without any arguments, with an argument that doesn’t look like a number, or with a
number less than 1, the program dies with the following error message:

Usage: count_to.pl positivenumber at count_to.pl line 8

NOTE The $0 variable contains the name of the program you’re currently run-

ning. See perldoc perlvar for more information.

That’s a handy way to stop a program before serious problems occur and let the user know what the
problem is.

If a problem is worth a warning but not worth stopping the program, you can warn instead:

unless ($config_file) {
 warn “No config file supplied. Using default config”;
 $config_file = $default_config_file;
}

It works the same, but your program keeps running.

c07.indd 191c07.indd 191 8/9/12 9:30 AM8/9/12 9:30 AM

192 ❘ CHAPTER 7 SUBROUTINES

carp and croak

Calling die is useful, but you might notice that it prints the line number of where it died. Quite
often that’s a problem because you don’t want to know where the code died, but the line number of
the calling code. This is where the carp() and croak() subroutines come in. These are exported
automatically by the standard Carp module with a use Carp; statement, but your author likes to be
explicit about what functions he’s importing.

use Carp ‘croak’;
sub reciprocal {
 my $number = shift;
 if (0 == $number) {
 croak “Argument to reciprocal must not be 0”;
 }
 return 1 / $number;
}
reciprocal(0);

And that prints something like:

Argument to reciprocal must not be 0 at reciprocal.pl line 5
main::reciprocal(0) called at reciprocal.pl line 11

It tells you where the error occurred (line 5) and where it was called from (line 11). In this simple
example, it’s not that important, but in larger programs where reciprocal() can be called from
multiple locations, it’s vital information to track down the error.

If you don’t want to stop the program but you need a warning, there’s also the carp() subroutine
that is like croak(), but for warn instead of die.

use Carp qw(croak carp);
unless ($config_file) {
 carp “No config file supplied. Using default config”;
 $config_file = $default_config_file;
}

The Carp module also exports confess() and cluck(). These are like croak() and carp(), but
they also provide full stack traces.

eval

Sometimes you want to try to run some code that might fail but handle the failure gracefully, rather
than killing the program. This is where the eval()builtin comes in handy. There are two types of
eval: string and block.

String eval

The fi rst form of eval takes a string as its argument. The Perl interpreter is used to interpret the
expression and, if it succeeds, the code is then executed in the current lexical scope. This form of
eval is often used to delay loading code until runtime or to allow a developer to fall back to an
alternative solution to a problem. The special $@ variable is set if there are errors.

c07.indd 192c07.indd 192 8/9/12 9:30 AM8/9/12 9:30 AM

FAIL! ❘ 193

Consider trying to debug the following example, shown earlier in the chapter:

use Data::Dumper;
$Data::Dumper::Indent = 0;
my @numbers = (1, 2, 3);
my @new = map { $_++ } @numbers;
print Dumper(\@numbers, \@new);

That printed something like this:

$VAR1 = [2,3,4];$VAR2 = [1,2,3];

However, the $VAR1 and $VAR2 variables can be confusing, particularly when you try to fi gure out
what went wrong with your program. Data::Dumper offers a syntax that enables you to “name”
these variables:

print Data::Dumper->Dump(
 [\@numbers, \@new],
 [qw/*numbers *new/],
);

And that prints a much more “friendly”:

@numbers = (2,3,4);@new = (1,2,3);

However, the syntax is cumbersome. As a result, your author has released Data::Dumper::Names.
It behaves like Data::Dumper but tries to provide the names of the variables. Simply change
Data::Dumper to Data::Dumper::Names and you should get the preceding output. But what if you
don’t have that installed? You can use a string eval to fall back to Data::Dumper:

eval “use Data::Dumper::Names”;

if (my $error = $@) {
 warn “Could not load Data::Dumper::Names: $error”;
 # delay loading until runtime. This is a standard module
 # included with Perl
 eval “use Data::Dumper”;
}
$Data::Dumper::Indent = 0;

my @numbers = (1, 2, 3);
my @new = map { $_++ } @numbers;
print Dumper(\@numbers, \@new);

With this code, regardless of whether you could successfully load Data::Dumper::Names, you still
get sensible output; although, you get a large warning message to boot.

Block eval

The block form of eval traps the error with code that might fail. This is similar to try/catch with
other languages; although it has some issues as you’ll soon see.

c07.indd 193c07.indd 193 8/9/12 9:30 AM8/9/12 9:30 AM

194 ❘ CHAPTER 7 SUBROUTINES

sub reciprocal { return 1/shift }

for (0 .. 3) {
 my $reciprocal;
 eval {
 $reciprocal = reciprocal($_);
 }; # the trailing semicolon is required

 if (my $error = $@) {
 print “Could not calculate the reciprocal of $_: $error\n”;
 }
 else {
 print “The reciprocal of $_ is $reciprocal\n”;
 }
}

And that prints:

Could not calculate the reciprocal of 0: Illegal division
 by zero at recip.pl line 1.
The reciprocal of 1 is 1
The reciprocal of 2 is 0.5
The reciprocal of 3 is 0.333333333333333

As you can see, the block form of eval is very useful. Unfortunately, it’s also tricky to use safely.
Now look at a few of the problems and their solutions.

evalGotchas

You probably noticed that after the block eval, you should immediately save the error into a
variable:

eval { ... };
if (my $error = $@) {
 handle_error($error);
}

Why is that? Because in the previous example, if handle_error() itself has an eval, it may reset
$@, causing you to lose your error message.

Another common mistake is this:

if (my $result = eval { some_code() }) {
 # do something with $result
}
else {
 warn “Could not calculate result: $@”;
}

As you might guess, if some_code() is allowed to return a false value (zero, the empty string, undef,
and so on), you might think you have an error when you actually don’t. A better way to write the
preceding code is this:

c07.indd 194c07.indd 194 8/9/12 9:30 AM8/9/12 9:30 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

FAIL! ❘ 195

my $result;
my $ok = eval { $result = some_code(); 1 };
if ($ok) {
 # do something with $result
}
else {
 my $error = $@;
 warn “Could not calculate result: $error”;
}

The eval block has a bare 1 as the last expression. The block returns the value of the last expres-
sion, and if some_code() does not generate an error, $ok is set to 1 and $result has the return
value of some_code(). Otherwise, $ok is set to undef.

But there’s still a problem with the previous code! If you work on a large system, it’s entirely possible
that your eval() might be called from code that is also wrapped in an eval. When you call eval(),
you’ve clobbered the outer code’s $@. So you need to rewrite this again, localizing the $@ variable!

my $result;
my $ok = do {
 local $@;
 eval { $result = some_code(); 1 };
};

That’s starting to get tedious, but it’s fairly safe. You now know about the problems with eval,
which you will probably encounter in older code. The author strongly recommends that you install
the excellent Try::Tiny module from the CPAN.

Try::Tiny

The Try::Tiny module provides a try/catch/finally system for Perl. Now rewrite your reciprocal
code using it.

use Try::Tiny;

sub reciprocal { return 1/shift }

for my $number (0 .. 3) {
 my $reciprocal;

 try {
 $reciprocal = reciprocal($number);
 print “The reciprocal of $number is $reciprocal\n”;
 }
 catch {
 my $error = $_;
 print “Could not calculate the reciprocal of $_: $error\n”;
 };
}

This behaves exactly like your previous eval solution, but it does not clobber the $@ variable. Also,
any error is now contained in $_ instead of $@, which is why you now name the number as $number
to avoid confusion.

c07.indd 195c07.indd 195 8/9/12 9:30 AM8/9/12 9:30 AM

196 ❘ CHAPTER 7 SUBROUTINES

The catch block executes only if the try block trapped an error.

You can also provide an optional finally block that always executes, error or not:

try {
 $reciprocal = reciprocal($number);
 print “The reciprocal of $number is $reciprocal\n”;
}
catch {
 my $error = $_;
 print “Could not calculate the reciprocal of $_: $error\n”;
}
finally {
print “We tried to calculate the reciprocal of $number\n”;
};

Install Try::Tiny from the CPAN, and read the documentation for more information about this
excellent module. You also want to read its source code (perldoc -m Try::Tiny) to learn more
about the effective use of prototypes (explained in the section “Prototypes Summary” later in this
chapter); although some of the code is advanced.

SUBROUTINE REFERENCES

One lovely and powerful feature about Perl is the capability to take references to subroutines. This
seems strange, but if you’re familiar with this feature, you can do strange and wonderful things. You
can take references to existing subroutines or create anonymous subroutine references.

Existing Subroutines

The use of a leading ampersand to call a subroutine was previously mentioned. Just as $, @, and %
are the sigils for scalars, arrays, and hashes, the & is the sigil for subroutines; although it’s not seen
as often. Thus, taking a reference to an existing subroutine results in the following:

sub reciprocal { return 1 / shift }

my $reciprocal = \&reciprocal;

And there are two ways of calling this:

my $result = &$reciprocal(4);
print $result;

my $result = $reciprocal->(4);
print $result;

The fi rst method, using &$reciprocal(4), is dereferencing the subroutine with the & sigil
and calling with arguments like usual. However, the author recommends the second form,
$reciprocal->(4), using the standard -> dereferencing operator. This is easier to read (you’re less
likely to miss that leading &) and it’s more consistent in your code if you consistently use the
dereferencing operator.

c07.indd 196c07.indd 196 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine References ❘ 197

Anonymous Subroutines

Just as you can have anonymous arrays and hashes (among other things), you can also have anony-
mous subroutines by omitting the subroutine name identifi er and assigning the result to a variable:

my $reciprocal = sub { return 1 / shift };
print $reciprocal->(4);

Closures

So far, taking references to subroutines seems interesting, but how do you use this? One way is to use
a closure. A closure is a subroutine that refers to variables defi ned outside of its block. It is said to
close over these variables. These have a variety of uses; although they won’t be covered extensively.
Check out the book Higher Order Perl by Mark Jason Dominus if you truly want to have your mind
twisted by their power.

NOTE Although a closure does not need to be an anonymous subroutine, it’s

usually implemented as such.

Closures are often used for iterators and lazy evaluation. Say you want to periodically fetch the next
Fibonacci number. In mathematics, Fibonacci numbers are in the form:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2)

So you end up with an infi nite list like this:

0, 1, 1, 2, 3, 5, 8, 13, 21 ...

Obviously computing an infi nite list all at once is not feasible, so you can use a closure to create an
iterator that generates these numbers one at a time, as shown in code fi le listing_7_1_fibonacci.pl.

LISTING 7-1: Computing the FibonacciSequence

use strict;
use warnings;
use diagnostics;

sub make_fibonacci {
 my ($current, $next) = (0, 1);
 return sub {
 my $fibonacci = $current;
 ($current, $next) = ($next, $current + $next);
 return $fibonacci;
 };
}

my $iterator = make_fibonacci();
continues

c07.indd 197c07.indd 197 8/9/12 9:30 AM8/9/12 9:30 AM

198 ❘ CHAPTER 7 SUBROUTINES

LISTING 7-1 (continued)

for (1 .. 10) {
 my $fibonacci = $iterator->();
 print “$fibonacci\n”;
}

The make_fibonacci() subroutine returns an anonymous subroutine that references the $current
and $next variables declared in the make_fibonacci() subroutine, but outside of the anonymous
subroutine. The $iterator variable contains a reference to this anonymous subroutine, and it
“remembers” the values of the $current and $next variables. Every time it is invoked, it updates
the values of $current and $next and returns the next Fibonacci number. Eventually, you get to the
for loop that prints the fi rst 10 Fibonacci numbers. You can pass the $iterator variable to other
subroutines just like any other variable, and it still remembers its state.

You can create several iterators with this same subroutine, and each will have a separate copy of
$current and $next.

TRY IT OUT Writing a Dispatch Table

As you may recall from Chapter 4, the length builtin works only with scalars. For arrays and hashes,
you use scalar and scalar keys, respectively. This Try It Outwrites a mylength() subroutine that uses
a dispatch table with anonymous subroutines to handle this differently. All the code in this Try It Out
uses the code fi le example_7_2_length.pl.

 1. Type in the following program, and save it as example_7_2_length.pl:

use strict;
use warnings;
use diagnostics;
use Carp ‘croak’;

my %length_for = (
 SCALAR => sub { return length ${ $_[0] } },
 ARRAY => sub { return scalar @{ $_[0] } },
 HASH => \&_hash_length,
);

sub _hash_length { return scalar keys %{ $_[0] } }

sub mylength {
 my $reference = shift;
 my $length = $length_for{ ref $reference }
 || croak “Don’t know how to handle $reference”;
 return $length->($reference);
}

my $name = ‘John Q. Public’;
my @things = qw(this that and the other);
my %cheeses = (
 good => ‘Havarti’,
 bad => ‘Mimolette’,
);
print mylength(\$name), “\n”;
print mylength(\@things), “\n”;

c07.indd 198c07.indd 198 8/9/12 9:30 AM8/9/12 9:30 AM

Subroutine References ❘ 199

print mylength(\%cheeses), “\n”;
print mylength($name), “\n”;

 2. Run the code with perl example_7_2_length.pl. It prints out the following:

14
5
2
Uncaught exception from user code:
Don’t know how to handle John Q. Public at ...

The exception might be printed before, after, or in the middle of the list of numbers. That’s because
STDERR and STDOUT are handled separately by your operating system, and you cannot guarantee that
they will be printed in sequence.

How It Works

When you fi rst call mylength(), Perl calls the ref builtin on your argument and attempts to fetch the
subroutine reference from the %length_for hash. If that subref is not found, you croak with an error.
The SCALAR and ARRAY keys have anonymous references inlined as the values, while showing the HASH
key pointing to a reference to an existing subroutine, just to make the syntax clear. When you call
$length->($reference), you pass $reference as an argument to the subroutine reference you fetched
from %length_for hash.

This type of code is called a dispatch table because it enables you to dispatch to different code paths based
on a particular condition, and you have a table (the %length_for hash) containing those code paths.

NOTE Many beginning Perl programmers try to do something like this:

sub foo {
 my $foo_arg = shift @_;
 sub bar {
 my $bar_arg = shift @_;
 # do something
 }
 bar($foo_arg);
}

While that’s a silly and useless example, some developers think they can “nest”

subroutines like that to hide the inner subroutine from the outside world. The

syntax is legal, but the inner subroutine is not hidden and can be called like any

other. Use an anonymous subroutine if you ever need to do this:

sub foo {
 my $foo_arg = shift @_;
 my $bar = sub {
 my $bar_arg = shift @_;
 # do something
 };
 $bar->($foo_arg);
}

c07.indd 199c07.indd 199 8/9/12 9:30 AM8/9/12 9:30 AM

200 ❘ CHAPTER 7 SUBROUTINES

PROTOTYPES

A prototype is a simple compile time argument check for subroutines. After the subroutine name but
before the opening curly brace of the block, you can include a prototype in parentheses. The syntax
looks like this:

sub sreverse($) {
 my $string = shift;
 return scalar reverse $string;
}
my $raboof = sreverse ‘foobar’;
print $raboof;
print sreverse ‘foobar’, ‘foobar’;

And that prints raboof, the reverse of foobar. (You may recall that reverse takes a list and does not
reverse a string unless called in scalar context.)

Argument Coercion

With a prototype using the scalar sigil $, you can force scalar context on the argument to
sreverse(). Because only one sigil is used in the prototype, you also guarantee that only one
variable is used as the argument.

So you can write this:

sub sreverse($) {
 my $string = shift;
 return scalar reverse $string;
}
print sreverse(“this”, “that”);

And Perl fails at compile time, telling you that you have passed too many arguments to the
subroutine:

Too many arguments for main::sreverse at proto.pl line 5, near “”that”)”
Execution of proto.pl aborted due to compilation errors.

You don’t even need strict or warnings for this error to stop your program from compiling.

You can also use @ or % for a prototype. This slurps in all remaining arguments in list context.

sub foo(@) {
 my @args = @_;
 ...
}

That might seem silly, but it means you can combine it with another prototype character:

c07.indd 200c07.indd 200 8/9/12 9:30 AM8/9/12 9:30 AM

Prototypes ❘ 201

sub random_die_rolls($@) {
 my ($number_of_rolls, @number_of_sides) = @_;
 my @results;
 foreach my $num_sides (@number_of_sides) {
 my $total = 0;
 $total += int(1 + rand($num_sides)) for 1 .. $number_of_rolls;
 push @results, $total;
 }
 return @results;
}
my @rolls = random_die_rolls 3;
print join “\n”, @rolls;

That might print something like:

8
26
31

It simulates three rolls of each of the subsequent die with the requisite number of sides. In this par-
ticular case, the prototype offers no particular advantage.

So far there’s nothing terribly exciting here, but you can start to do interesting things if you put a back-
slash in front of a sigil. When you do this, you can pass the variable, and it is accepted as a reference.
The following is a subroutine that attempts to lowercase all hash values that are not references.

use Data::Dumper;
$Data::Dumper::Sortkeys = 1;

sub my_lc(\%) {
 my $hashref = shift;
 foreach my $key (keys %$hashref) {
 next if ref $hashref->{$key};
 $hashref->{$key} = lc $hashref->{$key};
 }
}

my $name = ‘Ovid’;
my %hash = (
 UPPER => ‘CASE’,
 Camel => ‘Case’,
);

hey, no backslash required!
my_lc %hash;
print Dumper(\%hash);

And that prints out:

$VAR1 = {
 ‘Camel’ => ‘case’,
 ‘UPPER’ => ‘case’
 };

c07.indd 201c07.indd 201 8/9/12 9:30 AM8/9/12 9:30 AM

202 ❘ CHAPTER 7 SUBROUTINES

Because the hash is passed as a reference, it’s modifi ed in place. Just copy the hash and return it if
you don’t want this behavior:

sub my_lc(\%) {
 my $hashref = shift;
 my %hash = %$hashref;
 foreach my $key (keys %hash) {
 next if ref $hash{$key};
 $hash{$key} = lc $hash{$key};
 }
 return %hash;
}
my %lc_hash = my_lc %hash;

More Prototype Tricks

There’s a lot more you can do with prototypes, but your author generally doesn’t recommend them
if you don’t know what you’re doing. They don’t specify what type of variable you’re passing in.
They tend to specify the context of the variable you’re passing in and this mimics Perl builtins.
For example, say you want to write your own length() subroutine. In Perl, the length() builtin
is only for scalars. It’s not for arrays and hashes. Here’s a lovely little example, borrowed from a
long Tom Christiansen e-mail to the Perl 5 Porters list (and republished at http://www.perlmonks
.org/?node_id=861966).

For some reason, you decide that you want to write a wrapper around the length()builtin because
you want it to handles arrays and hashes. You’ve already shown how to handle this with a dispatch
table, but try to handle this with prototypes.

sub mylength($) {
 my $arg = shift;
 return
 ‘ARRAY’ eq ref $arg ? scalar @$arg
 : ‘HASH’ eq ref $arg ? scalar keys %$arg
 : length $arg;
}

my $scalar = “whee!”;
print mylength($scalar), “\n”;

my @array = (1, 18, 9);
print mylength(@array), “\n”;

my %hash = (foo => ‘bar’);
print mylength(%hash), “\n”;

You can probably already guess that something is wrong because even though you haven’t covered
how to use prototypes with different kinds of arguments, this looks, well, strange. Except that it’s
stranger than you think. This prints out:

5
1
3

c07.indd 202c07.indd 202 8/9/12 9:30 AM8/9/12 9:30 AM

http://www.perlmonks.org/?node_id=861966
http://www.perlmonks.org/?node_id=861966

Prototypes ❘ 203

You can understand why it prints 5 for whee!, but why 1 for the array and 3 for the hash? The
mylength() with a $ prototype prints 1 for the array with three elements because the $ prototype
forces scalar context, so $arg contains the number of elements in the array, not the array itself!
Thus, you wind up returning the value of length(3) and the string “3” is only one character long,
thus returning 1.

The hash is even stranger. In the previous example, that prints 3 on some implementations. This
is because that hash in scalar context probably evaluates to something such as 1/8, as described
in Chapter 3. The string “1/8” has a length of 3. An empty hash in scalar context evaluates to 0,
which has a string length of 1.

WARNING If the output of mylength() seems strange to you, be aware that

Perl’s length()builtin behaves the same way. See perldoc -f length.

WARNING Parentheses are required with the mylength() subroutine because

otherwise you get an error about Too many arguments for main::mylength.

Why do you need parentheses here and not for the sreverse() subroutine

earlier? This is because of a known bug in Perl that has been fi xed in version

5.14. You can read the gory details at https://rt.perl.org/rt3/Public/Bug/

Display.html?id=75904 if you’re curious.

You can fi x that by wrapping the three primary data type sigils in the \[] prototype syntax. This
tells Perl to pass a single scalar or array or hash as a reference to the subroutine.

sub mylength(\[$@%]) {
 my $arg = shift;
 return
 ‘ARRAY’ eq ref $arg ? scalar @$arg
 : ‘HASH’ eq ref $arg ? scalar keys %$arg
 : length $$arg;
}
my $scalar = “whee!”;
print mylength($scalar), “\n”;
my @array = (1, 18, 9);
print mylength(@array), “\n”;
my %hash = (foo => ‘bar’);
print mylength(%hash), “\n”;

That prints the expected:

5
3
1

You don’t need to test for an invalid reference type, such as a subroutine reference, being passed to
mylength() because Perl tries to check that at compile-time.

c07.indd 203c07.indd 203 8/9/12 9:30 AM8/9/12 9:30 AM

https://rt.perl.org/rt3/Public/Bug/Display.html?id=75904
https://rt.perl.org/rt3/Public/Bug/Display.html?id=75904

204 ❘ CHAPTER 7 SUBROUTINES

Mimicking Builtins

The mylength() subroutine mimicked the behavior of the length builtin, but customized for your
own needs. We’ll look a bit more at mimicking builtins. A backslash before a sigil tells Perl that you
want that variable to be accepted as a reference. So you can rewrite push like this:

sub mypush(\@@) {
 my ($array, @args) = @_;
 @$array = (@$array, @args);
}
mypush @some_array, $foo, $bar, $baz;
mypush @some_array, @some_other_array;

This works because the @ sigil in a prototype tells Perl to slurp in the rest of the arguments as a list.
You can use a % sigil in a prototype, but it’s useless unless you use a backslash to force a reference.

You can also separate optional arguments with a semicolon.

sub mytime(;$) {
 my $real_time = shift;
 if ($real_time) {
 return scalar localtime;
 }
 else {
 return “It’s happy hour!”;
 }
}

This mytime() subroutine usually lies to you and tells you it’s fi ne for a drink, but if you pass it a
true value, it return a string representing a human-readable version of the current local time.

Sat Dec 24 11:11:26 2011

One nifty trick with prototypes is to use an ampersand (&) as the fi rst argument. Say you want to
increment every element in a list by one. You might write this:

use Data::Dumper;
my @numbers = (1, 2, 3);
my @new = map { $_++ } @numbers;
print Dumper(\@numbers, \@new);

That prints out:

$VAR1 = [
 2,
 3,
 4
];
$VAR2 = [
 1,
 2,
 3
];

c07.indd 204c07.indd 204 8/9/12 9:30 AM8/9/12 9:30 AM

Prototypes ❘ 205

If you look at that carefully, you realize that you’ve incremented all the values of the original list but
not the new one! Why is that? Chapter 4 briefl y explains the map builtin. In that explanation, $_ is
aliased to every element in the original list. Because $_++ uses the post-increment operator, you suc-
cessfully modifi ed the original value of $_ in the @numbers list but returned $_ to @new before you
incremented it!

You can use a clever subroutine prototype to create an apply() subroutine that applies an anony-
mous subroutine to every element in a list and returns a new list. This leaves your old list intact and
successfully creates the new list:

sub apply (&@) {
 my $action = shift;
 my @shallow_copy = @_;
 foreach (@shallow_copy) {
 $action->();
 }
 return @shallow_copy;
}
use Data::Dumper;
my @numbers = (1, 2, 3);
my @new = apply { $_++ } @numbers;
print Dumper(\@numbers, \@new);

And this prints the desired result:

$VAR1 = [
 1,
 2,
 3
];
$VAR2 = [
 2,
 3,
 4
];

The & as the fi rst symbol in the prototype enables a subroutine to accept a block as the fi rst argu-
ment, and this block is considered to be an anonymous subroutine. You are not allowed to use a
comma after it. The @ enables you to pass a list after the anonymous subroutine.

In the apply() subroutine, you copy @_ to @shallow_copy and then iterate over @shallow_copy.
Because the loop aliases $_ to each variable in the new array, the $action anonymous subroutine
doesn’t touch the original array and lets it “do the right thing.”

Of course, being a shallow copy, this now breaks:

my @munged = apply { $_->[0]++ } @list;

The dclone() subroutine from Storable (described in Chapter 6) enables you to do a deep copy, if
needed.

c07.indd 205c07.indd 205 8/9/12 9:30 AM8/9/12 9:30 AM

206 ❘ CHAPTER 7 SUBROUTINES

Forward Declarations

A forward declaration is a subroutine declaration without a subroutine body. It’s just a way to tell
Perl “Hey, I’m going to defi ne this subroutine later.” Some programmers like predeclaring their sub-
routines because it solves certain parsing problems in Perl. You author won’t cover it in-depth but
will explain one case where it can prevent compile errors.

NOTE There’s a saying that only perl (lowercase) can parse Perl (uppercase).

This is true. Many languages have extremely well-defi ned grammars that

enable you to unambiguously declare the semantics of a given expression. For

a variety of reasons, this is not possible with Perl. That’s why the Perl parse

is heuristic in nature — that is to say “it usually guesses correctly.” Very, very

seldom will you have issues with this, but for some examples of how the perl

parser can sometimes get things wrong, see perldoc -f map.

When using prototypes, you often get subtle errors if you omit the parentheses. For example, the
following is a potential mysterious error:

use strict;
use warnings;
use diagnostics;

my $reciprocal = reciprocal 4;

sub reciprocal($) {
 return 1/shift;
}

That’s going to generate a number of errors, even though the code looks fi ne. The fi rst one looks like
this:

Number found where operator expected at recip.pl line 5, near “reciprocal 4” (#1)
 (S syntax) The Perl lexer knows whether to expect a term or an operator.
 If it sees what it knows to be a term when it was expecting to see an
 operator, it gives you this warning. Usually it indicates that an
 operator or delimiter was omitted, such as a semicolon.
 (Do you need to predeclare reciprocal?)

What’s happening here? Well, when the Perl parser starts compiling the code down to its
internal form, it encounters the reciprocal 4 construct. Because it has not yet seen the prototype
for the reciprocal subroutine, it doesn’t know that 4 is an argument for a subroutine named
reciprocal(). You can solve this in one of three ways. One way is to defi ne the reciprocal() sub-
routine before that line of code. That ensures that when Perl gets to reciprocal 4, it already knows
what it is.

c07.indd 206c07.indd 206 8/9/12 9:30 AM8/9/12 9:30 AM

Prototypes ❘ 207

If you prefer your subroutines to be defi ned after the main body of code, you can use a forward dec-
laration with the correct prototype:

use strict;
use warnings;
use diagnostics;

sub reciprocal($);

my $reciprocal = reciprocal 4;

sub reciprocal($) {
 return 1/shift;
}

That let’s Perl successfully parse reciprocal 4 when it gets to it.

Finally, you can use parentheses with the subroutine call and that let’s Perl know that you really
wanted a subroutine and it’s not just a bare word:

use strict;
use warnings;
use diagnostics;

my $reciprocal = reciprocal(4);

sub reciprocal($) {
 return 1/shift;
}

Prototype Summary

Prototypes can be confusing and complicated, but to top it off, they’re also buggy. You’ve already
seen one bug. Another one is that you can declare a number of invalid prototypes, such as (@@).

You can also declare useless prototypes. Consider a prototype of (@$). The @ symbol tells Perl to
slurp in all arguments, leaving nothing for the $. Perl does not warn you about this.

Also, when you get to the chapter on objects (Chapter 12), you may be tempted to use prototypes for
methods. This does not work because prototypes are checked at compile time, but you don’t know
what method you will be calling until runtime. For now, just remember that prototypes are a bit of a
minefi eld. They would have been left out of this book entirely, were it not for the fact that a number
of programmers use them and often do so incorrectly. You are now warned.

There are far more issues with prototypes, but they’re far beyond the scope of this book. If you want to
use them, I recommend that you carefully read about them and make sure you know what you’re doing.

NOTE For more information on prototypes, see the Prototypes section perldoc

perlsub.

c07.indd 207c07.indd 207 8/9/12 9:30 AM8/9/12 9:30 AM

208 ❘ CHAPTER 7 SUBROUTINES

TRY IT OUT Writing a zip() Subroutine That Takes Two Arrays

Sometimes you have data in several data structures that you want to combine into a single data struc-
ture. For example, if you have two arrays with the values of one array corresponding to the values in
the second array, you may want to “zip” those two arrays together into a key/value hash.

All the code in this Try It Out uses the code fi le example_7_3_zip.pl.

 1. Type in the following program and save it as example_7_3_zip.pl:

use strict;
use warnings;
use diagnostics;
use Carp ‘croak’;
use Data::Dumper;

sub zip(\@\@;$);

my @names = qw(alice bob charlie);
my @tests = qw(87 72);
my @final = qw(100 53 87);
my %test_grades = zip @names, @tests, 0;
my %final_grades = zip @names, @final;

uncomment the following line to see how this breaks
#my %blows_up = zip @tests, @final;
print Dumper(\%test_grades, \%final_grades);

sub zip (\@\@;$) {
 my ($first, $second, $default) = @_;

 # if we don’t have a default, croak if arrays are not
 # the same length
 if (@_ < 3 and (@$first != @$second)) {
 croak “zip() arrays must be the same length without a default”;
 }
 my $max_index = $#$first;
 if ($#$second > $max_index) {
 $max_index = $#$second;
 }
 my @zipped;
 for my $i (0 .. $max_index) {
 my $first_value = $i <= $#$first ? $first->[$i] : $default;
 my $second_value = $i <= $#$second ? $second->[$i] : $default;
 push @zipped, $first_value, $second_value;
 }
 return @zipped;
}

 2. Run the program with perl example_7_3_zip.pl. You should see something similar to the fol-
lowing output;

$VAR1 = {
 ‘alice’ => ‘87’,
 ‘charlie’ => 0,

c07.indd 208c07.indd 208 8/9/12 9:30 AM8/9/12 9:30 AM

Recursion ❘ 209

 ‘bob’ => ‘72’
 };
$VAR2 = {
 ‘alice’ => ‘100’,
 ‘charlie’ => ‘87’,
 ‘bob’ => ‘53’
 };

charlie now has a grade of 0 instead of an undefi ned value.

How It Works

The main “trick” here is the use of the \@\@;$ prototype. The fi rst two \@ bits tell Perl that you’re
going to pass in arrays and to accept them as array references. The semicolon tells Perl that any sigils
after the semicolon are optional. Then provide a fi nal $ to tell Perl there’s an optional fi nal argument.

The @_ < 3 test is where you check to see if you actually have that $default value. You don’t want
to make the mistake of using defi ned $default here, because you may want to have an undefi ned
$default padding out your zipped values.

Then, calculate the $max_index because you need to know how many elements you’ll be iterating over.
Part of the actual magic is in these two lines:

my $first_value = $i <= $#$first ? $first->[$i] : $default;
my $second_value = $i <= $#$second ? $second->[$i] : $default;

If the current index is less than or equal to the largest index value for the given array references (see the
section “Array References” in Chapter 6 if you don’t remember the $#$first syntax), then you know
that array has a value for that index. Otherwise, use the default value.

If you don’t like the $#$ syntax (and many don’t), you can use the following:

my $first_value = $i < @$first ? $first->[$i] : $default;
my $second_value = $i < @$second ? $second->[$i] : $default;

That works, too. Use whichever you feel is easier to read.

RECURSION

A recursive subroutine is a subroutine that calls itself. Why might it do this? Because it’s often
clearer to express something in a recursive form. Also, sometimes it is easier to break a large prob-
lem into smaller problems and solve those. This section lets you look at both.

Basic Recursion

Remember that Fibonacci numbers are the following:

F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2)

c07.indd 209c07.indd 209 8/9/12 9:30 AM8/9/12 9:30 AM

210 ❘ CHAPTER 7 SUBROUTINES

To write that as a recursive subroutine for fi nding the nth Fibonacci number, use this code:

sub F {
 my $n = shift;
 return 0 if $n == 0;
 return 1 if $n == 1;
 return F($n - 1) + F($n - 2);
}
print F(7);

And that correctly prints 13, which closely matches the mathematical defi nition of Fibonacci
numbers.

WARNING Recursive functions should almost always have one or more state-

ments that return without recursing. This is to prevent infi nite loops. If you write a

recursive subroutine that never returns, look at your return statements carefully

to see if you forgot to have one break out of the recursion.

Divide and Conquer

Divide and conquer, in computer science, is a way to break a problem down into smaller problems to
try to solve each of those, perhaps breaking those down into smaller problems. For example, say you
have a sorted list of integers and want to fi nd an integer in that list. One way to do this is to iterate
over the list:

sub search {
 my ($numbers, $target) = @_;
 for my $i (0 .. $#$numbers) {
 return $i if $numbers->[$i] == $target;
 }
 return;
}

This code works, but it can be slow. Imagine if you have a list of 1,000 elements. You might have
1,000 iterations before you fi nd the number. Doing this repeatedly could be a performance problem.
A better strategy (again, assuming the list of numbers is sorted), is to do a binary search. This search
checks to see if your number is less than the midpoint of the list. If so, repeat the process for the fi rst
half of the list. If not, repeat for the second half of the list. Repeat until you fi nd the index or run
out of list. This means for the fi rst iteration, you have at most 500 numbers to compare, then 250,
and then 125, 63, 32, 16, 8, 4, 2, and 1. So you have at most 10 iterations before fi nding the num-
ber. You see how to do this in code fi le listing_7_2_binary_search.pl

LISTING 7-2: Performing a binary search

use strict;
use warnings;

c07.indd 210c07.indd 210 8/9/12 9:30 AM8/9/12 9:30 AM

Recursion ❘ 211

my @numbers = map { $_ * 3 } (0 .. 1000);

sub search {
 my ($numbers, $target) = @_;
 return _binary_search($numbers, $target, 0, $#$numbers);
}

sub _binary_search {
 my ($numbers, $target, $low, $high) = @_;
 return if $high < $low;
 # divide array in two
 my $middle = int(($low + $high) / 2);
 if ($numbers->[$middle] > $target) {
 # search the lower half
 return _binary_search($numbers, $target, $low, $middle - 1);
 }
 elsif ($numbers->[$middle] < $target) {
 # search the upper half
 return _binary_search($numbers, $target, $middle + 1, $high);
 }
 # found it!
 return $middle;
}

print search(\@numbers, 699),”\n”;
print search(\@numbers, 28),”\n”;

The previous code prints 233 when you search for the number 699, and undef when you search for
the number 28. It’s also fast. You’ll note how the code successfully divided the problem into smaller
and smaller steps recursively to fi nd what you were looking for.

Memoization

Recursive subroutines can be expensive in terms of memory. If the subroutine is a pure subroutine,
you can memoize (cache or “memorize” previous results) it. The Memoize module on the CPAN can
help with this.

The memoize subroutine provided by the module enables a subroutine to remember a previous result
for a set of arguments. The fi rst time you call a memoized subroutine, it calculates the value. On any
subsequent call it returns the cached value.

NOTE A pure subroutine relies only on the arguments passed to it and always

returns the same value for each set of arguments. It’s also guaranteed not to

have side eff ects.

use Memoize;

memoize(‘F’);

sub F {

c07.indd 211c07.indd 211 8/9/12 9:30 AM8/9/12 9:30 AM

212 ❘ CHAPTER 7 SUBROUTINES

 my $n = shift;
 return 0 if $n == 0;
 return 1 if $n == 1;
 return F($n - 1) + F($n - 2);
}
print F(50);

That quickly prints 12586269025, but if you remove the memoize(‘F’) line, it can take several
hours to run. That’s because the recursive subroutine calls are often calculating the same thing, call-
ing themselves over and over. If you walk through the subroutine several times, you’ll understand
why this saves so much time.

Of course, everything has a price. The memoize subroutine works by using extra memory to store
the computed value. Often, you’ll fi nd that trading RAM time for CPU time is a good trade-off.

TRY IT OUT Writing a Recursive Maze Generator

All the code in this Try It Out is included in code fi le example_7_4_maze.pl.

 1. Type in the following program and save it as example_7_4_maze.pl:

use strict;
use warnings;
use diagnostics;

use List::Util ‘shuffle’;

my ($WIDTH, $HEIGHT) = (10, 10);
my %OPPOSITE_OF = (
 north => ‘south’,
 south => ‘north’,
 west => ‘east’,
 east => ‘west’,
);

my @maze;
tunnel(0, 0, \@maze);
print render_maze(\@maze);
exit;

sub tunnel {
 my ($x, $y, $maze) = @_;
 my @directions = shuffle keys %OPPOSITE_OF;
 foreach my $direction (@directions) {
 my ($new_x, $new_y) = ($x, $y);
 if (‘east’ eq $direction) { $new_x += 1; }
 elsif (‘west’ eq $direction) { $new_x -= 1; }
 elsif (‘south’ eq $direction) { $new_y += 1; }
 else { $new_y -= 1; }

 # if a previous tunnel() through the maze has not visited
 # the square, go there. This will replace the _ or |
 # character in the map with a space when rendered

c07.indd 212c07.indd 212 8/9/12 9:30 AM8/9/12 9:30 AM

Recursion ❘ 213

 if (have_not_visited($new_x, $new_y, $maze)) {
 # make a two-way “path” between the squares
 $maze->[$y][$x]{$direction} = 1;
 $maze->[$new_y][$new_x]{$OPPOSITE_OF{$direction}}
 = 1;

 # This program will often recurse more than one
 # hundred levels deep and this is Perl’s default
 # recursion depth level prior to issuing warnings.
 # In this case, we’re telling Perl that we know
 # that we’ll exceed the recursion depth and to
 # not warn us about it
 no warnings ‘recursion’;
 tunnel($new_x, $new_y, $maze);
 }
 }

 # if we get to here, all squares surround the current square
 # have been visited or are “out of bounds”. When we return,
 # we may return to a previous tunnel() call while we’re
 # digging, or we return completely to the first tunnel()
 # call, in which case we’ve finished generating the maze.
 # This return is not strictly necessary, but it makes it
 # clear what we’re doing.

 return;
}

sub have_not_visited {
 my ($x, $y, $maze) = @_;

 # the first two lines return false if we’re out of bounds
 return if $x < 0 or $y < 0;
 return if $x > $WIDTH - 1 or $y > $HEIGHT - 1;

 # this returns false if we’ve already visited this cell
 return if $maze->[$y][$x];

 # return true
 return 1;
}

creates the ASCII strings that will make up the maze
when printed
sub render_maze {
 my $maze = shift;

$as_string is the string representation of the maze
 # start with a row of underscores:
 # ___
 my $as_string = “_” x (1 + $WIDTH * 2);

 $as_string .= “\n”;

c07.indd 213c07.indd 213 8/9/12 9:30 AM8/9/12 9:30 AM

214 ❘ CHAPTER 7 SUBROUTINES

 for my $y (0 .. $HEIGHT - 1) {

 # add the | vertical border at the left side
 $as_string .= “|”;

 for my $x (0 .. $WIDTH - 1) {
 my $cell = $maze->[$y][$x];

 # if the neighbor is true - we have a path
 $as_string .= $cell->{south} ? “ “ : “_”;
 $as_string .= $cell->{east} ? “ “ : “|”;
 }
 $as_string .= “\n”;
 }
 return $as_string;
}

 2. Run the program as perl example_7_4_maze.pl. You should see output similar to the
following:

_	_ _ _ _ _ _				
	_ _	_ _		_	
_		_	_		
	_	_ _ _			
_	_ _ _		_ _		
	_ _	_	_ _		
_		_			_ _
_	_ _ _		_	_	
_ _ _	_		_		
_ _ _ _	_ _ _ _	_ _			

Due to the random nature of this program, your maze will likely not match this one.

How It Works

This is the most complex Try It Out to date, and you should read and run the code a few times to
understand how it works.

You start at position 0,0, randomly shuffl e the north, south, east, and west directions, and choose the
fi rst direction. If that puts you in a square that is not out of bounds (outside of the grid boundaries) and
has not yet been visited, then you mark a two-way path between the two squares. Then you move to the
new square and repeat the process. This moving to a new square is done recursively by calling
tunnel() with the new square’s coordinates.

When you get to a square surrounded by out of bounds or surrounded by already visited squares, then
you return from the tunnel() subroutine and the next of the random north, south, east, and west
directions is tried for the previous squares.

Eventually, you’ve tried every north, south, east, and west direction for every square. When that’s
done, the recursion ends and you render the map. Now, you should look at the successive building
of a 3-by-3 map.

c07.indd 214c07.indd 214 8/9/12 9:30 AM8/9/12 9:30 AM

Things to Watch For ❘ 215

Y_______
0|_|_|_|
1|_|_|_|
2|_|_|_|
 0 1 2 X

As you can see, the upper right-left corner is 0,0; the upper-right is 2,0; the lower-left is 0,2; and the
lower-right is 2,2. Because arrays start with 0, the largest index is 2, which is why you refer to $HEIGHT
- 1 and $WIDTH - 1 in the code. The code starts in the upper-left corner. Now here’s a sample run:

 _______ _______ _______
1|_|_|_| 2| |_|_| 3| |_|_|
 |_|_|_| |_|_|_| |_ _|_|
 |_|_|_| |_|_|_| |_|_|_|
 _______ _______ _______
4| |_|_| 5| |_|_| 6| |_|_|
 |_ |_| |_ |_| |_ |_|
 |_|_|_| |_ _|_| |_ _ _|
 _______ _______ _______
7| |_|_| 8| |_| | 9| |_ |
 |_ | | |_ | | |_ | |
 |_ _ _| |_ _ _| |_ _ _|

As you can see, the code randomly progresses (tunneles) from 0,0 to 0,1 to 1,1 to 1,2 before ending up
at a dead end at 0,2 in the fi fth rendition of the maze. What does it do then? It can’t go left or down
because those are out of bounds. It can’t go up because that’s a visited square. It can’t go right because
that’s also a visited square. As a result, the tunnel() subroutine returns, but it returns to itself because
it calls itself. The code then continues in the for loop for square 1,2. If you play around with this a bit,
particularly for larger maps, you can better understand how recursion can draw the entire maze.

The downloadable version available at http://www.Wrox.com is a bit more elaborate. It attempts to
redraw the maze at every step to let you see how the maze is built.

THINGS TO WATCH FOR

Writing subroutines allows you to write more maintainable code, but a few guidelines can make
your subroutines better. None of these guidelines should be taken as hard-and-fast rules.

Argument Aliasing

Don’t forget that the @_ array aliases the arguments to the subroutine. It’s easy to forget this and
write code that usually works, but breaks when you least expect it. The following is some code that
tries to modify an array “in place,” but breaks when you pass it hard-coded values:

sub fix_names {
 $_ = ucfirst lc $_ foreach @_;
}
fix_names(qw/alice BOB charlie/);

c07.indd 215c07.indd 215 8/9/12 9:30 AM8/9/12 9:30 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.Wrox.com

216 ❘ CHAPTER 7 SUBROUTINES

That throws a Modification of a read-only value error because arguments to fix_names()
are hard-coded into the program.

Scope Issues

As much as possible, subroutines should rely only on the arguments passed to them and not on
variables declared outside of it. You may have noticed that with the exception of one of the
_running_total() examples (and even that closely encapsulated the state in an outer block), and
the “maze” example in this chapter, you’ve adhered to this rule closely. Why? Take a look at this
subroutine:

sub withdraw {
 my $amount = shift;
 if ($customer->{balance} - $amount < $minimum_balance) {
 croak “$customer->{name} cannot withdraw $amount”;
 }
 $customer->{balance} -= $amount;
}

Where did $minimum_balance come from? Where did $customer come from? What happens if
something else changes them in a way to make their data invalid? Who changed them? If you move
this subroutine somewhere else, are those external variables still in scope?

So why did the example_7_4_maze.pl example earlier in this chapter break this rule? It’s a trade-
off. The opening of the tunnel() subroutine looked like this:

sub tunnel {
 my ($x, $y, $maze) = @_;

However, if you pass in all the variables you need (taking into consideration the variables needed in
have_not_visited()), then it looks like this:

sub tunnel {
 my ($x, $y, $maze, $opposite_of, $height, $width) = @_;

At which point, the argument list starts to get ridiculous, and it’s harder to fi gure out what’s going
on. For a one-off demonstration, this is okay. In reality, when you need to track this much data,
switching to object-oriented programming (Chapter 12) is one strategy to control the chaos.

Doing Too Much

Your author has worked on corporate code with “subroutines” that are thousands of lines long.
They’re a mess, and it’s hard to fi gure out what’s going on.

A subroutine should generally do one thing and do it well. If it needs to do more, it can call other
subroutines to help it out. If you try to do too much in a subroutine, not only does the subroutine
start to become confusing, but also what happens if something else needs that “extra” behavior
you’ve squeezed into that subroutine? Keep subroutines small and tightly focused.

c07.indd 216c07.indd 216 8/9/12 9:30 AM8/9/12 9:30 AM

Summary ❘ 217

Too Many Arguments

I’ve already listed the example of what the example_7_4_maze.pl tunnel() function would look
like if you passed in all required variables. If you look at the downloadable version, you’d need to
pass in even more:

 my (
 $x, $y, $maze, $opposite_of, $height, $width,
 $delay, $can_redraw, $delay, $can_redraw, $clear
) = @_;

There are ways to work around this, but this example would have been ridiculous if you passed
in that many arguments. When something like this happens, try to rewrite your code in such a way
that you need fewer arguments. If you can’t, consider switching to named arguments and passing in
a hashref; although in this case it would not have helped much.

SUMMARY

You now know far more about subroutines than you probably expected. In Perl, subroutines are
powerful and can even be assigned to variables as references and passed around.

Subroutines are a useful way to organize your code with named identifi ers to promote code reuse
and more readable code.

EXERCISES

 1. Write a subroutine named average() that, given a list of numbers, returns the average of those

numbers. Don’t worry about error checking.

 2. Take the subroutine average() and add error checking to it. Make sure the error is fatal.

 Hint: Try the looks_like_number() subroutine from Scalar::Util, described earlier in this

chapter.

 3. Write a subroutine called make_multiplier() that takes a number and returns an anonymous

subroutine. The returned anonymous subroutine can accept a number and return that number

multiplied by the fi rst number. Use your code to make the following print yes, twice.

Hint: Use a closure.

my $times_seven = make_multiplier(7);
my $times_five = make_multiplier(5);
print 21 == $times_seven->(3) ? “yes\n” : “no\n”;
print 20 == $times_five->(4) ? “yes\n” : “no\n”;

 4. Write a sum() subroutine that sums its arguments via recursion.

c07.indd 217c07.indd 217 8/9/12 9:30 AM8/9/12 9:30 AM

218 ❘ CHAPTER 7 SUBROUTINES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

@_ The subroutine argument array.

return How to return data from a subroutine.

wantarray Determine the context in which a subroutine was called.

warn/carp How to report warnings.

die/croak How to report problems and stop the program.

eval STRING Delay the parsing of code until runtime.

eval BLOCK Trap fatal errors in code.

$@ The default eval error variable.

Try::Tiny A better way of trapping errors in Perl.

Subroutine refs How to pass subroutines as variables.

Closures Subroutines that refer to variables defi ned in an outer scope.

Prototypes Sigils added to a subroutine defi nition to suggest how arguments are

passed.

Recursive

subroutines

Subroutines that call themselves.

Memoization Making subroutines faster by using more memory.

c07.indd 218c07.indd 218 8/9/12 9:30 AM8/9/12 9:30 AM

8
Regular Expressions

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding basic regular expression matching

 ➤ Understanding substitutions, lookahead/lookbehind anchors and

named subexpressions.

 ➤ Creating useful regular expression modules

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=11 18013847 on the Download Code I’ve replaced the tabs in the following code
with spaces. Please review. The code for this chapter is divided into the following major
examples:

 ➤ example_8_1_name_and_age.pl

 ➤ example_8_2_dates_pl

 ➤ listing_8_1_data_structure.pl

 ➤ listing 8_2_composed_regexes.pl

Sometimes instead of exactly matching text, you want to fi nd some text that looks
like something you’re expecting. This is where Perl’s regular expressions come in.

A regular expression is a pattern that describes what your text should look like. Regular
expressions can get complex, but most of the time they’re straightforward when you
understand the syntax. Regular expressions are often called regexes. (A single regular
 expression is sometimes called a regex or worse, a regexp).

c08.indd 219c08.indd 219 8/9/12 9:37 AM8/9/12 9:37 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://wrox.com
http://WROX.COM

220 ❘ CHAPTER 8 REGULAR EXPRESSIONS

An entire book can be (and has been) written on this topic. This chapter focuses on those aspects of
regular expressions you’re most likely to encounter.

BASIC MATCHING

Say you have a list of strings and want to print all strings containing the letters cat because, like
your author, you love cats.

my @words = (
 ‘laphroaig’,
 ‘house cat’,
 ‘catastrophe’,
 ‘cat’,
 ‘is awesome’,
);

foreach my $word (@words) {
if ($word =~ /cat/) {
print “$word\n”;
 }
}

That prints out:

house cat
catastrophe
cat

The basic syntax of a regular expression match looks like this:

STRING =~ REGEX

The =~ is known as a binding operator. By default, regular expressions match against the built in
$_ variable, but the binding operator binds it to a different string. So you could write the loop
like this:

foreach (@words) {
if (/cat/) {
print “$_\n”;
 }
}

There is also a negated form of the binding operator, !~ used to identify strings not matching a
given regular expression:

foreach my $word (@words) {
if ($word !~ /cat/) {
print “$word\n”;
 }
}

c08.indd 220c08.indd 220 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 221

And that prints the following:

laphroaig
is awesome

Without the binding operator, use negation like normal:

foreach (@words) {
if (!/cat/) {
print “$_\n”;
 }
}

If you want to match a forward slash (/), you can escape it with a backslash. Alternatively, as with
quote-like operators, you can use a different set of delimiters if you precede them with the letter m
(for ‘m’atch). The following are all equivalent and match the string 1/2.

/1\/2/
m”1/2”
m{1/2}
m(1/2)

Quantifi ers

If you just want to match an exact string, using the index()builtin is faster:

my $word = ‘dabchick’;
if (index $word, ‘abc’ >= 0) {
print “Found ‘abc’ in $word\n”;
}

But sometimes you want to match more or less of a particular string. That’s when you use
 quantifi ers in your regular expression. For example, to match the letter a followed by an optional
letter b, and then the letter c, use the ? quantifi er to show that the b is optional. The following
matches both abc and ac:

if ($word =~ /ab?c/) { ... }

The * shows that you can match zero or more of a given letter:

if ($word =~ /ab*c/) { ... }

The + shows that you can match one or more of a given letter:

if ($word =~ /ab+c/) { ... }

This sample code should make this clear. Use the qr() quote-like operator. This enables you to
properly quote a regular expression without trying to match it to anything before you’re ready.

c08.indd 221c08.indd 221 8/9/12 9:37 AM8/9/12 9:37 AM

222 ❘ CHAPTER 8 REGULAR EXPRESSIONS

my @strings = qw(
abba
abacus
abbba
babble
Barbarella
Yello
);

my @regexes = (
qr/ab?/,
qr/ab*/,
qr/ab+/,
);

foreach my $string (@strings) {
foreach my $regex (@regexes) {
if ($string =~ $regex) {
print “’$regex’ matches ‘$string’\n”;
 }
 }
}

And that prints out the following (the exact syntax of the stringifi ed regex might change depending
on your version of Perl):

‘(?-xism:ab?)’ matches ‘abba’
‘(?-xism:ab*)’ matches ‘abba’
‘(?-xism:ab+)’ matches ‘abba’
‘(?-xism:ab?)’ matches ‘abacus’
‘(?-xism:ab*)’ matches ‘abacus’
‘(?-xism:ab+)’ matches ‘abacus’
‘(?-xism:ab?)’ matches ‘abbba’
‘(?-xism:ab*)’ matches ‘abbba’
‘(?-xism:ab+)’ matches ‘abbba’
‘(?-xism:ab?)’ matches ‘babble’
‘(?-xism:ab*)’ matches ‘babble’
‘(?-xism:ab+)’ matches ‘babble’
‘(?-xism:ab?)’ matches ‘Barbarella’
‘(?-xism:ab*)’ matches ‘Barbarella’

Sadly, nothing matches Yello, an excellent music group, but studying the rest of the matches should
make it clear what is happening.

However, you may wonder what that bizarre (?-xism:ab*) is doing on the regex you printed?
Those are regular expression modifi ers, which are covered in the “Modifi ers and Anchors” section
of this chapter.

If you need to be more precise, you can use the {n,m} syntax. This tells Perl that you want to match
at least n times and no more than m times. There are three variants of this:

/ab{3}c/ # 1 a, 3 ‘b’s, 1 c (only “abbbc”)
/ab{3,}c/ # 1 a, 3 or more ‘b’s, 1 c
/ab{3,6}c/ # 1 a, 3 to 6 ‘b’s, 1 c

c08.indd 222c08.indd 222 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 223

Table 8-1 summarizes the different types of regex quantifi ers and their meaning.

TABLE 8-1: Regex Quantifi er

QUANTIFIER MEANING

* Match 0 or more times.

+ Match 1 or more times.

? Match 0 or 1 times.

{n} Match exactly n times.

{n,} Match at least n times.

{n,m} Match at least n times but not more than m times.

By default, all quantifi ers in Perl are greedy. That means they’ll try to match as much as possible.
For example, the dot metacharacter (.) means “match anything” except newlines and .* matches
the rest of the string up to a newline. In the “Extracting Data” section later in this chapter when you
learn to print out just the bits you’ve matched, you’ll discover that for the word cataract, the regu-
lar expression a.+a matches atara and not just ata. If you want a quantifi er to be lazy (match as
little as possible) instead of greedy, just follow it with a question mark:

if (“cataract” =~ /a.+?a/) {
 # the first match is now “ata” instead of “atara”
}

NOTE By now you’ve noticed that some characters in regexes have a special

meaning. These are called metacharacters. The following are the metacharacters

that Perl regular expressions recognize:

{}[]()^$.|*+?\

If you want to match the literal version of any of those characters, you must

precede them with a backslash, \. As you go through the chapter, the meaning

of these metacharacters will become clear.

Escape Sequences

Sometimes, you want to match a wide variety of different things that are diffi cult to type, or may
match a wide range of characters. Many of the common cases are handled with escape sequences.
Table 8-2 explains some of these sequences and we’ll give a few practical examples after the table.
This is not an exhaustive list, just a list of the more common sequences.

c08.indd 223c08.indd 223 8/9/12 9:37 AM8/9/12 9:37 AM

224 ❘ CHAPTER 8 REGULAR EXPRESSIONS

TABLE 8-2 Common Escape Sequences

ESCAPE MEANING

\A Beginning of string.

\b Word boundary.

\cX ASCII control character (for example, CTRL-C is \cC).

\d Unicode digit.

\D Not a Unicode digit.

\E End case (\F, \L, \U) or quotemeta (\Q) translation, only if interpolated.

\e Escape character (ESC, not the backslash).

\g{GROUP} Named or numbered capture.

\G End of match of m//g.

\k<GROUP> Named capture.

\l Lowercase next character only, if interpolated.

\L Lowercase until \E, if interpolated.

\N{CHARNAME} Named character, alias, or sequence, if interpolated. You must use

 charnames (see Unicode in Chapter 9).

\n Newline.

\p{PROPERTY} Character with named Unicode property.

\P{PROPERTY} Character without named Unicode property.

\Q Ignore metacharacters until \E.

\r Return character.

\s Whitespace.

\S Not whitespace.

\t Tab.

\u Uppercase next character only, if interpolated.

\U Uppercase until \E, if interpolated.

\w Word character.

a\W Not word character.

\z True at end of string only.

\Z True right before fi nal newline or at end of string.

c08.indd 224c08.indd 224 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 225

Of those, the ones you’ll most commonly see are \w (word characters), \d (digits), \s (whitespace),
and \b (word boundary).

Say you have some strings and you want to fi nd all strings containing phone numbers matching the
pattern XXX-XXX-XXXX where X can be any digit. You might use the following regular expression:

for my (@strings) {
if (/\d{3}-\d{3}-\d{4}/) {
print “Phone number found: $string\n”;
 }
}

And that indeed matches 555-867-5309. Unfortunately, it also matches a string containing
555555555-867-444444444 and that, presumably, is not a phone number. You can deal with this in
several ways. If you know the phone number has whitespace on either side, you could try to match
whitespace with the \s escape:

for my (@strings) {
if (/\s\d{3}-\d{3}-\d{4}\s/) {
print “Phone number found: $string\n”;
 }
}

Maybe you don’t know what is on either side of the phone number. You might make a mistake and
try to match non-digits with \D:

for my (@strings) {
if (/\D\d{3}-\d{3}-\d{4}\D/) {
print “Phone number found: $string\n”;
 }
}

That looks reasonable, but try this:

print “Phone: 123-456-7890” =~ /\D\d{3}-\d{3}-\d{4}\D/
 ? “Yes”
 : “No”;

That prints No. Why? Because \D must match something. The fi rst \D matches a space, but the
second one has nothing to match. What you want is the \b. That matches a word boundary. A word
is matched by \w and that’s any alphanumeric character, plus the underscore. A word boundary
matches no characters but matches when there is a transition between a word and nonword
character. (This means that \w\b\w can never match anything).

print “Phone: 123-456-7890” =~ /\b\d{3}-\d{3}-\d{4}\b/
 ? “Yes”
 : “No”;

That prints Yes because the fi nal \b matches between the fi nal digit and the end of the string.

c08.indd 225c08.indd 225 8/9/12 9:37 AM8/9/12 9:37 AM

226 ❘ CHAPTER 8 REGULAR EXPRESSIONS

Extracting Data

At this point, you’re probably thinking “That’s nice, but what good is that data if you can’t get it?”
It’s simple: Put parentheses around any data in a regular expression that you want to extract. For
every set of capturing parentheses, use a $1, $2, $3, and so on, to access that data.

WARNING The \d matches any Unicode (Chapter 9) character that represents

a digit, and there are far more than you probably know about, including a few

mistakes that have crept into the Unicode standard. If you want to match only

the digits 0 through 9, use the [0-9] character class. See sections “Character

Classes” and “Grouping” later in this chapter

NOTE These special variables will only be populated if the match succeeds.

if (“Phone: 123-456-7890” =~ /(\b\d{3}-\d{3}-\d{4}\b)/) {
my $phone = $1;
print “The phone number is $phone\n”;
}

And that prints the following:

The phone number is 123-456-7890

You can use this to populate data structures. Consider the following block of text. You want to create
a hash of names and their ages. Listing 8-1 shows (code fi le listing_8_1_data_structure.pl) an
example of this.

LISTING 8-1: Building Data Structures with Regexes

use strict;
use warnings;
use diagnostics;
use Data::Dumper;

my $text = <<’END’;
Name: Alice Allison Age: 23
Occupation: Spy
Name: Bob Barkely Age: 45
Occupation: Fry Cook
Name: Carol Carson Age: 44
Occupation: Manager
Name: Prince Age: 53
Occupation: World Class Musician

c08.indd 226c08.indd 226 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 227

END

my %age_for;

foreach my $line (split /\n/, $text) {
if ($line =~ /Name:\s+(.*?)\s+Age:\s+(\d+)/) {
 $age_for{$1} = $2;
 }
}
print Dumper(\%age_for);

And that prints something like this:

$VAR1 = {
 ‘Bob Barkely’ => ‘45’,
 ‘Alice Allison’ => ‘23’,
 ‘Carol Carson’ => ‘44’,
 ‘Prince’ => ‘53’
 };

NOTE If captures starting with $1 sound odd, it might be because other indexes

in Perl start with 0 and not 1. In this case, $0 is reserved for the name of the

program executed.

If that regular expression is confusing, the following is a way to make it read easier: Put a /x modi-
fi er at the end, and all whitespace (unless escaped with a backslash) will be ignored. You can then
put comments at the end of each part to explain it.

my $name_and_age = qr{
 Name:
 \s+ # 1 or more whitespace
 (.*?) # The name in $1
 \s+ # 1 or more whitespace
 Age:
 \s+ # 1 or more whitespace
 (\d+) # The age in $2
}x;

foreach my $line (split /\n/, $text) {
if ($line =~ $name_and_age) {
 $age_for{$1} = $2;
 }
}

That makes regexes much easier to read.

As was explained earlier, the . metacharacter will match anything except newlines, but see the /s
modifi er in the “Modifi ers and Anchors” section of this chapter. So .* means match zero or more of
anything. The .* is made lazy by adding a question mark after it. If we didn’t do this, it would have
matched greedily and pulled in all the whitespace it could before the \s+. The resulting data
structure would have looked like this:

c08.indd 227c08.indd 227 8/9/12 9:37 AM8/9/12 9:37 AM

228 ❘ CHAPTER 8 REGULAR EXPRESSIONS

$VAR1 = {
 ‘Carol Carson ‘ => ‘44’,
 ‘Alice Allison’ => ‘23’,
 ‘Bob Barkely ‘ => ‘45’,
 ‘Prince ‘ => ‘53’
 };

WARNING Be careful when using the . metacharacter. Avoid it you possibly

can. Because it matches indiscriminately, it’s easy for it to match something you

don’t intend. It’s far better to have a regular expression state explicitly what

you want to match. For the $name_and_age regex, your author probably would

have written [[:alpha:]]*?, but this hasn’t been covered yet.

You can also use those digit ($1, $2, and so on) variables in a regular expression. However, you
precede them with a backslash. The $1 captured by the fi rst set of parentheses is matched by \1. The
following is how you can fi nd double words:

print “Four score score and seven years ago” =~ /\b(\w+)\s+\1\b/
 ? “The word ($1) was doubled”
 : “No doubles found”;

And that prints the following:

The word (score) was doubled

Use the \b (word boundary) after the \1 to ensure that strings such as the theramin are not
reported as doubled words.

Modifi ers and Anchors

A regular expression modifi er is one or more characters appended to the end of the regular expres-
sion that modifi es it.

Earlier, when printing a regular expression, you saw (?-xism:ab?). The (?-) syntax shows the
modifi ers in effect for the regular expression. If the modifying letter is after the minus sign (-), then
it does not apply to the regex. For the $name_and_age regular expression used earlier, you can also
add an/i modifi er at the end of it. When that’s added, it makes the regular expression case-insensi-
tive. /name/i matches Name, name, nAMe, and so on.

For the (?-) syntax, if a modifying letter is before the minus sign, it means that it applies to this
regex:

my $name_and_age = qr{
 Name:
 \s+ # 1 or more whitespace
 (.*?) # The name in $1

c08.indd 228c08.indd 228 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 229

 \s+ # 1 or more whitespace
 Age:
 \s+ # 1 or more whitespace
 (\d+) # The age in $2
}xi;
print $name_and_age;

And that prints the following:

(?ix-sm:
 Name:
 \s+ # 1 or more whitespace
 (.*?) # The name in $1
 \s+ # 1 or more whitespace
 Age:
 \s+ # 1 or more whitespace
 (\d+) # The age in $2
)

Table 8-3 shows the most common modifi ers.

TABLE 8-3: Common Regex Modifi ers

MODIFIER MEANING

/x Ignore unescaped whitepace.

/i Case-insensitive match.

/g Global matching (keep matching until no more matches).

/m Multiline mode (explained in a bit).

/s Single line mode (The . metacharacter now matches \n).

You already know about the /x and /i modifi ers, so now look at the /g modifi er. That enables you
to globally match something. For example, to print every non-number in a string, use this code:

my $string = ‘’;
while (“a1b2c3dddd444eee66” =~ /(\D+)/g) {
 $string .= $1;
}
print $string;

And that prints abcddddeee, as you expect.

You can also use this to count things, if you’re so inclined. Here’s how to count every occurrence of
a word ending in the letters at.

c08.indd 229c08.indd 229 8/9/12 9:37 AM8/9/12 9:37 AM

230 ❘ CHAPTER 8 REGULAR EXPRESSIONS

my $silly = ‘The fat cat sat on the mat’;
my $at_words = 0;
$at_words++ while $silly =~ /\b\w+at/g;

The $at_words variable contains the number 4 after that code runs. If you don’t like statement
modifi ers (putting the while at the end of the statement), you can write it this way:

while ($silly =~ /\b\w+at/g) {
 $at_words++;
}

You might recall that while loops are often used with iterators. The /g modifi er effectively turns the
regular expression in to an iterator.

The /m and /s modifi ers look a bit strange, but to discuss those, you need to understand anchor
metacharacters fi rst.

Anchor metacharacters are used to “anchor” a regular expression to a particular place in a string.
They do not match an actual character. You’ve already seen one anchor: \b. The ^ is used to match
the start of the string, and the $ is used to match the end of the string. They are synonymous with
\A and \Z. Both $ and \Z match the end of a string or before a newline. Therefore, if you have a
newline in your string, the $ matches immediately before the newline.

my $prisoner = <<”END”;
I will not be pushed, filed, stamped, indexed, briefed, debriefed or numbered.
My life is my own.
END
print $prisoner =~ /^I/ ? “Yes\n” : “No\n”;
print $prisoner =~ /^My/ ? “Yes\n” : “No\n”;
print $prisoner =~ /numbered\.$/ ? “Yes\n” : “No\n”;
print $prisoner =~ /own\.$/ ? “Yes\n” : “No\n”;
That prints:
Yes
No
No
Yes

In other words, only /^I/ and /own\.$/ matched. If you want /^My/ and /numbered\.$/ to match,
use the /m switch to force a multiline mode. That forces the ^ and $ to match at the beginning and
end of every string (separated by newlines) instead of the beginning and end of the entire string.

You also need to know that if the $ is not the last character in the regular expression, Perl assumes
that this is the sigil introducing a scalar variable:

my $match = “aa”;
if ($some_string =~ /$match/) {
 # match words containing aa
}

Later, you see how to take advantage of this to build complicated regular expressions that would
ordinarily be too diffi cult to write.

c08.indd 230c08.indd 230 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 231

Character Classes

Sometimes, you want to match a few characters as even numbers. You can do this with a character
class. You put the characters you want in square brackets, []. Here’s a silly way to extract all posi-
tive, even, ASCII integers from a string:

my $string = ‘42 85 abcd 8 4ever foobar 666 43’;
my @even;
push @even => $1 while $string =~ /\b(\d*[02468])\b/g;

That leaves @even containing the numbers 42, 8, and 666. Here’s how it works. By now you already
know that the \b matches a word boundary, so the 4 in 4ever cannot be matched because not
only is that an abomination to the English language, but also there is no “boundary” between the
4 and ever.

The \d*[02468] means “zero or more digits, followed by a 0, 2, 4, 6, or 8” — in other words, a
positive even integer.

In a character class, only the -]\^$ characters are considered “special.” So a . can match a literal
dot, not “any character except newline.” If the fi rst character is a caret, ^, then it’s a negated charac-
ter class. This means it can match anything except what’s listed in the character class, and you can
use this to match odd numbers:

my $string = ‘42 85 abcd 8 4ever foobar 666 43’;
my @odd;
push @odd => $1 while $string =~ /\b(\d*[^02468])\b/g;

That pushes 85 and 43 onto the @odd array. (Of course, you could have simply used [13579] for the
character class.)

The dash (-) if used any place after the fi rst character in a character class tries to create a range. For
example, as mentioned earlier \d matches any Unicode character. (Chapter 9 discusses Unicode.) If
you want to match only the 0 through 9 ASCII digits, you can use [0-9]. This is generally easier to
read than [0123456789]; although, they mean the same thing.

You can have multiple ranges in a character class. [0-9a-fA-F] can match all hexadecimal digits.

Perl also supports POSIX character classes. These have the form [:name:]. Despite the square
brackets around them, you must use an additional set of square brackets around them. For example,
to match all alphabetical and numeric characters (the same as \w, but without the underscore), you
could use [[:alnum:]]. You can combine these, too. To match all digits and punctuation charac-
ters, use [[:digit:][:punct:]]. Table 8-4 explains Perl’s POSIX-style character classes and their
meaning.

c08.indd 231c08.indd 231 8/9/12 9:37 AM8/9/12 9:37 AM

232 ❘ CHAPTER 8 REGULAR EXPRESSIONS

TABLE 8-4: POSIX Character Classes

CLASS MEANING

[:alpha:] Letters (Think “Unicode” — Chapter 9. It’s more than you think.)

[:alnum:] [:alpha:] plus Unicode digits.

[:ascii:] ASCII only.

[:cntrl:] Control characters.

[:digit:] Unicode digits.

[:graph:] Alphanumeric and punctuation characters.

[:lower:] Lowercase letters.

[:print:] Printable characters ([:graph:] plus [:space:]).

[:space:] \s. In other words, tab, newline, form feed, and carriage return.

[:upper:] Uppercase characters.

[:xdigit:] Hexadecimal digits ([0-9a-fA-F]).

[:word:] \w.

NOTE A common, confusing mistake for regular expressions is to try to use

POSIX-style regular expressions like this:

if ($string =~ /[:alnum:]/) {
 ...
}

Not only does that not work, but it also doesn’t generate an error. This is

because Perl sees [:alnum:] as being a character class matching :, a, l, n, u,

m. (It’s OK to list a character more than once in a character class.) You must write

that [[:alnum:]] for Perl to recognize the regex correctly.

As a Perl extension to POSIX character classes, you can include a ^ after the [: to indicate negation.
So to match anything that is not a control character, use [[:^cntrl:]].

Grouping

For a character class, list the types of characters you’re looking for. For a group, you can list the
types of words you’re looking for. To group words (or patterns), put parentheses around them; then
you can do all sorts of interesting things, including using quantifi ers:

c08.indd 232c08.indd 232 8/9/12 9:37 AM8/9/12 9:37 AM

Basic Matching ❘ 233

cat, optionally followed by astrophe
/cat(astrophe)?/

You can use a | character in the group to alternate between different patterns:

matches catastrophe, cataract and catapult, but not cat
/cat(astrophe|aract|apult)/

You’ve seen parentheses before used when you want to extract data into the $1, $2, and $3 variables
and so on. If you want to group but don’t want to extract the data (perhaps you’re inserting a group
into an existing regex and don’t want to change all your match variables), use the (?:...) syntax:

matches catastrophe or cataract, but without setting $1
/cat(?:astrophe|aract)/

As you’ve already seen (?-xism:...) earlier, you may wonder if the (?:...) syntax is related — it’s
the same thing. You can set those modifi ers to tell Perl how to behave. For example, make part of a
regex case-insensitive. Maybe you’re writing code to list everyone who is a volunteer. Unfortunately,
the people who typed in the data typed volunteer, Volunteer, and VOLUNTEER.

use Data::Dumper;

my $text = <<’END’;
Name: Alice Allison Position: VOLUNTEER
Name: Bob Barkely Position: Manager
Name: Carol Carson Position: Volunteer
Name: David Dark Position: Geek
Name: e.e. cummings Position: Volunteer
name: Fran Francis Position: volunteer
END

my @volunteers;
foreach my $line (split /\n/, $text) {
if ($line =~ m<Name:\s+(.*?)\s+Position:\s+(?i-xsm:volunteer)\b>) {
push @volunteers => $1;
 }
}
print Dumper(\@volunteers);

And that prints the following:

$VAR1 = [
 ‘Alice Allison’,
 ‘Carol Carson’,
 ‘e.e. cummings’
];

You can sneakily put the . in the Name pattern to still match e.e. cummings.

Why didn’t it add Fran Francis to that list? Because she has name: in front of her name, but you
didn’t make that part of the regular expression case-insensitive.

c08.indd 233c08.indd 233 8/9/12 9:37 AM8/9/12 9:37 AM

234 ❘ CHAPTER 8 REGULAR EXPRESSIONS

Typing (?i-xsm:volunteer)might be a bit cumbersome. If the entire regular expression is not
using the /x, /s, or /m modifi ers, you don’t need the -xsm in the group. You need them only if you
need to explicitly disable them — and you don’t need to list all of them. So you could have written
(?i:volunteer), which is cleaner.

TRY IT OUT Using /g and [[:alpha:]]

Earlier you extracted names and ages from a section of text by splitting the text on newlines and
matching resulting lines against a regular expression. All the code in this Try It Out uses the exam-
ple_8_1_name_and_age.pl code fi le.

foreach my $line (split /\n/, $text) {
if ($line =~ /Name:\s+(.*?)\s+Age:\s+(\d+)/) {
 $age_for{$1} = $2;
 }
}

If $text is huge, that’s rather ineffi cient and can better be handled with a while loop and the /g modi-
fi er. Also, we mentioned earlier that the (.*?) should be avoided. Now let’s be more precise.

1. Type in the following program, and save it as example_8_1_name_and_age.pl:

use strict;
use warnings;
use Data::Dumper;

my $text = <<’END’;
Name: Alice Allison Age: 23
Occupation: Spy
Name: Bob Barkely Age: 45
Occupation: Fry Cook
Name: Carol Carson Age: 44
Occupation: Manager
Name: Prince Age: 53
Occupation: World Class Musician
END

my %age_for;
while ($text =~ m<Name:\s+([[:alpha:]]+?)\s+Age:\s+(\d+)>g) {
 $age_for{$1} = $2;
}
print Dumper(\%age_for);

2. Run the program with perl example_8_1_name_and_age.pl. You should see the following
output:

$VAR1 = {
 ‘Bob Barkely’ => ‘45’,
 ‘Alice Allison’ => ‘23’,
 ‘Carol Carson’ => ‘44’,
 ‘Prince’ => ‘53’
 };

c08.indd 234c08.indd 234 8/9/12 9:37 AM8/9/12 9:37 AM

Advanced Matching ❘ 235

How It Works

This works almost the same as the previous version but with some important differences. First, the /g
turns the regular expression match into an iterator you can use with the while loop. It forces the
regular expression to keep matching until no more matches are found.

The example uses m<...> for the regular expression — just to remind you that you can use different
delimiters.

The [[:alpha:]] matches alphabetic characters plus a space character. Note the space before the
trailing square bracket.

In short, there’s nothing magical here, but now you can move to some more advanced regular expres-
sion techniques.

ADVANCED MATCHING

As you work with regular expressions more, you’ll want to do more powerful things with them.
Regular expressions are a special-purpose declarative language embedded in Perl. Although they’re
generally not Turing complete (http://en.wikipedia.org/wiki/Turing_complete), they’re still
powerful. (Even if they were Turing complete, you’d upset a lot of programmers if you wrote your
programs solely in terms of regular expressions.)

Substitutions

Substitutions are the next logical step in your programming journey (although not an “advanced”
feature of regexes). They have the following form:

s/regular expression/replacement text/

You prefer a rare steak to a well-done steak (as you should), so you need to fi x this menu item:

my $main_course = “A well-done filet mignon”;
$main_course =~ s/well-done/rare/;
print $main_course.

And that prints A rare filet mignon.

As with the normal m//, you can use the /g modifi er to make substitutions global. The following is
a (stupid) technique to remove all doubled words from a text:

my $text = “a a b b c cat dddd”;
$text =~ s/\b(\w+)\s+\1\b/$1/g;
print $text;

And that leaves you with a b c cat dd.

Now use the /x modifi er to make this a bit clearer.

c08.indd 235c08.indd 235 8/9/12 9:37 AM8/9/12 9:37 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://en.wikipedia.org/wiki/Turing_complete

236 ❘ CHAPTER 8 REGULAR EXPRESSIONS

$text =~ s/
 \b # word boundary
 (\w+) # capture to $1
 \s+ # whitespace
 \1 # doubled word (matches $1)
 \b # word boundary
/$1/gx; # replace doubled with $1

The left side of the substitution is a regular expression, and the right side is not. Thus, you can use
\1 inside the regex and $1 outside the regex.

Lookahead/Lookbehind Anchors

As you know, an anchor matches a particular place in a string without actually matching a charac-
ter. Lookahead/behind anchors (and their negative counterparts) are primarily used with substitu-
tions (and sometimes split()) to allow fi ne-grained control over matching. A positive lookahead
enables you to match text following a regular expression, but not including it in the
regular expression. The positive lookahead syntax is:

(?=$regex)

For example, if you want to replace all xxx followed by yyy with ---, but not replacing the yyy, you
can do this:

my $string = ‘xxxyyyxxxbbbxxxyyy’;
$string =~ s/
xxx # match xxx
(?=yyy) # followed by yyy, but not included in the match
 /---/xg;
print $string;

And that prints out the following:

---yyyxxxbbb ---yyy

The negative lookahead syntax is (?!$regex). That enables you to match a regular expression not
followed by another regular expression, but the negative lookahead is not included in the match. Say
your young child is writing a “compare and contrast” essay about Queen Elizabeth of the United
Kingdom and queen bees and ants. She writes this:

The queen rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.
The queen lives in a palace and the queen bee lives
in a hive.

Obviously, you are horrifi ed because the queen of the United Kingdom should be referred to as
Queen Elizabeth in this context. So you write this:

my $childs_essay = <<’END_ESSAY’;
The queen rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.

c08.indd 236c08.indd 236 8/9/12 9:37 AM8/9/12 9:37 AM

Advanced Matching ❘ 237

The queen lives in a palace and the queen bee lives
in a hive.
END_ESSAY

$childs_essay =~ s/the queen/Queen Elizabeth/gi;
print $childs_essay;

And that prints out the following:

Queen Elizabeth rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.
Queen Elizabeth lives in a palace and Queen Elizabeth bee lives
in a hive.

Obviously, that’s not going to earn your daughter a good grade, so let’s use a negative lookahead to
replace only those instances of queen not followed by the words ant or bee.

my $childs_essay = <<’END_ESSAY’;
The queen rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.
The queen lives in a palace and the queen bee lives
in a hive.
END_ESSAY

$childs_essay =~
s/
the
 \s+
queen
 \s+
 (?!ant|bee)
 /Queen Elizabeth /gxi;

print $childs_essay;

And that prints out the desired paragraph:

Queen Elizabeth rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.
Queen Elizabeth lives in a palace and the queen bee lives
in a hive.

Your daughter may not get a wonderful grade for the essay, but at least she’ll be following proper
editorial style.

NOTE The Queen Elizabeth/queen ant example seems fairly contrived, but it’s

based on a true story of an online news organization whose computer-driven

editorial rules had a news story about ants referring to Queen Elizabeth laying

thousands of eggs and having a lifespan of many times that of her workers. We

hope Her Majesty was amused.

c08.indd 237c08.indd 237 8/9/12 9:37 AM8/9/12 9:37 AM

238 ❘ CHAPTER 8 REGULAR EXPRESSIONS

Positive lookbehinds are designated with (?<=$regex) and negative lookbehinds are written as
(?<!$regex). They are identical to their lookahead counterparts with two exceptions:

 ➤ They match text before the regular expression.

 ➤ They cannot match a variable-width regex, meaning that *, +, and ? quantifi ers are not
allowed.

Named Subexpressions (5.10)

If you use Perl 5.10 or better, you can also use named subexpressions. Ordinarily, you refer to a
captured group in the regex with \1, \2, and so on. After a successful match, those are $1, $2, and
so on. With named subexpressions you can name them and make things easier to read.

To name a subexpression, use the syntax (?<name>...). To refer to it again inside of the regex, use
\g{name}. To refer to the match outside of the regex, be aware that it’s a key in the special %+ hash.
For example, the double-word stripper would look something like this:

NOTE The %+ hash is a special variable that contains only entries for the last

successfully matched named subexpressions in the current scope. Thus, if a

named subexpression fails to match, it will not have an entry in the %+ hash.

There is a corresponding %- hash not covered here. See perldoc perlvar and

perldoc perlretut for more information.

use v5.10;

my $text = “a a b b c cat dddd”;
$text =~
s/
 \b
(?<word>\w+)
 \s+
 \g{word}
 \b
 /$+{word}/gx;

print $text;

For a clearer example consider matching dates. You may remember the code to convert a date to the
ISO 8601 format. Here you can rewrite it with named subexpressions.

Before:

my $provided_date = ‘28-9-2011’;

$provided_date =~ s{
 (\d\d?) # day

c08.indd 238c08.indd 238 8/9/12 9:37 AM8/9/12 9:37 AM

Advanced Matching ❘ 239

 [-/] # - or /
 (\d\d?) # month
 [-/] # - or /
 (\d\d\d\d) # year
}
{
sprintf “$3-%02d-%02d”, $2, $1
}ex;

print $provided_date;

After:

my $provided_date = ‘28-9-2011’;

$provided_date =~ s{
(?<day>\d\d?)
 [-/]
(?<month>\d\d?)
 [-/]
(?<year>\d\d\d\d)
}
{
sprintf “$+{year}-%02d-%02d”, $+{month}, $+{day}
}ex;

print $provided_date;

This has an added advantage of no longer requiring you to keep track of the number of the capture.
Therefore, if you need to switch the day and month around, use this code:

s{
(?<month>\d\d?) # month
 [-/]
(?<day>\d\d?)
 [-/]
(?<year>\d\d\d\d)
 }
 {
sprintf “$+{year}-%02d-%02d”, $+{month}, $+{day}
}ex;

The regular expression changed, but the substitution did not.

You can also use the named parameters outside of the substitution as long as you’re in the same
scope, for example:

print LOGFILE “converted provided date to “,
sprintf “$+{year}-%02d-%02d”, $+{month}, $+{day};

c08.indd 239c08.indd 239 8/9/12 9:37 AM8/9/12 9:37 AM

240 ❘ CHAPTER 8 REGULAR EXPRESSIONS

TRY IT OUT Converting Date Formats

Substitutions are common and you need to get used to them. Use a simple example converting the U.S.
style MM/DD/YYYY dates to the more common (outside the United States) DD/MM/YYYY dates. All the code
in this Try It Out uses the example_8_2_dates.pl code fi le.

1. Type in the following program and save it as example_8_2_dates.pl.

use strict;
use warnings;
use Data::Dumper;

my @dates = qw(
 01/23/1987
 11/30/2000
 02/29/1980
);

foreach (@dates) {
s{\A(\d\d)/(\d\d)/}
 {$2/$1/};
}
print Dumper(\@dates);

2. Run the program with perlexample_8_1_dates.pl. You should see the following output:

$VAR1 = [
 ‘23/01/1987’,
 ‘30/11/2000’,
 ‘29/02/1980’
];

How It Works

This simple example has several subtleties you should be aware of because they crop up often in Perl code.

The substitution operator, s///, when the binding operator, =~, is not used, defaults to $_. Further, like
the regular expressions you’ve seen earlier, you’re permitted to use alternative delimiters. You didn’t use
/ for the delimiter because that would have forced you to escape the other forward slashes and make
the substitution harder to read:

s/\A(\d\d)\/(\d\d)\//$2\/$1\//;

As a side-effect to using balanced delimiters ([] and <> would also have been nice options), you can put
the regular expression and the substitution value on separate lines.

s{\A(\d\d)/(\d\d)/}
 {$2/$1/};

This is not required, but it can also help improve readability.

Another interesting thing you can do with substitutions is execute code via the /e modifi er. When using
this modifi er, the substitution code is not considered to just be a string; it’s Perl code to be evaluated.
For example, consider the substitution to change American-style dates:

c08.indd 240c08.indd 240 8/9/12 9:37 AM8/9/12 9:37 AM

Common Regular Expression Issues ❘ 241

s{\A(\d\d)/(\d\d)/}
 {$2/$1/};

What if the U.S. style date had been written 28/2/2011? Well, you know that’s February 28th, but your
regex doesn’t. And maybe it was sometimes entered as 12-12-1999. That’s a pain, too. Let’s fi x that.
While we’re at it, we’ll also convert the data to the ISO 8601 unambiguous date format of YYYY-MM-DD.

local $_ = ‘28-9-2011’;
s{
 (\d\d?) # day
 [-/] # - or /
 (\d\d?) # month
 [-/] # - or /
 (\d\d\d\d) # year
 }
 {
sprintf “$3-%02d-%02d”, $2, $1
}ex;
print;

And that correctly prints 2011-09-28. Use the /x modifi er to make it easy to read. The /x modifi er
never applies to the right side of the substitution. Instead, you can use extra whitespace here because
the /e modifi er turns the right side into Perl code instead of a simple string.

All the other regex modifi ers, including the /g, can be used with substitutions.

COMMON REGULAR EXPRESSION ISSUES

While you’re messing around with regular expressions, consider a few common issues that can arise.
These may seem superfl uous to this chapter, but these issues are raised so often that they bear men-
tioning. The following are a few things you can do with regular expressions, along with a few things
you should not do.

Regexp::Common

You know a number might be represented as 2, 2.3, .4, -3e17, and so on. You can legally write
a number in a variety of ways, and writing a regular expression for it is hard. So don’t write it.
When you need a regular expression that you think someone else has already written, look at the
Regexp::Common module to see if it’s in there. The following is how to match a real number:

use Regexp::Common;
print “yes” if ‘-3e17’ =~ $RE{num}{real};

The following is how to blank out profanity. (Knowing it would never get through the editorial pro-
cess, I regretfully omitted the full example).

use Regexp::Common;
my $text = ‘something awful or amusing’;
$text =~ s/($RE{profanity})/’*’ x length($1)/eg;
print $text;

c08.indd 241c08.indd 241 8/9/12 9:37 AM8/9/12 9:37 AM

242 ❘ CHAPTER 8 REGULAR EXPRESSIONS

There’s more in this module, so install it and have fun reading the docs.

E-mail Addresses

If you’ve never read RFC 822 (http://tools.ietf.org/html/rfc822), your author recommends
that you do. It’s a great way to get to sleep. It’s also a great way to realize that if you’ve been trying
to validate e-mail addresses with a regular expression, you’ve been doing it the wrong way.

E-mail addresses can contain comments. The local part of the domain name cannot contain spaces
(unless they’re in comments), but they can contain dashes. They can even start with dashes. Lots
of people with last names such as O’Malley have trouble sending and receiving e-mail because
o’malley@example.com is a perfectly valid e-mail address, but many e-mail validation tools think
that apostrophe is naughty.

So whatever you do, don’t do this:

if ($email =~ /^\w+\@(?:\w+\.)+\w$/) {
Congrats. Many good e-mails rejected!
}

You see that a lot in code. It doesn’t work. You can’t use regular expressions to match e-mail
addresses. The one your author knows of that is closest to being correct is an almost one-hun-
dred line (beautiful) monstrosity written by Jeffrey Friedl. You can see it in the source code of
Email::Valid; the module you should use instead follows:

use Email::Valid;
print (Email::Valid->address($maybe_email) ? ‘yes’ : ‘no’);

Actually, Email::Valid tells you only if the e-mail address is well-formed. If you ask nicely, it tries
to tell you if the host exists. It cannot tell you if the e-mail is valid.

NOTE There is only one way to know if an e-mail is valid: Send an e-mail using

that address and hope someone responds. Even then, you may get a false

bounce or the mail server might be down. Nothing’s perfect.

HTML

Eventually, every programmer hears about people trying to parse HTML with regular expressions.
The following is an attempt your author tried to make once:

$html =~ s{
 (<a\s(?:[^>](?!href))*href\s*)
 (&(&[^;]+;)?(?:.(?!\3))+(?:\3)?)
 ([^>]+>)
 }
 {$1 .decode_entities($2) . $4}gsexi;

c08.indd 242c08.indd 242 8/9/12 9:37 AM8/9/12 9:37 AM

http://tools.ietf.org/html/rfc822

Common Regular Expression Issues ❘ 243

Do you know what that does? Neither do I. I can’t remember what I was trying to do, but I don’t
care because it didn’t work. I learned to use a proper HTML parser instead. HTML does not have
regular grammar and thus cannot be properly parsed with regular expressions. Even if it did, there
are plenty of tricky edge cases. For example, what if you have angle brackets in quotes?

<input type=”text” name=”user” placeholder=”<enter name>”>

Or what it someone uses single quotes? Or no quotes? Or uses capitalized tags? There are many
examples of HTML that browsers handle nicely, but you would struggle to parse with regular
expressions.

That said, if you use a well-defi ned subset of HTML and you write small, one-off scripts for extract-
ing data, you can use regexes. Just don’t blame anyone but yourself when it breaks. Instead, consider
HTML::TreeBuilder, HTML::TokeParser::Simple, or any of a variety of other great HTML pars-
ing modules.

Composing Regular Expressions

Sometimes, a regular expression is complicated. For example, you might want to match an employee
number in the format department-grade-number, where department is one of four different valid
department codes for a company, AC, IT, MG, JA, the grade is a two-digit number from 00 to 20, and
the number is any fi ve or six-digit number. The regular expression might look like this:

if (/\b(AC|IT|MG|JA)-([01]\d|20)-(\d{5,6})\b/) {
my $dept = $1;
my $grade = $2;
my $emp_number = $3;
 ...
}

For regular expressions, that one isn’t too bad, but maybe you still want it to be a bit easier to read.
You can compose regular expressions easily by using variables and the qr// operator.

my $depts = join ‘|’ =>qw(AC IT MG JA);
my $dept_re = qr/$depts/;
my $grade_re = qr/[01]\d|20/;
my $emp_number_re = qr/\d{5,6}/;
if (/\b($dept_re)-($grade_re)-($emp_number_re)\b/) {
my $dept = $1;
my $grade = $2;
my $emp_number = $3;
 ...
}

The qr() operator can “quote” your regular expression and, in some cases, precompile it, leading to
signifi cant performance gains when you later use it in a match.

As a more complicated example, your author was writing a preprocessor for Prolog code (Prolog is
a programming language) and wanted to match math expressions. The following are all valid math
expressions in Prolog (the actual code is more complicated):

c08.indd 243c08.indd 243 8/9/12 9:37 AM8/9/12 9:37 AM

244 ❘ CHAPTER 8 REGULAR EXPRESSIONS

2 + 3
Var
-3.2e5 % SomeVar / Var

The code to match those is presented in Listing 8-2 (code fi le listing_8_2_composed_regexes.pl).

LISTING 8-2: Building Complex Regular Expressions from Smaller Ones

use strict;
use warnings;
use diagnostics;
useRegexp::Common;
my $num_re = $RE{num}{real};
my $var_re = qr/[[:upper:]][[:alnum:]_]*/;
my $op_re = qr{[-+*/%]};
my $math_term_re = qr/$num_re|$var_re/;
my $expression_re = qr/
 $math_term_re
 (?:
 \s*
 $op_re
 \s*
 $math_term_re
)*
/x;
my @expressions = (
 ‘2 + 3’,
‘ + 2 - 3’,
 ‘Var’,
 ‘-3.2e5 % SomeVar / Var’,
 ‘not_a_var + 2’,
);
foreach my $expression (@expressions) {
if ($expression =~ /^$expression_re$/) {
print “($expression) is a valid expression\n”;
 }
else {
print “($expression) is not a valid expression\n”;
 }
}

And that prints the wanted output:

(2 + 3) is a valid expression
(+ 2 - 3) is not a valid expression
(Var) is a valid expression
(-3.2e5 % SomeVar / Var) is a valid expression
(not_a_var + 2) is not a valid expression

You may think that the regular expression isn’t that complicated, but if you print out the entire
thing, it looks like this (formatted to fi t this page and still be a valid regular expression):

c08.indd 244c08.indd 244 8/9/12 9:37 AM8/9/12 9:37 AM

Summary ❘ 245

/(?x-ism:(?-xism:(?:(?i)(?:[+-]?)(?:(?=[.]?[0123456789])(?:[
0123456789]*)(?:(?:[.])(?:[0123456789]{0,}))?)(?:(?:[
E])(?:(?:[+-]?)(?:[0123456789]+))|))|(?-xism:[[:upper:]][
[:alnum:]_]*))(?:\s*(?-xism:[-+*/%])\s*(?-xism:(?:(?i)(?:[
+-]?)(?:(?=[.]?[0123456789])(?:[0123456789]*)(?:(?:[.])
(?:[0123456789]{0,}))?)(?:(?:[E])(?:(?:[+-]?)(?:[0123456789
]+))|))|(?-xism:[[:upper:]][[:alnum:]_]*)))*)/x

If you want to write that by hand, be my guest, but don’t ask anyone (including yourself) to debug it.

SUMMARY

Regular expressions are powerful, and you’veskimmed only the surface of what they can do. This
chapter focused on what you’ll most likely encounter in the real world, but there are many areas of
regular expressions you have only seen a small bit of. You should read the following to learn more:

perldoc perlre
perldoc perlretut
perldoc perlrequick
perldoc perlreref

If you have Perl version 5.12 or above installed, you can also read perldoc perlrebackslash and
perldoc perlrecharclass. You can also read them on http://perldoc.perl.org/.

In addition, the excellent book Mastering Regular Expressions by Jeffrey Friedl is highly
recommended.

By now, you should understand most common uses of regular expressions including matching arbi-
trary text, making substitutions, and extracting useful data from strings.

EXERCISES

 1. In the United States, Social Security numbers are a sequence of three digits, followed by a dash,

followed by two digits, followed by another dash, followed by four digits, which can look like this:

123-45-6789.

 Ignoring that not all combinations of numbers are valid, write a regular expression that matches a

U.S. Social Security number.

 2. Imagine you have a block of the following text read from a fi le:

my $employee_numbers = <<’END_EMPLOYEES’;
alice: 48472
bob:34582
we need to fi re charlie
 charlie : 45824
denise is a new hire
denise : 34553
END_EMPLOYEES

c08.indd 245c08.indd 245 8/9/12 9:37 AM8/9/12 9:37 AM

http://perldoc.perl.org/

246 ❘ CHAPTER 8 REGULAR EXPRESSIONS

 Those are employee login names and their user numbers. Obviously, an admin has been sloppy

in keeping these in a text fi le. Write code that can read that text and create a hash with employee

usernames as the keys and employee numbers as the values. There should be no leading or

trailing whitespace in either the keys or the values. Ignore empty lines and lines starting with a #.

 3. Given the following text with dates embedded in the YYYY-MM-DD format, write code that can

rewrite them as $monthname $day,$year. For example, 2011-02-03should become February

3, 2011. Assume the dates are valid (in other words, not January 40th or something stupid like

that).

my $text = <<’END’;
We hired Mark in 2011-02-03. He’s working on product
1034-34-345A. He is expected to fi nish the work on or
before 2012-12-12 because our idiot CEO thinks the world
will end.
END

c08.indd 246c08.indd 246 8/9/12 9:37 AM8/9/12 9:37 AM

Summary ❘ 247

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Regular expressions Patterns to describe strings.

Quantifiers Matching a pattern a variable number of times.

Escape sequences Sequences for controlling matches.

Extracting data Extracting matched data into variables.

Modifiers Special trailing characters that later regex behavior.

Anchors Matching “places” in a string and not characters.

Character classes Groups of individual characters.

Grouping Groups of patterns.

Substitutions Replacing matched text.

Regexp::Common A module providing many common regular expressions.

Email::Valid A module to properly validate an e-mail address.

Lookahead/lookbehind

anchors

Anchors to match text before and after a regex.

Named subexpressions A cleaner way to match data.

Composed regexes Building complex regexes from smaller ones.

c08.indd 247c08.indd 247 8/9/12 9:37 AM8/9/12 9:37 AM

c08.indd 248c08.indd 248 8/9/12 9:37 AM8/9/12 9:37 AM

9
Files and Directories

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding fi les handling

 ➤ Working with directories

 ➤ Understanding Unicode and Unicode rules

 ➤ Useful fi le manipulation modules

Up to this point, except for a brief discussion of @ARGV in Chapter 3, the data in your program
has been embedded in the program, which isn’t useful. In the real world, we’re constantly
reading data from fi les, Web services, databases, and a variety of other sources. This chapter
introduces you to the basics of reading and writing to fi les and directories.

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ .targets.txt.swp

 ➤ .tree.pl.swo

 ➤ .tree.pl.swp

 ➤ example_9_1_spies.pl

 ➤ example_9_2_tree.pl

c09.indd 249c09.indd 249 8/9/12 9:46 AM8/9/12 9:46 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://WROX.COM
http://wrox.com

250 ❘ CHAPTER 9 FILES AND DIRECTORIES

 ➤ listing_9_1_targets.pl

 ➤ listing_9_2_reading_from_data.pl

 ➤ spies1.txt

 ➤ spies2.txt

 ➤ spies3.txt

 ➤ spies4.txt

 ➤ targets.txt

BASIC FILE HANDLING

As you probably know by now, most common operating systems have their data internally
organized around fi les and directories. Even if the data is stored in a database, it’s probably
represented as fi les somewhere. Perl makes it easy to read and write fi les, and you can see the most
common ways to do that.

Opening and Reading a File

For this section, type the following into a fi le named targets.txt in a directory named
chapter_9.

James|007|Spy
Number 6|6|Ex-spy
Agent 99|99|Spy with unknown name
Napoleon Solo|11|Uncle spy
This guy is only rumored to exist. Not everyone believes it.
Unknown|666|Maybe a spy

Those are names, case numbers, and bizarre job titles for people your overly optimistic intelligence
agency wants to interrogate.

To open a fi le, use the open() builtin. The two most common forms of open() follow:

open FILEHANDLE, MODE, FILENAME
open FILEHANDLE, FILENAME

The fi rst preceding syntax is the three argument open, and the second is the two argument
open. The second is an older version of open() and it’s generally frowned upon today, but is
explained here so that you can understand it if you see it in legacy code. (If someone is still writing
using the two argument open today, it’s either because they must support a version of Perl prior to
version 5.6 or they don’t know any better.)

The arguments to open() follow:

c09.indd 250c09.indd 250 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 251

 ➤ FILEHANDLE: The identifi er you will use elsewhere to read or write to the fi le

 ➤ MODE: Specifi es if you are opening the fi le to read and/or write to it

 ➤ FILENAME: Mostly, just what it looks like, the name of the fi le in your system

NOTE See perldoc -f open for more information than you expected. perldoc

opentut is good, too. If you need fi ne-grained control over how to open fi les

(such as dieing if you try to open for writing a fi le that already exists), see

perldoc -f sysopen. It’s also explained in detail with perlopentut.

Reading Files

To open a fi le in read mode, use the < sign for the mode. The following is what it looks like:

my $filename = ‘chapter_9/targets.txt’;
open my $spies_to_espy, ‘<’, $filename
 or die “Cannot open ‘$filename’ for writing: $!”;

That is a lot of new stuff at once, so I’ll break it down carefully.

The my $spies_to_espy variable contains the fi lehandle that you can use to access the contents of
$filename. Like variables, a fi lehandle with a descriptive name leads to clearer code. Filehandle is
commonly abbreviated at $fh.

The < tells Perl you’re going to open the fi le for reading. If the attempt to open the fi le fails, the
open() builtin returns false and sets the special $! Variable, which contains a human-readable
description of the error. You can print $! to provide an error message. If the previous fi le does not
exist, that might print the following:

Cannot open ‘chapter_9/targets.txt’ for writing: No such file or
directory at my_program.pl line 17.

When using open() and other related functions, always include the or die section at the end.
Otherwise, Perl may ignore the error and silently Do The Wrong Thing, which would be disappoint-
ing. To automate, remember you can install the handy autodie module from the CPAN to take
care of this for you:

use autodie;
my $filename = ‘chapter_9/targets.txt’;
open my $filehandle, ‘<’, $filename;

If open() fails, you get a virtually identical error message to the previous one.

The autodie module was included with Perl as of version 5.10.1, so if you have that version of Perl
or newer, you won’t need to install it separately.

c09.indd 251c09.indd 251 8/9/12 9:46 AM8/9/12 9:46 AM

252 ❘ CHAPTER 9 FILES AND DIRECTORIES

Now that you have opened the fi le, read from it and print the name, case number, and description of
each record. Listing 9-1 shows the code to do this (code fi le listing_9_1_targets.pl).

LISTING 9-1: Reading and Parsing a File

use strict;
use warnings;
use diagnostics;

my $filename = ‘chapter_9/targets.txt’;

open my $spies_to_espy, ‘<’, $filename
 or die “Cannot open ‘$filename’ for writing: $!”;

while (my $line = <$spies_to_espy>) {
 next if $line =~ /^\s*#/; # skip comments!
 chomp($line);
 my ($name, $case_number, $description)

NOTE Windows, and some operating systems, use the backslash, \, as a fi le-

name delimiter. This could be an issue in Perl, which uses the \ to specify

characters such as tab, \t, and newline, \n.

When you attempt to do something like

my $filename = “chapter_9\targets.txt”;

In a double-quoted string, the \t is the tab character but your fi lename is prob-

ably not chapter_9<TAB>argets.txt. You can escape the \ like this:

my $filename = “chapter_9\\targets.txt”;

But that can quickly start to get ugly:

my $file = “path\\to\\some\\$file”;

In a Perl program just use forward slashes, and internally Perl will Do The Right

Thing for your operating system.

my $file = “path/to/some/$file”;

Or:

my $file = “C:/path/to/some/$file”;

That’s much cleaner.

c09.indd 252c09.indd 252 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 253

 = split /\|/, $line;
 print “$name ($case_number): $description\n”;
}
close $spies_to_espy or die “Could not close ‘$filename’: $!”;

And that prints out the following:

James (007): Spy
Number 6 (6): Ex-spy
Agent 99 (99): Spy with unknown name
Napoleon Solo (11): Uncle spy
Unknown (666): Maybe a spy

The following discussion takes this line by line so that you can clearly see what is going on here.

while (my $line = <$spies_to_espy>) {

The angle brackets around the fi lehandle turn it into an iterator. If you assign it in list context (such
as assigning it to an array), it can read in every record in the fi le, as separated by the value in the $/
variable. If you assign it to a scalar, as shown previously, it acts like an iterator, returning one line at
a time, or undef when there is no more input. As you recall from Chapter 5, you usually use while
loops with iterators.

NOTE The sharp-eyed among you may wonder what’s going on with using a

while loop and a fi lehandle. What if the fi lehandle just returns an empty string

or some other value that evaluates to false? It still Just Works because when

reading fi lehandles in a while loop, Perl magically converts it as follows:

while (my $line = <$fh>) { ... }

becomes

while (defined (my $line = <$fh>)) { ... }

Remember that the assignment, my $line = <$fh>, returns the value of the

entire expression and the fi lehandle can return only undef at EOF (end of the

fi le). Thus, the while loop works. This behavior happens because Perl knows

that’s what you need here. Don’t rely on this behavior for other uses of while.

The $/ variable defaults to whatever the newline character is for your operating system. For
Windows, this is the carriage return plus line feed (\r\n). For UNIX-like systems such as Linux,
Mac OS X, AIX and so on, it’s just the line feed character (\n) and for versions of Mac OS prior to
OS X, it’s just the carriage return (\r). Other operating systems may use different characters, but
Perl takes care of this for you.

c09.indd 253c09.indd 253 8/9/12 9:46 AM8/9/12 9:46 AM

254 ❘ CHAPTER 9 FILES AND DIRECTORIES

The next line of code should be clear. You can skip comments in the fi le by preceding them with a #
symbol. The \s* allows you to have zero or more spaces in front of the # symbol.

next if $line =~ /^\s*#/; # skip comments!

Then you have the chomp():

chomp($line);

As you may recall from Chapter 4, chomp() removes anything matching $/ from the end of the vari-
able. In this case, you don’t need to do this because you’re adding it back in when you print the data.
It is a good habit to get into. You often store data in variables and probably do not want the line
separator.

Then you split the line on the pipe character, |. Because split() expects a regular expression as
its fi rst argument and the | is used for alternation, you need to escape it to match a literal pipe
character.

my ($name, $case_number, $description)
 = split /\|/, $line;

NOTE If you have a fi le from another operating system, or if the fi le delimits

“records” with a diff erent character, you can assign a diff erent value to the $/

variable to ensure that lines are split correctly. Just be sure to use the local()

builtin with it to avoid having other parts of your system picking up the new

value. You can also read an entire fi le into a scalar by setting $/ to undef. This

is often referred to as slurp mode. Just using a bare local $/; can set $/ to an

uninitialized value:

my $file_contents = slurp(‘chapter_9/targets.txt’);

print $file_contents;

sub slurp {

 my $file = shift;

 open my $fh, ‘<’, $file

 or die “Cannot open ‘$file’ for reading: $!”;

 local $/;

 my $contents = <$fh>;

 return $contents;

}

That’s written for clarity. However, you’ll often see it written like this:

sub slurp {

 my $file = shift;

 open my $fh, ‘<’, $file

 or die “Cannot open ‘$file’ for reading: $!”;

 return do { local $/; <$fh> };

}

c09.indd 254c09.indd 254 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 255

And fi nally you can print your results:

print “$name ($case_number): $description\n”;

The fi nal line closes your fi lehandle:

close $fh or die “Could not close ‘$filename’: $!”;

If the fi lehandle falls out of scope, Perl closes the fi lehandle for you. You’ll see many programs take
advantage of this feature and not close their fi lehandles.

The <> operator assigns to $_ by default, so you can omit the my $line = if you prefer:

while (<$fh>) {
 next if /^\s*#/; # skip comments!
 chomp;
 my ($name, $case_number, $description) = split /\|/, $_;
 print “$name ($case_number): $description\n”;
}

Reading Files the Wrong Way

For versions of Perl prior to version 5.6 (released over a decade ago!), you often see this syntax:

open FH, $filename
 or die “Cannot open ‘$filename” for reading: $!”;

Or:

open FH, “< $filename”
 or die “Cannot open ‘$filename” for reading: $!”;

This combines a few practices that are today considered bad. The FH looks like a bareword and
should not be allowed with use strict, but in this instance, it’s considered to be a typeglob. You
use it like a normal fi lehandle:

while (my $line = <FH>) { ... }

This is considered bad practice because typeglobs are package globals, and there can be some
strange bugs associated with other portions of your program messing with global variables. Imagine
trying to debug what’s going wrong with this:

open FH or die $!;

That’s perfectly legal, and it might just open a fi le in read mode, but this monstrosity isn’t covered
here. (Again, see perlopentut for the gory bits).

You can use the two argument form of open() in this bad example:

open FH, $filename;
and
open FH, “< $filename”;

c09.indd 255c09.indd 255 8/9/12 9:46 AM8/9/12 9:46 AM

256 ❘ CHAPTER 9 FILES AND DIRECTORIES

For the fi rst, you simply omitted the < mode. If that’s left off, Perl assumes read mode. For the second,
it’s included in the string, along with the fi lename. That does the same thing. It has to do with mak-
ing this seem a bit more familiar to UNIX programmers, but suffi ce it to say that it’s strongly dis-
couraged today. If the $filename contains user input and a malicious user provides a fi lename with
any mode-specifi c characters at the start, you will have signifi cant security implications.

Don’t do that. Stick with the three argument open.

NOTE For more information on typeglobs, see “Typeglobs and Filehandles” in

perldoc perldata.

Writing Files

Writing fi les has a similar syntax, but you use > to open the fi le in write mode. If you want to append to a
fi le, use >>. So to add Maxwell Smart as a new target in targets.txt, you could write the following:

open my $fh, ‘>>’, $filename
 or die “Cannot open ‘$filename’ for appending: $!”;
print $fh “Maxwell Smart|86|Definitely a spy\n”;

And now the fi le should contain the following (code fi le target.txt):

James|007|Spy
Number 6|6|Ex-spy
This guy is only rumored to exist. Not everyone believes it.
Unknown|666|Maybe a spy
Maxwell Smart|86|Definitely a spy

Nothing unusual about this, except for the print line:

print $fh “Maxwell Smart|86|Definitely a spy\n”;

There’s no comma after the $fh. That’s what lets Perl know that $fh is a fi le handle it’s printing to
instead of something to print. So if you see something like this on your screen when you weren’t
expecting any output:

GLOB(0xbfe220)Maxwell Smart|99|Definitely a spy

You probably put a comma after the fi lehandle, telling Perl that it’s something to print instead of a
fi lehandle to print to.

If you want, you can rewrite the fi le by reading it and then writing to it. Now sort the lines of the
fi le and strip the comments from it. Following is one way to do that:

my $filename = ‘chapter_9/targets.txt’;

open my $fh, ‘<’, $filename
 or die “Cannot open ‘$filename’ for reading: $!”;

c09.indd 256c09.indd 256 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 257

each element in @lines gets one line from the file
remember grep from Chapter 4?
my @lines = sort grep { !/^\s*#/ } <$fh>;
close $fh or die “Cannot close ‘$filename’: $!”;

open $fh, ‘>’, $filename
 or die “Cannot open ‘$filename’ for writing $!”;
print $fh @lines;
close $fh or die “Cannot close ‘$filename’: $!”;

Again, this code builds on everything you’ve learned so far. There’s nothing too magical here.

There is another way to rewrite a fi le. You need four things: seek(), tell(), truncate(), and
read-write mode.

To open a fi le in read-write mode, prepend the mode with a +. In this case, use +< mode. There is a
corresponding +> mode, but you should probably never use it because it deletes the contents of your
fi le fi rst. That’s probably not helpful. Following is your new program:

my $filename = ‘chapter_9/targets.txt’;
open my $fh, ‘+<’, $filename
 or die “Cannot open ‘$filename’ in read-write mode: $!”;

my @lines = sort grep { !/^\s*#/ } <$fh>;

seek $fh, 0, 0
 or die “Cannot seek ‘$filame’, 0, 0: $!”;
print $fh @lines;
truncate $fh, tell($fh)
 or die “Cannot truncate ‘$filename’: $!”;
close $fh or die “Cannot close $filename: $!”;

The seek() function has the following syntax:

seek FILEHANDLE, OFFSET, STARTINGAT

The values for STARTINGAT follow:

 ➤ 0: Sets the new position in bytes to OFFSET

 ➤ 1: Sets the new position to the current position plus OFFSET

 ➤ 2: Sets the new position to the end of fi le plus OFFSET, which is usually a negative value

The tell() function returns the position of the fi lehandle, in bytes. The truncate() builtin tells
Perl to truncate the fi le at the given position.

This may seem a bit confusing, but it’s what Perl needs to know to handle this. Again, don’t forget
that you can use autodie to make this simpler:

use autodie;
my $filename = ‘chapter_9/targets.txt’;
open my $fh, ‘+<’, $filename;
my @lines = sort grep { !/^\s*#/ } <$fh>;

seek $fh, 0, 0;

c09.indd 257c09.indd 257 8/9/12 9:46 AM8/9/12 9:46 AM

258 ❘ CHAPTER 9 FILES AND DIRECTORIES

print $fh @lines;
truncate $fh, tell($fh);
close $fh;

Although your author usually uses autodie, you can avoid it in examples to constantly remind
you to check the success or failure of your system calls. As usual, see perldoc -f for the various
 functions to learn more about them.

File Test Operators

When you work with fi les or directories, you often want to know things about them fi rst. For exam-
ple, you might want to see if a fi le exists before trying to read it. The -e fi le test operator does this.
You can also use the -f operator to fi nd out if it’s a fi le.

my $filename = ‘somefile’;
if (-e $filename && -f $filename) { ... }

Every time you use a fi le test operator, the system makes another stat() call (see perldoc -f
stat) and this can be expensive, so Perl let’s you use a special fi lehandle named _. When a fi le test
operator is used, subsequent fi le test operators can use _ that contains the results from the last
stat() call. This is generally much less expensive, particularly if you stack many fi le test operators:

does it exist? Is it a file? Is it readable?
if (-e $filename && -f _ && -r _) { ... }

Also, if you use Perl 5.9.1 or better, you can stack the operators and write the above as follows:

if (-e -f -r $filename) { ... }

There are a great many fi le test operators, and you won’t cover all of them. Just be aware that
they’re there for you. See Table 9-1 for a list, which is loosely sorted with the most common ones at
the top of the table.

TABLE 9-1: File test Operators and Their Meaning

OPERATOR MEANING

-e File exists

-f File is a plain fi le

-d A directory

-r File is readable by eff ective uid/gid

-w File is writable by eff ective uid/gid

-x File is executable by eff ective uid/gid

-z File has zero size (it’s empty)

c09.indd 258c09.indd 258 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 259

OPERATOR MEANING

-s File has nonzero size (returns size in bytes)

-o File is owned by eff ective uid

-R File is readable by real uid/gid

-W File is writable by real uid/gid

-X File is executable by real uid/gid

-O File is owned by real uid

-l File is a symbolic link

-p File is a named pipe (FIFO) or fi lehandle is a pipe

-S File is a socket

-b File is a block special fi le

-c File is a character special fi le

-t Filehandle (often STDOUT) is opened to a tty

-u File has setuid bit set

-g File has setgid bit set

-k File has sticky bit set

-T File is an ASCII text fi le (heuristic guess)

-B File is a “binary” fi le (opposite of -T)

-M Script stat time minus fi le modifi cation time, in days

NOTE In Table 9-1, you see references to real and eff ective uid and gid. These

are UNIX terms indicating the real and eff ective user and group IDs. Normally

you have a real user ID and group ID. (Your user belongs to a group, and this

may have diff erent permissions than the user.)

Sometimes programs can run with setuid, and these change your eff ective user

id to something else while preserving your real user ID. This allows programs

such as passwd to change the /etc/passwd fi le, something that only root

can do. However, although passwd uses your eff ective user ID to allow you to

change /etc/passwd, it can check your real user ID to make sure that you can’t

change someone else’s password.

Programs that use setuid are inherently dangerous because it’s easy to get this

wrong and can open up serious security holes.

c09.indd 259c09.indd 259 8/9/12 9:46 AM8/9/12 9:46 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

260 ❘ CHAPTER 9 FILES AND DIRECTORIES

The Diamond Operator
You’ve seen the angle brackets, <>, around a fi lehandle, but if you use them without a fi lehandle,
or with the special ARGV fi lehandle (not the @ARGV array), they’re called the diamond operator, and
they’re useful for certain types of programs. They cause each fi lename in @ARGV to be opened, in
sequence, and read. This is better seen than explained. Consider the following program, myfilter.pl.

use strict;
use warnings;
while (<>) {
 next unless /\S/;
 print;
}

If you call that with perl myprog.pl file1.txt file2.txt file3.txt, then it prints out every
“nonblank” (in other words, containing at least one nonwhitespace character, \S) line from each of
those fi les.

Note that while (<>) is identical to while (defined ($_ = <ARGV>)).

NOTE while (<>) is the same as while (defined($_ = <ARGV>)). But

how do you know this? Perl has a handy module named B::Deparse. The B::

 modules are backend modules and let you see some things about Perl normally

not visible. In this case, use B::Deparse to “deparse” the while (<>) construct.

perl -MO=Deparse -e ‘while (<>) {}’

That prints the following:

while (defined($_ = <ARGV>)) {
 ();
}
-e syntax OK

You can see the changed code that has been neatly formatted. B::Deparse has

a number of interesting options to help you better understand complicated code.

See perldoc B::Deparse for more information. The -M switch for Perl tells it

to load the module requested, in this case the mysteriously named O. (That’s

the letter O, not the number 0). See perldoc O to understand how that loads

B::Deparse. And if you’re brave, see perldoc B for a better understand of

the B:: modules, but be warned: it’s dense.

Temporary Files

Sometimes you need to create temporary fi les that disappear when your program ends. For example,
you may want to fi lter a fi le but write it out to a tempfi le fi rst. Other times, you may want to create
a tempfi le and feed it to another program. There are several ways to do this, but you can use the
File::Temp module because it’s fairly common.

c09.indd 260c09.indd 260 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 261

use File::Temp ‘tempfile’;
my $fh = tempfile();
or, if you also need the name:
my ($fh, $filename) = tempfile();
If you need a particular suffix for the tempfile:
my ($fh, $filename) = tempfile(SUFFIX => ‘.yaml’);

File::Temp also has an object-oriented interface and provides a number of features. In this case,
just remember that it’s a handy module when you want to write out some temporary data.

DATA as a File

Perl has two special tokens: __END__ and __DATA__, which, if on a line by themselves, tell Perl that
it’s reached the end of the program and to stop compiling. However, the __DATA__ token also tells
Perl that it can read the data after said token (__END__ can sometimes do this too, but read perldoc
perldata for the details and pretend you never knew you could do this.).

Listing 9-2 (code fi le listing_9_2_reading_from_data.pl) has an example.

LISTING 9.2: Reading DATA

use strict;
use warnings;
use diagnostics;
use Data::Dumper;

my %config;

while (<DATA>) {
 next if /^\s*#/; # skip comments
 next unless /(\w+)\s*=\s*(\w+)/; # key = value

 my ($key, $value) = ($1, $2);
 if (exists $config{$key}) {

 # we’ve already seen this key, so convert the value to an
 # array reference
 # Does $config{$key} currently store a scalar or an aref?
 if(! ref $config{$key}) {
 $config{$key} = [$config{$key}];
 }
 push @{ $config{$key} } => $value;
 }
 else {
 $config{$key} = $value;
 }
}
print Dumper(\%config);

__DATA__
max_tries = 3
max_tries = 2 continues

c09.indd 261c09.indd 261 8/9/12 9:46 AM8/9/12 9:46 AM

262 ❘ CHAPTER 9 FILES AND DIRECTORIES

LISTING 9-2 (continued)

timeout = 30
only these people are OK
user = Ovid
user = Sally
user = Bob

Running the code in Listing 9-2 prints something similar to the following:

$VAR1 = {
 ‘max_tries’ => ‘2’,
 ‘timeout’ => ‘30’,
 ‘user’ => [
 ‘Ovid’,
 ‘Sally’,
 ‘Bob’
]
 };

In this case, you used the DATA section of your code to embed a tiny confi g fi le. As a general rule,
you can read from only the DATA section once, but if you need to read from it more than once, use
the following code:

Find the start of the __DATA__ section
my $data_start = tell DATA;
while (<DATA>) {
 # do something
}
Reset DATA filehandle to start of __DATA__
seek DATA, $data_start, 0;

In case you’re wondering, yes, you can also write to the DATA section if you have the correct permis-
sion, but this is generally a bad idea and is left as an exercise for the foolhardy. (Hint: If you get it
wrong, you can overwrite your program.)

NOTE The example of using a DATA section for confi guration works, but be

aware that this is only to show you how __DATA__ works. There are plenty of

useful modules on the CPAN for handling confi guration fi les. Some popular ones

are AppConfig, Config::General, Config::Std, and Config::Tiny. You could

still keep your confi g in the DATA section, but you want it to be in a separate fi le

because this is something that others are likely to need to read and edit.

binmode

When working with text fi les, opening the fi le and reading and writing to it is generally handled
transparently. However, what happens if you open a fi le written on a Linux system and being read
on a Windows system? As explained earlier, the $/ variable defaults to the newline character, but
that is \n on Linux and \r\n on Windows. Perl silently translates newline characters the appropriate

c09.indd 262c09.indd 262 8/9/12 9:46 AM8/9/12 9:46 AM

Basic File Handling ❘ 263

newline character for your operating system. This means that reading and writing text fi les (such as
XML or YAML documents) works transparently, regardless of the operating system you are on.

What happens if you work with a binary fi le, such as an image? You don’t want Perl to try and “fi x”
the newlines, so you open the fi le and use the binmode builtin:

my $image = ‘really_cool.jpg’;
open my $fh, ‘<’, $image
 or die “Cannot open ‘$image’ for reading: $!”;
binmode $fh; # treat it as a binary file

With this code, you don’t need to worry about newlines being translated.

NOTE See perldoc -f binmode for more information.

The binmode builtin accepts an optional “layer” description (older versions of Perl referred to this as
the “discipline”). The :raw layer is the default, so the following two lines are equivalent:

binmode $fh;
binmode $fh, ‘:raw’;

If you want to tell Perl that the fi le is UTF-8 (we’ll explain this in the Unicode section of this chap-
ter), you can use the :encoding(UTF-8) layer:

my $kanji_examples = ‘kanji.txt’;
open my $fh, ‘<’, $kanji_examples
 or die “Cannot open ‘$kanji_examples’ for reading: $!”;
binmode $fh, ‘:encoding(UTF-8)’;

If you use the three-argument form of open() (and you should), you can specify the layer directly in
the mode:

open my $fh, ‘<:raw’, $some_file
 or die “Cannot open ‘$some_file’ for reading: $!”;

TRY IT OUT Writing a Filter

Sometimes you need to take a bunch of fi les and fi lter them by some criteria. Imagine, for your intel-
ligence agency, that you have agents all over the world who regularly send fi les to you via SFTP. These
agents are detailed to investigate suspected spies. The fi les they send contain one or more lines with
additional information in the format name|information|number. Because your agents are careless,
they don’t respect the \d\d\d\d\d number format, so you need to fi x this before you combine their
data into one master fi le. You can write out the data as name|number|information. All the code in
this Try It Out is found in code fi le example_9_1_spies.pl.

1. Type in the following program and save it as example_9_1_spies.pl:

use strict;
use warnings;

c09.indd 263c09.indd 263 8/9/12 9:46 AM8/9/12 9:46 AM

264 ❘ CHAPTER 9 FILES AND DIRECTORIES

while (<>) {
 if (/^\s*#/) {
 print; # keep the comments
 next;
 }
 chomp;
 my ($name, $description, $number) = split /\|/, $_;
 if(defined $name) {
 printf “$name|%05d|$description\n”, $number;
 }
}

2. Now create four text fi les, spies1.txt to spies4.txt, with the following contents:

 ➤ * spies1.txt

James|Definitely a Spy|007

 ➤ * spies2.txt

Number 6|Won’t answer Questions|6

 ➤ * spies3.txt

This guy is only rumored to exist. Not everyone believes it.

Unknown|Maybe a spy|666

 ➤ * spies4.txt

Maxwell Smart|Definitely a spy|86

3. Run the program with perl example_9_1_spies.pl spies*.txt. If your operating system does
not properly support shell metacharacter expansion, you may need to run the program as follows:

perl example_9_1_spies.pl spies1.txt spies2.txt spies3.txt spies4.txt

You should see the following output:

James|00007|Definitely a Spy
Number 6|00006|Won’t answer Questions
This guy is only rumored to exist. Not everyone believes it.
Unknown|00666|Maybe a spy
Maxwell Smart|00086|Definitely a spy

How It Works

The diamond operator, <>, automatically opens in read-mode every fi le passed in as an argument to the
program. Thus, when you run the program with the following command:

perl example_9_1_spies.pl spies1.txt spies2.txt spies3.txt spies4.txt

The while (<>) will set $_ successively to each line in spies1.txt, spies2.txt, spies3.txt, and
spies4.txt, just as if they were all concatenated into one big fi le.

c09.indd 264c09.indd 264 8/9/12 9:46 AM8/9/12 9:46 AM

Directories ❘ 265

Unlike the previous while (<>) example, you do need the chomp() command here because your input
is generally in the form name|description|number but your output is name|number|description.
This means you need to remove the newline from the number but add it back in to the end of every line
in the printf().

DIRECTORIES

When working with Perl, you’ll sometimes need to work with directories. In general, you don’t
want to do this directly because it’s easy to make mistakes. Instead, you can use a number of useful
 modules (explained later in the “Useful Modules” section), but it’s useful to see some of the
low-level details in case you work on code that uses them.

Reading Directories

When reading directories, you usually need a directory handle. The opendir builtin enables you to
create a directory handle, and the readdir builtin can read all entries from a directory handle.

opendir (my $dh, $directory)
 or die “Cannot open ‘$directory’ for reading: $!”;
get all entries not starting with a dot
my @entries = grep { !/^\./ } readdir($dh);
closedir $dh
 or die “Cannot close ‘$directory’: $!”;

WARNING Do not be tempted to think that readdir()returns only fi les and

directories. Depending on what your operating system supports, it might be a

symbolic link (-d), a named piped (-p) or a socket (-S). These are generally not

covered in this book, but you should be aware of this because it’s a common

beginner mistake.

Note that opendir() does not have a three-argument form. You do not “write” to directories,
although you can certainly create directories and fi les in them.

Globbing

You can also use the File::Glob module to glob directories (using wildcard characters to match a
“glob” of fi les or directories). This uses the common fi le globbing semantics. For example, *.txt
matches any fi le with a .txt extension. You can use the glob() builtin or the angle brackets for this
behavior.

NOTE See perldoc File::Glob for more information on glob() and <>.

c09.indd 265c09.indd 265 8/9/12 9:46 AM8/9/12 9:46 AM

266 ❘ CHAPTER 9 FILES AND DIRECTORIES

The following are three equivalent ways to list all directory entries with a .txt extension. Start
using autodie to make your life simpler.

Using opendir():

use strict;
use warnings;
use autodie;
my $dir = ‘drafts/’;
opendir(my $dh, $dir);
my @txt = grep { /\.txt$/ } readdir($dh);
print join “\n”, @txt;
closedir $dh;

Using glob():

use strict;
use warnings;
use autodie;
my $dir = ‘drafts’;
my @txt = glob(“$dir/*.txt”);
print join “\n”, @txt;

Using <>:

use strict;
use warnings;
use autodie;
my $dir = ‘drafts’;
my @txt = <$dir/*.txt>; # no quotes!
print join “\n”, @txt;

WARNING Any version of Perl prior to 5.6 is broken by default for Unicode. 5.12

is sometimes considered the minimum “safe” version, and 5.14 off ers a level of

Unicode support that few other languages can equal.

NOTE Typeglobs and fi leglobs are not the same thing. Your author apologizes

for the confusion.

UNICODE

When Perl is processing data, it needs to know what character set it is encoded as. As the world
becomes more interconnected, it’s increasingly important that different systems communicate
correctly.

This is introduced now because as you’re reading and writing fi les; it’s increasingly common to fi nd
that those fi les are not ASCII or Latin-1, as many developers assume. (Or more correctly, many
developers aren’t aware of the issues.)

c09.indd 266c09.indd 266 8/9/12 9:46 AM8/9/12 9:46 AM

Unicode ❘ 267

What Is Unicode?

In the good ol’ days of programming (arbitrarily defi ned as “when your author was growing up”),
aspiring programmers were typing game programs directly from the BASIC listing in programming
magazines. These programs were written in ASCII, the American Standard Code for Information
Interchange. Back then, characters tended to be represented by 7 or 8 bits of data. ASCII characters
took 7 bits of data, with values ranging from 0 to 128. Eight-bit numbers could use characters from
129 to 255. Different systems often represented the 129 to 255 numbers in different ways and were
sometimes referred to as extended ASCII. You might have had interesting graphic fi gures or you
may have had accented characters. But what did the Japanese do when they wanted to write ?
Clearly having only 255 characters is not enough for many writing systems.

The Unicode standard is a way to describe every character in every writing system with a single
number. This number is called a code point and it’s composed of one or more octets. We use the
word octet to refer to 8 bits, so all characters that can be represented by the numbers 0 to 255 take
up 1 octet of space. Your author’s wife is French, and her fi rst name is Leïla. The ï in Leïla is rep-
resented as the code point U+00EF. (The 00EF is hexadecimal.) The letters A and a are U+0041 and
U+0061, respectively, and is U+56FD. However, a code point describes a character, but it doesn’t
describe the encoding of that character. The EF in code point U+00EF is the decimal number 239.
That number can be described in 8 bits as 11101111. Some encodings, such as UTF-8 and UTF-16,
encode that in 16 bits (2 octets). UTF-32 encodes that in 32 bits (4 octets).

NOTE A bit is a single 0, or 1. 8 bits forms an octet. Many people refer to 8 bits

as 1 byte, but in reality, a byte’s length is dependent on the machine you’re

running it on, so use the word octet to avoid ambiguity.

The code point associated with a character has no relation to the encoding. Any given character
encoding (such as UTF-8, UTF-32, and so on) is free to encode any code point in any way it wants,
so long as the encoding is unambiguous.

UTF-8 has an advantage over many other encodings because ASCII characters are represented iden-
tically in ASCII and UTF-8, making it backward compatible with ASCII. This is why UTF-8 tends
to be the dominant encoding for Unicode. If you send ASCII to a system that is expecting UTF-8, it
often works just fi ne.

That doesn’t tell you, however, how to use Unicode.

Two Simple Rules

A typical workfl ow for a program follows:

 ➤ Initialization

 ➤ Input

 ➤ Calculation

 ➤ Output

c09.indd 267c09.indd 267 8/9/12 9:46 AM8/9/12 9:46 AM

268 ❘ CHAPTER 9 FILES AND DIRECTORIES

The two simple rules are to decode all your text input and encode all your text output. With
this, you can ensure that inside of your Perl program, you work with Perl’s internal string format
and don’t have to worry about errors that occur when you try to concatenate strings in different
encodings.

Decoding Your Data

Decoding your data means “decode your data to Perl’s internal format.” What is Perl’s internal
format? It doesn’t matter. If Perl ever needs to change that internal format, you should not rely on
knowing the details. Suffi ce it to say that Perl generally treats your text data as binary data instead
of characters until you decode it and write it out somewhere. This is the hard part. You must fi nd
out what the encoding of your source data is! So if your data is in 7bit-jis (a Japanese pre-Uni-
code encoding), you could use the Encode::decode() function to transform it into Perl’s internal
format:

use Encode qw(encode decode);
my $string = decode(‘7bit-jis’, $byte_string);

And now Perl can happily handle this for you, including reporting its length correctly.

However, it’s better to not need to decode strings on a string-by-string basis. It’s better to decode
them at the source, if possible (thus making it harder to forget). You can use Perl’s IO layers to han-
dle that. One way is to specify the layer with binmode():

open my $fh, ‘<’, $some_file or die $!;
binmode $fh, ‘:7bit-jis’;

Or better still, specify it with the mode because it’s harder to miss:

open my $fh, ‘<:7bit-jis’, $some_file or die $!;

If you don’t know the encoding of your source data, ask the person who sent you the data. If that
fails, Encode (fi rst shipped with Perl 5.7.3) includes the Encode::Guess module. It’s not a bad
module, but it’s a “guess” at the encoding. Read the documentation carefully, and be aware that it
guesses wrong from time to time.

Encoding Your Data

Now that you’ve decoded your data and done fun things with it, you need to encode it back to its
original format before you send it along. Not surprisingly, the encode() function from Encode does
this for you:

use Encode qw(encode decode);
my $encoded = encode(‘7bit-jis’, $string);

Or again, use the IO layers:

open my $fh, ‘>:7bit-jis’, $some_file or die $!;

c09.indd 268c09.indd 268 8/9/12 9:46 AM8/9/12 9:46 AM

Unicode ❘ 269

Then, when you write the data out to the console, a fi le or some other data sink, it will be encoded
correctly.

A Typical Unicode Nightmare

So decode your input and encode your output. Not too bad, right? Well, that’s until you try it. First,
look at this code snippet.

my $string = ‘ ’;
my $length = length($string);
print “$string has $length characters\n”;

And that prints out (assuming you have the correct font installed):

 has 9 characters

Of course, that’s not true. It has 9 octets, but it clearly has 3 characters. So the fi rst thing that many
people do is this:

use utf8;
my $string = ‘ ’;
my $length = length($string);
print “$string has $length characters\n”;

Many people assume that use utf8 means “magically make everything UTF-8,” but that’s not cor-
rect. You get the following output:

Wide character in print at /var/tmp/eval_Yrhm.pl line 4.
 has 3 characters

NOTE You can cut-and-paste from http://en.wikipedia.org/wiki/

Japan because you are unlikely to type those characters directly.

Note the strange Wide character in print warning, but you now have the correct length. The
use utf8 pragma tells Perl only that your source code is UTF-8. It doesn’t tell Perl that your output
is UTF-8, so Perl is expecting a binary output to the STDOUT fi lehandle, but you’ve sent UTF-8, so
fi x that.

use utf8;

my $string = ‘ ’;
my $length = length($string);
binmode STDOUT, ‘:encoding(UTF-8)’;

print “$string has $length characters\n”;

c09.indd 269c09.indd 269 8/9/12 9:46 AM8/9/12 9:46 AM

http://en.wikipedia.org/wiki/

270 ❘ CHAPTER 9 FILES AND DIRECTORIES

And that gives you the correct output with no warnings. (The Wide Character in Print warning
occurs even if you don’t use warnings).

Alternatively, if you don’t want to apply that encoding layer to all of STDOUT you could just encode
the string from Perl’s internal format to UTF-8, which also makes the warning go away:

use utf8;
use Encode qw(encode decode);

my $string = ‘ ’;
my $length = length($string);
$string = encode(‘UTF-8’, $string);

print “$string has $length characters\n”;

But you’re still not quite sure where you want to be in understanding this. The use utf8 pragma
tells Perl that your source code is UTF-8, but it doesn’t tell Perl that your input is UTF-8. Try this:

use utf8;
use Encode qw(encode decode);

my $string = shift @ARGV;
my $length = length($string);
$string = encode(‘UTF-8’, $string);

print “$string has $length characters\n”;

If you save that as length.pl and run that with perl length.pl , you will get output simi-
lar to this:

æ¥æ¬å½ has 9 characters

You won’t even get a warning. Why? Because you haven’t decoded the data and Perl assumes it’s
Latin-1 data (ISO-8859-1) that it already knows how to deal with. When you explicitly decode the
data, everything works as expected:

use utf8;
use Encode qw(encode decode);

my $string = decode(‘UTF-8’, shift);
my $length = length($string);
$string = encode(‘UTF-8’, $string);

print “$string has $length characters\n”;

If you are unsure of what encodings your system provides, the following one-liner will print all of
them for you:

perl -MEncode -e ‘print join “\n” => Encode->encodings(“:all”)’

c09.indd 270c09.indd 270 8/9/12 9:46 AM8/9/12 9:46 AM

Unicode ❘ 271

Lots of Complicated Rules

Before going further, read the following:

perldoc perlunitut
perldoc perlunifaq
perldoc perlunicode
perldoc perluniintro
perldoc Encode

Unfortunately, although the two simple rules cover general cases, they won’t cover all cases because
they can’t, but we’re going to cover a few issues to be aware of.

WARNING Be careful when using the UTF-8 layer. Many Perl references will tell

you to do something like this:

binmode STDOUT, ‘:utf8’;

Or this:

open my $fh, ‘<:utf8’, $filename;

This is extremely bad because :utf8 is not the same as :encoding(UTF-8).

The :encoding(UTF-8) layer says “this fi lehandle is guaranteed to be UTF-8”

and it will die if you feed it invalid data. The :utf8 layer says “this fi lehandle is

in UTF-8,” but it doesn’t verify that this is true. As a result, programs that use the

:utf8 layer can be deliberately fed invalid data, and this is a security hole. Do

not use the :utf8 layer.

Read http://www.perlmonks.org/?node_id=644786 for more information.

NOTE Just because your source code is UTF-8 doesn’t mean that your text edi-

tor or IDE is set to recognize or save your source code as UTF-8. Consult your

editor’s documentation on how to do this.

Also, your terminal program may not default to UTF-8. Check how to set your

terminal’s preferences for displaying UTF-8 data correctly. This is often in a pref-

erence titled “Character Encoding” or something similar. If your terminal cannot

handle UTF-8 data, use a modern terminal program.

In the event that your terminal and editor/IDE both claim to handle UTF-8 data

correctly and you still see garbage on the screen, you may need to ensure you

have the correct fonts installed. You need to consult your operating system’s

documentation for how to do this.

c09.indd 271c09.indd 271 8/9/12 9:46 AM8/9/12 9:46 AM

http://www.perlmonks.org/?node_id=644786

272 ❘ CHAPTER 9 FILES AND DIRECTORIES

Case Folding

Case folding is converting all the characters in a string to uppercase or lowercase. This is useful
when you want to make case-insensitive comparisons. It’s also often a dangerous thing to do with
Unicode. Consider the following program:

use utf8;
binmode(STDOUT, “:encoding(UTF-8)”);
print uc(“σ”), “\n”; # Greek small letter sigma
print uc(“ς”), “\n”; # Greek small final letter sigma

That prints out the same letter twice, an uppercase sigma character:

Σ
Σ

The σ and ς characters are the same lowercase sigma character, but the latter is used at the end of
the word. When you call uc() on them, they both resolve to an uppercase sigma, Σ. This leads to
this problem:

use utf8;
binmode(STDOUT, “:encoding(UTF-8)”);
print lc(uc(“σ”)), “\n”; # Greek small letter sigma
print lc(uc(“ς”)), “\n”; # Greek small final letter sigma

That prints σ twice, meaning that case-folding is not round-trip safe in Unicode.

In earlier versions of Perl, in some cases, characters in the range 128 to 255 would often have
strange behavior when you tried to use lc, uc, ucfirst, and so on. When used as characters, they
would sometimes be considered Unicode code points, and when used as bytes, they could be consid-
ered “unassigned characters” and not match \w in regular expressions. The solution is simple:

use feature ‘unicode_strings’;

Unfortunately, that feature was not added until Perl 5.11.3 (a development release). So today it’s
argued that you should use Perl 5.12 or better (preferably 5.14) if you want to be “Unicode safe.”

Converting Between Encodings

You need to convert between UTF-16 and ISO-8859-1 (Latin-1). To do this, you must convert from
one encoding to Perl’s internal format and then convert to the desired format:

my $string = decode(‘UTF-16’, $utf16_data);
my $latin1 = encode(‘iso-8859-1’, $string);

However, ISO-8859-1 is a subset of UTF-16, so you may lose data.

Wide Character in Print

You’ll see this warning a lot when you work with character encodings and you’re not being careful.
When this happens, it’s because you haven’t specifi ed your encoding layer. Perl then assumes your

c09.indd 272c09.indd 272 8/9/12 9:46 AM8/9/12 9:46 AM

Unicode ❘ 273

data is ISO-8859-1 (for backward compatibility) and tries to output UTF-8. Any data that doesn’t fi t
in the ISO-8859-1 range emits this warning. That’s why you got this warning with this code snippet
used earlier:

use utf8;
my $string = ‘ ’;
my $length = length($string);
print “$string has $length characters\n”;

Assuming Everything Is UTF-8

The input data may be read from fi les, the command line, sockets, and other data sources. The
output data may be written to STDOUT, fi les, or other data sinks. To tell Perl that all input and
output data is UTF-8, you can set the PERL_UNICODE environment variable to AS. The A and S
letter combination is described in the -C section of perldoc perlrun.

Unfortunately, it’s not as simple as setting the environment variable in your code. You must set this
before you run your program. On a Linux style system, you can do this:

PERL_UNICODE=AS perl program.pl

Or you can export the variable, and it will be set for all programs:

export PERL_UNICODE=AS

On Windows, the syntax is:

set PERL_UNICODE=AS

This can be a hassle to do every time, and it may very well be the wrong thing to do if you have non-
UTF-8 data.

is_utf8()

Sometimes you see this in code:

use Encode ‘is_utf8’;
if (is_utf8($string)) {
 # wrong!
}

Or the identical:

if (utf8::is_utf8($string)) {
 # wrong!
}

This does not work as you think it does. The is_utf8() function is used internally to determine if
Perl should treat a string as Latin-1 or UTF-8. However, just because the UTF-8 fl ag is set does not
mean that the string is actually UTF-8. Like the Encode::Guess module, it’s just a guess (for you)
and you explicitly set your encoding layers as described earlier.

c09.indd 273c09.indd 273 8/9/12 9:46 AM8/9/12 9:46 AM

274 ❘ CHAPTER 9 FILES AND DIRECTORIES

A UTF-8 Shortcut

If you want a shortcut for assuming that @ARGV, your fi lehandles, and your source code are all
UTF-8, you can install the utf8::all module from the CPAN.

use utf8::all;

You may recall this program from earlier:

use utf8;

use Encode qw(encode decode);
my $string = decode(‘UTF-8’, shift);
my $length = length($string);
$string = encode(‘UTF-8’, $string);

print “$string has $length characters\n”;

With the utf8::all pragma, this becomes:

use utf8::all;
my $string = shift @ARGV;
my $length = length($string);
print “$string has $length characters\n”;

In other words, it makes it easier to write programs with UTF-8 data. It’s not perfect, but it’s a good
start.

Printing Unicode

By now you already know how to open your STDOUT to handle printing Unicode, but what about
typing those funny characters? Well, you don’t have to. One way to avoid this is with the charnames
pragma:

use utf8::all;
use charnames ‘:short’;

note that double-quoted strings are required
print “\N{greek:Sigma} is an upper-case sigma.\n”;

And that prints the following (with no warning due to utf8::all):

Σ is an upper-case sigma.

The \N{} construct with charnames is resolved at compile time, so you cannot use variables there.

You can also use the Unicode full names:

use utf8::all;
use charnames ‘:full’;
print “\N{GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI}\n”;

c09.indd 274c09.indd 274 8/9/12 9:46 AM8/9/12 9:46 AM

Unicode ❘ 275

Which prints ἧ.

If you know the code point but not the name, you can use \N{U+codepoint}. Again, remember this
is done at compile time. Thus, the code point for the smiley face character is U+263A, so you can
print it with this:

use utf8::all;
print “\N{U+263A}\n”;

Or you can just fall back to the chr() function:

print chr(0x263a);

See http://unicode.org/charts/ for a list of the appropriate names you may want to print.

Unicode Character Properties and Regular Expressions

The character ἧ is a Greek letter, but is it uppercase or lowercase? You can try Unicode character
properties to fi nd out:

use utf8::all;

my $character =’ἧ’;
if ($character =~ /\p{Lowercase}/) {
 print “$character is lower case\n”;
}
if ($character =~ /\p{Uppercase}/) {
 print “$character is upper case\n”;
}

That correctly prints ἧ, which is lowercase.

Unicode properties are properties about characters that describe something about it. They might
describe the case of the letter, the script used, whether it’s a math symbol or punctuation, and so
on. Unicode is so all-encompassing — and it must be because it is trying to handle all writing
systems — that you can fi nd many strange things in Unicode land. Here’s one of them:

use utf8::all;
latin capital letter d with small letter z
my $character = “\N{U+01F2}”;
if ($character =~ /\p{Lowercase}/) {
 print “$character is lower case\n”;
}
if ($character =~ /\p{Uppercase}/) {
 print “$character is upper case\n”;
}
if ($character =~ /\p{Titlecase_Letter}/) {
 print “$character is title case\n”;
}

And that prints this:

ἧ is title case

c09.indd 275c09.indd 275 8/9/12 9:46 AM8/9/12 9:46 AM

http://unicode.org/charts/

276 ❘ CHAPTER 9 FILES AND DIRECTORIES

This is because the Latin capital letter d with small letter z is considered a Titlecase character and is
not uppercase or lowercase. Fun, eh?

NOTE See perldoc perluniprop for a full list of Unicode properties supported

and how to use them. See also Chapter 4 of the Unicode version 6 standard:

http://www.unicode.org/versions/Unicode6.0.0/ch04.pdf. perldoc

perlunicode also has a list of common properties in the “Unicode Character

Properties” section.

Further Reading

You can spend a long time understanding Unicode, and this section of the book is far too short, but
the following are a couple good starting points for understanding Unicode and some of the associ-
ated issues.

First, read Joel Spolsky’s famous “The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses!)” article at
http://www.joelonsoftware.com/articles/Unicode.html

Second, read this: http://stackoverflow.com/questions/6162484/
why-does-modern-perl-avoid-utf-8-by-default

In that link, Tom Christiansen explains, in depth, many of the traps to be aware of. It’s mind-bending,
but it begins to give you an idea of what you’re up against.

Also, http://en.wikipedia.org/wiki/Free_software_Unicode_typefaces has a list of
Free Unicode fonts you can install if you’re tired of seeing broken characters when you try to print
Unicode.

USEFUL MODULES

If you start working frequently with the fi lesystem, you’ll be happy to know that many Perl modules
are available to take away the drudgery. Further, as they get new features added and bugs fi xed,
they’ll correctly handle issues that you don’t want to have to worry about.

File::Find

The File::Find module was released with Perl 5 and is useful for walking through directory struc-
tures and fi nding fi les and directories matching the criteria you’re looking for. It’s a great module
that, unfortunately, is showing its age. You’ll often fi nd when working with Perl that older modules
are stable, powerful, and have diffi cult interfaces. This is because when Perl 5 was released, many
people were still experimenting with all its features and trying to fi gure out the best way to work
with them. File::Find is a module from that era and its interface is clumsy, but it works well. It
has a variety of options, but you must do most of the work. The following is one way to delete all
empty text fi les in a directory and its subdirectories:

c09.indd 276c09.indd 276 8/9/12 9:46 AM8/9/12 9:46 AM

http://www.unicode.org/versions/Unicode6.0.0/ch04.pdf
http://www.joelonsoftware.com/articles/Unicode.html
http://stackoverflow.com/questions/6162484/why-does-modern-perl-avoid-utf-8-by-default
http://stackoverflow.com/questions/6162484/why-does-modern-perl-avoid-utf-8-by-default
http://en.wikipedia.org/wiki/Free_software_Unicode_typefaces

Useful Modules ❘ 277

use File::Find;
find(\&wanted, ‘some_directory/’);
sub wanted {
 if (/\.txt$/ && -f $_ && -z _) {
 # only delete empty text files
 unlink $_ or die “Could not unlink ‘$File::Find::name’: $!”;
 }
}

You could also have written that as the following (but this is a touch clumsy):

use File::Find;
find(sub {
 if (/\.txt$/ && -f $_ && -z _) {
 unlink $_ or die “Could not unlink ‘$File::Find::name’: $!”;
 }
 },
 ‘some_directory’,
);

From the documentation:

 find(\&wanted, @directories);
 find(\%options, @directories);

The find() function does a depth-fi rst search over the given @directories in the order they are
given. For each fi le or directory found, it calls the wanted() subroutine. (The details on how to
use the wanted() function are upcoming). In addition, for each directory found, it will chdir()
(change directory) into that directory and continue the search, invoking the wanted() function on
each fi le or subdirectory in the directory.

Every time the wanted() function is called, the following three variables will be set:

 ➤ $File::Find::name: The full path to the fi le or directory found

 ➤ $File::Find::dir: The full path to the current directory found

 ➤ $_: The short name of the fi le or directory found

In this case, the full path is relative to the starting directory.

When you start a Perl program, its “current directory” is generally the directory you were in when
you started the program. However, you can call chdir($some_directory) and Perl will attempt to
change its current directory to that directory. Thus, the $_ variable is relative to the current direc-
tory that the File::Find::find() function is in at the time.

In other words, if you write the following:

find sub { print “$_ -> $File::Find::name\n” }, ‘notes/’);

c09.indd 277c09.indd 277 8/9/12 9:46 AM8/9/12 9:46 AM

278 ❘ CHAPTER 9 FILES AND DIRECTORIES

If there is a fi le named notes/some_file.txt, the following variables will be set when that fi le is
reached:

 ➤ $File::Find::name — notes/some_file.txt

 ➤ $File::Find::dir — notes/

 ➤ $_ — some_file.txt

Because the find() function changes into the directory it’s searching at the time, fi le test opera-
tors and functions such as open and unlink should operate on $_ instead of $File::Find::name.
However, the latter is useful if you need to do error reporting:

the $_ is optional with unlink as it default to $_
unlink $_ or die “Could not unlink ‘$File::Find::name’: $!”;

It’s also useful if you need to collect the names for later use:

find (\&html_documents, @directories);
my @html_docs;
sub html_documents {
 push @html_docs, $File::Find::name
 if /\.html?$/;
}

When the find() function is fi nished, your Perl program’s current directory becomes the one you
started with, so working with the @html_docs array needs the full paths relative to the current
directory and not just the short name in $_.

NOTE See perldoc File::Find for many more options for this module.

File::Path

File::Path was released with Perl 5.001 and lets you manipulate fi le paths and not just individual
fi les and directories.

use autodie ‘:all’;
use File::Path qw(make_path remove_tree);
make_path(‘path/to/create/’, ‘another/path/to/create’);
remove_tree(‘path/to/remove’);

Those should be self-explanatory. The latter removes a “tree” because path/to/remove/ may have
a complete directory tree underneath it. As with other modules listed here, see the documentation to
understand all that it can do. Only the basics are covered here. You can use autodie to make error
handling a bit safer, but the docs show a slightly different approach.

c09.indd 278c09.indd 278 8/9/12 9:46 AM8/9/12 9:46 AM

Useful Modules ❘ 279

File::Find::Rule

Object-oriented Perl hasn’t been covered yet (that’s in Chapter 12), but the File::Find::Rule mod-
ule is so useful that it’s explained briefl y now. If you don’t understand what’s going on, bookmark
this page to return to after you read Chapter 12.

File::Find::Rule is an excellent alternative to the File::Find module because it has a cleaner
syntax that is easier to follow. The code to fi nd HTML documents becomes this:

my @html_docs = File::Find::Rule
 ->file
 ->name(qr/\.html?$/)
 ->in(@directories);

The -> syntax, as you may recall, is the dereferencing operator. In this case it’s also used when you
call methods on an object. Chapter 12 covers objects more, but for now, be aware that ->file,
->name, and ->in are sort of like subroutine calls. With the File::Find::Rule examples, just note
the syntax, and try these examples on your own. You’ll understand this better when objects are
covered.

Moving along, here’s how to fi nd empty fi les:

my @empty = File::Find::Rule->file->empty->in(@directories);

You’ll note how naturally that reads. The file() method means Find Only Files. The empty()
method means Find Only Empty Files (or directories, if you asked for directories). The in() method
means, well, I’m sure you get the idea by now. The name() method seen just a bit earlier takes a glob
or regex and returns everything matching that.

So say you’re converting a project from the Subversion source control system to git, and you want to
delete all of Subversion’s annoying .svn directories; you could do this:

use File::Path ‘remove_tree’;
use File::Find::Fule;
my @svn_dirs = File::Find::Rule->directory->name(‘.svn’)->in($dir);
foreach my $svn_dir (@svn_dirs) {
 remove_tree($svn_dir)
 or die “Cannot rmdir($svn_dir): $!”;
}

File::Find::Rule also provides an exec() method. Like File::Find, it takes a callback
(a subreference passed to it). Unlike File::Find, it passes relevant variables to the subref as
arguments, so the preceding could be written as this:

File::Find::Rule->find->directory->name(‘.svn’)->exec(sub {
 my ($short_name, $directory, $fullname) = @_;
 remove_tree($svn_dir)
 or die “Cannot rmdir($svn_dir): $!”;
})->in(@directories);

c09.indd 279c09.indd 279 8/9/12 9:46 AM8/9/12 9:46 AM

280 ❘ CHAPTER 9 FILES AND DIRECTORIES

If the exec() method is encountered, the $short_name, $directory, and $fullname are passed to
the subref. These are analogous to the $_, $File::Find::dir, and $File::Find::name variables
used with File::Find.

Of course, sometimes you prefer an iterator. This is handy when you work with a large directory
structure and you want to process everything as it’s encountered rather than waiting for a list to be
generated. So instead of this:

my @html_docs = File::Find::Rule->file
 ->name(qr/\.html?$/)
 ->in(@directories);

You could write this:

my $find = File::Find::Rule->file
 ->name(qr/\.html?$/)
 ->start(@directories);

while (defined (my $html_document = $find->match)) {
 # do something with $html_document
}

Or maybe you want to print all fi les greater than a half meg?

File::Find::Rule
 ->file
 ->size(‘>.5M’)
 ->exec(sub {
 my ($short_name, $directory, $fullname) = @_;
 print “$fullname\n”;
 })->in(@ARGV);

Like File::Find, File::Find::Rule has many options, so reading the documentation is useful.

TRY IT OUT Recursively Printing a Directory Structure

Some systems come with a command-line utility named tree that prints out a text representation of
a fi le tree. For example, your author wrote this book using the Vim editor and wrote a fi letype plug-in
named wroxbook.vim and a syntax fi le with the same name. He stored them in a vim/ directory in
ftplugin/ and syntax/ directories. The directory structure looks like this (produced by the afore-
mentioned tree utility):

vim
|-- ftplugin
| `-- wroxbook.vim
`-- syntax
 `-- wroxbook.vim

We’ll write a simple Perl version of this that will print the following output for that directory structure:

c09.indd 280c09.indd 280 8/9/12 9:46 AM8/9/12 9:46 AM

Useful Modules ❘ 281

vim/
| ftplugin/
| |--wroxbook.vim
| syntax/
| |--wroxbook.vim

It’s not quite as pretty as the tree utility, but it works for fi les and directories. You may want to
keep this program handy (and have it somewhere in your path) as it’s used to refer to fi le and
directory layout in later chapters. All the code in this Try It Out can be found in the code fi le
example_9_2_tree.pl.

 1. Type in the following program, and save it as example_9_2_tree.pl. Use the autodie module
here. You need to install this from the CPAN.

use strict;
use warnings;
use autodie ‘:all’;
use File::Spec::Functions qw(catdir splitdir);

The starting directory wil be passed on the command line.
Otherwise, use the current directory.
my $dir = @ARGV ? $ARGV[0] : ‘.’;

unless (-d $dir) {
 die “($dir) is not a directory”;
}
print_entries($dir, 0);
exit 0;

sub print_entries {
 my ($dir, $depth) = @_;
 my @directories = grep { $_ } splitdir($dir);
 my $short_name = $directories[-1];
 my $prefix = ‘| ‘ x $depth;

 print “$prefix$short_name/\n”;
 opendir(my $dh, $dir);

 # grab everything that does not start with a .
 my @entries = sort grep { !/^\./ } readdir($dh);
 foreach my $entry (@entries) {
 my $path = catdir($dir, $entry);
 if (-f $path) {
 print “$prefix|--$entry\n”;
 }
 elsif (-d _) {
 print_entries($path, $depth + 1);
 }
 else {
 # skip anything not a file or directory
 }
 }
}

c09.indd 281c09.indd 281 8/9/12 9:46 AM8/9/12 9:46 AM

282 ❘ CHAPTER 9 FILES AND DIRECTORIES

 2. Run the program with perl example_9_2_tree.pl dirname. You should see a text representa-
tion of the directory you passed to it as an argument. If you had the same vim/ directory struc-
ture as previously outlined, you should see the following output:

vim/
| ftplugin/
| |--wroxbook.vim
| syntax/
| |--wroxbook.vim

How It Works

The File::Spec::Functions module is used, and you can import the catdir() and splitdir()
functions. These are used to join directories together and to split them into their component parts.
Under the hood, this module recognizes your operating system and, most important, how to recognize
directories and fi les. For example, in Macs prior to OS X, the path separator was the colon, :. You
don’t have to know this because File::Spec::Functions can take care of it for you.

When you fi rst call print_entries(), you can see the following three lines of code:

my @directories = grep { ‘’ ne $_ } splitdir($dir);
my $short_name = $directories[-1]; # grab the last parth
my $prefix = ‘| ‘ x $depth;

The grep { ‘’ ne $_ } looks strange, but splitdir() may return empty strings for directory separa-
tors because these are signifi cant on some operating systems. If you passed vim/ as the argument to this
program, the fi rst time you called this function, @directories would be set to (‘vim’, ‘’) and the
name would then be the empty string. You can avoid this by using grep to select only directory parts
not equal to the empty string. (grep { $_ } fails because a 0 (zero) is a perfectly valid directory name
but evaluates as false.)

The $short_name is the last directory in the path. Otherwise, you could end up with output that keeps
repeating irrelevant information that obscures our intent. You would have this:

beginning_perl/
| beginning_perl/vim/
| | beginning_perl/vim/ftplugin/
| | |-- wroxbook.vim
| | beginning_perl/vim/syntax/
| | |-- wroxbook.vim

Instead of this:

beginning_perl/
| vim/
| | ftplugin/
| | |-- wroxbook.vim
| | syntax/
| | |-- wroxbook.vim

c09.indd 282c09.indd 282 8/9/12 9:46 AM8/9/12 9:46 AM

Useful Modules ❘ 283

The $prefix variable is a string like ‘| | | ‘, corresponding to the number of directories
($depth) you have. You could have used splitdir() and counted them if you didn’t want to pass the
$depth variable.

Then you can print the current directory:

 print “$prefix$short_name/\n”;

Then open the directory, and for everything in it that does not start with a dot, add it to the @entries
array:

opendir(my $dh, $dir);
my @entries = sort grep { !/^\./ } readdir($dh);

Then go through every entry, using File::Spec::Functions::catdir() to add the original directory
name to the entry. Otherwise, -f and -d won’t fi nd the fi le you want.

 foreach my $entry (@entries) {
 my $path = catdir($dir, $entry);
 if (-f $path) {
 print “$prefix|--$entry\n”;
 }
 elsif (-d _) {
 print_entries($path, $depth + 1);
 }
 else {
 # skip anything not a file or directory
 }
 }

You can use _ with -d to avoid calling stat() on the fi le again and minimizing disk I/O. (This can get
expensive if you have a large number of fi les and directories.)

The trailing else block is not necessary here, but it’s good practice to remind programmers that you
are deliberately not processing symbolic links, sockets, or anything else that might not be a fi le or
directory. Otherwise, a maintenance programmer might assume this is a bug in your code. Remember:
Always double-check if/elsif conditions if they do not have a trailing else block.

And just to remind you of the value of using modules and CPAN, the following is the same code rewrit-
ten in an iterative fashion with File::Find::Rule.

use strict;
use warnings;
use File::Spec::Functions ‘splitdir’;
use File::Find::Rule;

my $dir = @ARGV ? $ARGV[0] : ‘.’;
my $rule = File::Find::Rule->any(
 File::Find::Rule->directory, # only directories
 File::Find::Rule->file, # or files
)->start($dir);

c09.indd 283c09.indd 283 8/9/12 9:46 AM8/9/12 9:46 AM

284 ❘ CHAPTER 9 FILES AND DIRECTORIES

while (defined(my $found = $rule->match)) {
 next if $found =~ /^\./;
 my @directories = splitdir($found);
 my $name = pop @directories;

 if (-f $found) {
 print “| “ x (@directories - 1);
 print “|-- $name\n”;
 }
 else {
 print “| “ x @directories;
 print “$name/\n”;
 }
}

Many times in the rest of this book, we’ll fi nd this ability to print out the tree structure of directories
useful, so we’ll be running this program a lot and will refer to it as tree.pl for simplicity.

SUMMARY

This chapter covered the basics of fi le and directory manipulation in Perl. You learned how to open
fi les and read and write to them. You learned about fi le test operators to check for interesting prop-
erties about your fi lesystem and how to use binmode() to tell Perl how it’s supposed to read and
write the data in fi lehandles.

Also, because this is the fi rst chapter to start working with data outside of your program, Unicode
was introduced. It’s a complicated topic and one that more and more programmers are expected to
understand. Due to the Internet, what was previously a problem encountered by only a handful of
people is one that many must now deal with and understand. You can save yourself much grief in
your future career by coming to grips with it now.

EXERCISES

 1. The Unix cat utility takes a list of fi les as arguments and concatenates them, printing the result

to STDOUT. Write this utility in Perl as cat.pl. (If you know the UNIX cat utility, you don’t need to

provide the rest of the behavior.)

 2. Modify cat.pl to strip comments and blank lines. Consider a comment to be any line in a fi le

that begins with zero or more spaces followed by a # symbol.

 3. Write a program, codepoints2char.pl, that can take a list of decimal (not hexadecimal) numbers

and print the Unicode character. Assume UTF-8. Try running it with the following:

perl codepoint2char.pl 3232 95 3232

c09.indd 284c09.indd 284 8/9/12 9:46 AM8/9/12 9:46 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Summary ❘ 285

 4. Write a program, chars2codepoints.pl, which can take a list of words on the command line

and print out, in decimal, their code points separated by spaces, having each word’s list of code

points on a separate line. You can search Wikipedia for interesting lists of words written in other

scripts.

 5. (Extra Credit) Print out the values from exercise as Unicode code points. In other words, decimal

3232 becomes U+0CA0. (Hint: see sprintf() or printf() in Chapter 4.)

NOTE This exercise is problematic because it requires the proper fonts installed

for the code points you want to display. The 3232 (U+OCA0) code point is from

Kannada, one of the Dravidian languages of India. You may need to search for

an install of a free Kannada font.

c09.indd 285c09.indd 285 8/9/12 9:46 AM8/9/12 9:46 AM

286 ❘ CHAPTER 9 FILES AND DIRECTORIES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

open() The function for opening fi les for reading and writing.

File test operators Used for testing various properties of fi les and directories.

The diamond operator A shortcut for opening fi les from the command line.

Temporary fi les Files that are deleted when your program ends.

The DATA section Storing data in your program as a fi le.

Binmode Used to give hints to Perl on how to read/write fi les.

opendir,readdir Functions for reading directories.

Globbing Patterns to match fi les and directories.

Unicode A standard for describing all character sets.

UTF-8 The most popular Unicode encoding.

Unicode character properties Ways to identify interesting features of a character.

File::Find A module used to make directory traversal easier.

File::Path A module that makes path manipulation easier.

File::Find::Rule A clean alternative to File::Find.

c09.indd 286c09.indd 286 8/9/12 9:46 AM8/9/12 9:46 AM

10
sort, map, and grep

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Sorting lists alphabetically and numerically

 ➤ Creating custom sorts with sort subroutines

 ➤ Using map and grep to effi ciently transform and fi lter lists and

 avoiding their traps

 ➤ Combing map, sort, and grep to create powerful list manipulations

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
remtitle.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is
divided into the following major examples:

 ➤ example_10_1_soldier.pl

 ➤ example_10_2_is_prime.pl

 ➤ example_10_3_celsius.pl

 ➤ listing_10_1_employee.pl

 ➤ listing_10_2_collate.pl

 ➤ listing_10_3_locale_sort.pl

c10.indd 287c10.indd 287 8/9/12 9:54 AM8/9/12 9:54 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://wrox.com
http://WROX.COM

288 ❘ CHAPTER 10 SORT, MAP, AND GREP

By this time in the book you should have a suffi cient understanding of Perl that you’re able to use
it for small tasks in relation to your day-to-day work. However, there’s an odd sort of “litmus test”
for Perl developers. For some reason, understanding sort, map, and grep seems to be the difference
between beginner and intermediate Perl developers. When you cross this threshold, you’re well on
your way to being a Perl expert.

Though sort, map, and grep have been mentioned briefl y, their usage has deliberately been kept
simple. Now you can see a bit more about their full power.

The one thing to remember is that each of these creates a new list from an old list.

BASIC SORTING

The sort builtin sorts a list and returns a new list. It has three forms:

sort LIST
sort BLOCK LIST
sort SUBNAME LIST

As an example of each:

@passengers = sort @passengers;
@passengers = sort { $a->{age} <=> $b->{age} } @passengers;
@passengers = women_and_children_first @passengers;

Sorting Alphabetically

The simplest sort in Perl is this:

my @list = sort qw(this is a list);
print “@list”;

That prints out the Yoda-esque phrase: a is list this. By default, sort sorts items with a string
comparison. Well, actually, it sorts items via a numeric comparison of the string’s code point, from
lower to higher values. So the following line:

declare our source code as UTF-8
use utf8;
and we’re printing UTF-8
binmode STDOUT, ‘encoding(UTF-8)’;
print join ‘ ‘, sort qw/b aa 1 a A/;

Prints this:

1 A a aa b

c10.indd 288c10.indd 288 8/9/12 9:54 AM8/9/12 9:54 AM

Basic Sorting ❘ 289

Sorting Numerically

Perl’s default sort (more or less) sorts strings as characters. This means that if you do this:

print join “\n”, sort qw/1 9 10 99 222/;

You get this:

1
10
222
9
99

You probably meant to sort your numbers numerically. In this case, you can provide a sort block:

print join “\n”, sort { $a <=> $b } qw/1 9 10 99 222/;

And now you get the correct sort order:

1
9
10
99
222

NOTE If you’re unsure of why Perl sorts in this order, you can convert each char-

acter to its UTF-8 code point with this (obviously, the aa is left out for this example):

use utf8::all;
print join ‘ ‘, map { as_code_point($_) } sort qw/b 1 a
A/;
sub as_code_point {
 my $char = shift;
 die “Only characters!” if length($char) > 1;
 return “U+” . uc sprintf “%04x”, ord $char;
}

And that prints out this:

U+0031 U+0041 U+0061 U+0062 U+56FD U+65E5 U+672C

As you can see, by default Perl’s sort will sort characters in ascending order by

their numerical ord() value. If you don’t understand the map, don’t worry. It is

explained carefully in the “map and grep” section later in this chapter.

If you want to see the decimal value of the numbers, use this:

use utf8::all;
print join ‘ ‘, map ord, sort qw/b 1 a A/;

c10.indd 289c10.indd 289 8/9/12 9:54 AM8/9/12 9:54 AM

290 ❘ CHAPTER 10 SORT, MAP, AND GREP

In the form sort BLOCK LIST, Perl iterates over the pairs of items in the list and sets the special
package variables $a and $b to each element in the list in turn. The <=> operator (sometimes called
the spaceship operator) was covered in Chapter 4. In this case, it tells Perl to compare $a and $b as
numbers instead of strings.

WARNING The $a and $b variables are special package variables. Do not

declare them with my or else your sort blocks are likely to break.

Reverse Sorting

Many times you want a list reversed. You could do this:

my @reversed_names = reverse sort @names;

That reads clearly, but for larger lists, this is ineffi cient. It sorts the list into ascending order
and then reverses it into descending order. Why not just sort directly into reverse descending order?
In this case, you can use a sort block and swap the $a and $b variables.

my @reversed_names = sort { $b cmp $a } @names;
This works when sorting numbers in descending order, too:
my @descending = sort { $b <=> $a } @numbers;

Complex Sort Conditions

When sorting on a single value, sorting is straightforward, but if you need to sort on multiple values,
you need to use a sort block or sort subroutine. Listing 10-1 (code fi le listing_10_1_employee.
pl) shows an example of complex sorting.

LISTING 10-1: Complex Sorting in Perl

use strict;
use warnings;
use diagnostics;
my @employees = (
 {
 name => ‘Sally Jones’,
 years => 4,
 payscale => 4,
 },
 {
 name => ‘Abby Hoffman’,
 years => 1,
 payscale => 10,
 },

c10.indd 290c10.indd 290 8/9/12 9:54 AM8/9/12 9:54 AM

Basic Sorting ❘ 291

 {
 name => ‘Jack Johnson’,
 years => 4,
 payscale => 5,
 },
 {
 name => ‘Mr. Magnate’,
 years => 12,
 payscale => 1,
 },
);
@employees =
 sort {
 $b->{years} <=> $a->{years}
 ||
 $a->{payscale} <=> $b->{payscale}
 }
 @employees;
printf “Name Years Payscale\n”;
foreach my $employee (@employees) {
 printf “%-15s %2d %2d\n” => @{$employee}{qw/name years payscale/};
}

Running listing_10_1_employee.pl prints the following:

Name Years Payscale
Mr. Magnate 12 1
Sally Jones 4 4
Jack Johnson 4 5
Abby Hoffman 1 10

The idea in this case is that you want to print a list of employees. They should be printed from the
highest number of years in the company to the lowest. That’s your fi rst sort condition:

$b->{years} <=> $a->{years}

The $b and the $a are reversed to provide a descending sort.

But Sally Jones and Jack Johnson have the same number of years with the company. The highest
payscale is 1 and the lowest is 10, and if a tie occurs, you need to print employees from highest to
lowest payscale (in other words, from 1 to 10).

$a->{payscale} <=> $b->{payscale}

You may remember that the <=> operator returns 0 (zero) if the two terms are equal, so you can
use the || operator to sort by payscale if the employees have the same number of years with the
company:

@employees =
 sort {
 $b->{years} <=> $a->{years}
 ||

c10.indd 291c10.indd 291 8/9/12 9:54 AM8/9/12 9:54 AM

292 ❘ CHAPTER 10 SORT, MAP, AND GREP

 $a->{payscale} <=> $b->{payscale}
 }
 @employees;

What happens if the employees have the same number of years and the same payscale? Well, just
throw in a sort by name:

@employees =
 sort {
 $b->{years} <=> $a->{years}
 ||
 $a->{payscale} <=> $b->{payscale}
 ||
 $a->{name} cmp $b->{name}
 }
 @employees;

This looks like a lot of work, but the || operator short-circuits. That means that because only one of
the conditions is required to be true, as soon as one of the conditions evaluates as true, the
 subsequent conditions are not evaluated. It’s actually a fairly effi cient sort.

Writing a sort Subroutine

In handling complex sorts, you might fi nd that this is a bit daunting:

@employees =
 sort {
 $b->{years} <=> $a->{years}
 ||
 $a->{payscale} <=> $b->{years}
 ||
 $a->{name} cmp $b->{name}
 }
 @employees;

The fi x is simple. Put that sort block into a subroutine, and replace the block with the subroutine
name:

sub by_seniority_then_pay_then_name {
 $b->{years} <=> $a->{years}
 ||
 $a->{payscale} <=> $b->{years}
 ||
 $a->{name} cmp $b->{name}
}
@employees = sort by_seniority_then_pay_then_name @employees;

When you have a complex sort condition, giving it a named sort subroutine improves readability
quite a bit. As an added bonus, if you need to replicate a complex sort elsewhere, you already have
the code handy.

c10.indd 292c10.indd 292 8/9/12 9:54 AM8/9/12 9:54 AM

Basic Sorting ❘ 293

Some people prefer to not use the $a and $b variables. They are not strictly required in the sort
subroutine. If you want to use variables with names of your choosing (and not $a or $b) you need to
use a $$ prototype to force passing $a and $b to the sort sub for assignment to your variables:

sub by_seniority_then_pay_then_name($$) {
 my ($employee1, $employee2) = @_;
 $employee2->{years} <=> $employee1->{years}
 ||
 $employee1->{payscale} <=> $employee2->{years}
 ||
 $employee1->{name} cmp $employee2->{name}
}
@employees = sort by_seniority_then_pay_then_name @employees;

Be aware that if you do this, the sort subroutine will be a bit slower because as an optimization in
Perl, the $a and $b variables are automatically aliased by Perl when sort is encountered.

Sorting and Unicode Fun!

Why do you sort data? You do so to make it faster for:

 ➤ Computers to fi nd data

 ➤ Humans to fi nd data

If all you care about is to make it faster for computers to fi nd data, the default sort behavior is
often fi ne. However, humans are an annoyingly troublesome lot. In Swedish, the letter z comes
before the letter ö, but in German it’s the other way around. If you’re sorting data for display to
people, they will complain bitterly (and quite rightly) if they have trouble fi nding what they need
because the sort order of the data is not what they expect, so you need to make sure that you’re
sorting correctly for your target audience.

And here’s another fun example. Run the following code:

use utf8::all;
use charnames “:full”;
print “\N{ANGSTROM SIGN}\n”;
print “\N{LATIN CAPITAL LETTER A WITH RING ABOVE}\n”;

That prints out this:

NOTE For those who are curious, Perl’s sort, by default, is stable. This means

that if two values compare the same way, they will be returned in the same

order they were originally found. Thus, if you left off the sorting by name condi-

tion in your employee sort, all employees with the same years and payscale

would be guaranteed to be returned in the order they were in on the original list.

This is useful, particularly if you have a list that is already partially sorted. This is

far more common than you think.

c10.indd 293c10.indd 293 8/9/12 9:54 AM8/9/12 9:54 AM

294 ❘ CHAPTER 10 SORT, MAP, AND GREP

°
Å

Those are the Unicode code points U+212B and U+00C5, respectively, but for purposes of sorting
or comparison, they are supposed to be considered the same character. Further, Unicode has a
 combining-character to indicate that two symbols should be combined. This gives Unicode great
fl exibility in representing different characters. Using the two preceding code points along with an
uppercase A and a COMBINING RING ABOVE gives this code:

use charnames ‘:short’;
binmode STDOUT, ‘:encoding(UTF-8)’;
print “\N{U+212B}\n”;
print “\N{U+00C5}\n”;
print “\N{U+0041}\N{U+030A}\n”;

Which prints this:

°
Å
Å

Many computers can actually print those slightly differently, but they should look generally similar,
and for purposes of sorting and comparing (cmp), they must, as already stated, be considered the
same character despite being different code points. This information is repeated because it’s
important, and there’s a good chance you’ll get it wrong. But don’t feel bad. Perl’s default sort
builtin also gets this wrong.

WARNING A lthough Å (U+212B), Å (U+00C5) and Å (U+0041 U+030A) are consid-

ered to be identical characters, the fact that they look the same is an accident.

Do not rely on a character’s appearance to decide whether two characters are

the same.

So how do you get this right? Collation. Collation, for our purposes, is defi ning the correct order for
data. Sorting, by contrast, is putting data into that correct order. The Unicode Collation Algorithm,
described at http://www.unicode.org/reports/tr10/, tells you how to do properly collate
Unicode data. Fortunately, the Unicode::Collate module was fi rst included with Perl in version
5.7.3 and implements the Unicode Collation Algorithm for you.

So as a general rule, sorting is handled correctly with the code shown in Listing 10-2 (code fi le
listing_10_2_collate.pl).

LISTING 10-2: Using Unicode::Collate

use strict;
use warnings;
use diagnostics;
use utf8::all;

c10.indd 294c10.indd 294 8/9/12 9:54 AM8/9/12 9:54 AM

http://www.unicode.org/reports/tr10/

Basic Sorting ❘ 295

use Unicode::Collate;
my @apples = (
 “\N{U+212B}pples”,
 “\N{U+00C5}pples”,
 “\N{U+0041}\N{U+030A}pples”,
 “apples”,
 “Apples”,
);
my @bad = sort @apples;
my @sorted = Unicode::Collate->new->sort(@apples);
print “Original: @apples\n”;
print “Sorted: @bad\n”;
print “Collated: @sorted\n”;

Running listing_10_2_collate.pl prints out this:

Original: Åpples Åpples Åpples apples Apples
Sorted: Apples Åpples apples Åpples Åpples
Collated: apples Apples Åpples Åpples Åpples

The second line, Sorted:, starts with Apples Åpples apples. Clearly that’s not right, but Perl’s
default sort does not recognize the U+0041 U+0030A as being combined. It merely sorts on the
numeric value of the individual octets, leading to incorrect sorting.

Unicode::Collate is great, but you often need to sort according to a specifi c locale. In Perl, you
can do this:

use locale; # but don’t really do this

That tells Perl to use the proper sorting for your system’s LC_COLLATE environment variable.
Unfortunately, many programmers have been bitten by this because not all operating systems
 support this, nor are the locales guaranteed to be installed, ensuring that this method is not
portable. Instead, use Unicode::Collate::Locale.

As previously mentioned, in Swedish the letter z comes before the letter ö, but the sort order is
reversed in German. Listing 10-3 shows the use of Unicode::Collate::Locale to get the correct
sort order (code fi le listing_10_3_locale_sort.pl).

LISTING 10-3: Using Unicode::Collate::Locale to Sort According to Locale

use strict;
use warnings;
use utf8::all;
use Unicode::Collate::Locale;
my @letters = qw(z ö);
my @reversed = reverse @letters;
my $german = Unicode::Collate::Locale->new(locale => ‘de_DE’);
my $swedish = Unicode::Collate::Locale->new(locale => ‘sv_SE’);
foreach my $letters (\@letters, \@reversed) {
 print “Original: @$letters\n”;
 my @german = $german->sort(@$letters); continues

c10.indd 295c10.indd 295 8/9/12 9:54 AM8/9/12 9:54 AM

296 ❘ CHAPTER 10 SORT, MAP, AND GREP

LISTING 10-3 (continued)

 my @swedish = $swedish->sort(@$letters);
 print “German: @german\n”;
 print “Swedish: @swedish\n\n”;
}

When you run listing_10_3_locate_sort.pl, you should see the following:

Original: z ö
German: ö z
Swedish: z ö
Original: ö z
German: ö z
Swedish: z ö

Unicode::Collate::Locale was fi rst released with Unicode::Collate version 0.55 in August
2010, so you may need to install a newer version of Unicode::Collate from the CPAN.

TRY IT OUT Sorting by External Criteria

Sometimes you need to sort by criteria that is not directly represented in your data. One way to handle
this is to defi ne your sort criteria in a separate data structure. Imagine a fi ctitious military that has
Generals, Colonels, Majors, Captains, and Privates. They’re a bit top-heavy on offi cers and they like
their personnel reports to have those important offi cers sorted at the top. All the code in this Try It Out
is found in code fi le example_10_1_soldier.pl.

1. Type in the following program, and save it as example_10_1_soldier.pl:

use strict;
use warnings;
my %sort_order_for = (
 General => 1,
 Colonel => 2,
 Major => 3,
 Captain => 4,
 Private => 5,
);
my @soldiers = (
 { name => ‘Custer’,
 rank => ‘General’ },
 { name => ‘Crassus’,
 rank => ‘General’ },
 { name => ‘Burnside’,
 rank => ‘General’ },
 { name => ‘Potter’,
 rank => ‘Colonel’ },
 { name => ‘Bickle’,
 rank => ‘Private’ },
);
@soldiers = sort {
 $sort_order_for{$a->{rank}} <=> $sort_order_for{$b->{rank}}
 ||
 $a->{name} cmp $b->{name}

c10.indd 296c10.indd 296 8/9/12 9:54 AM8/9/12 9:54 AM

map and grep ❘ 297

} @soldiers;
foreach my $soldier (@soldiers) {
 print “$soldier->{rank} $soldier->{name}\n”;
}

2. Run the program with perl example_10_1_soldier.pl. You should see the following output:

General Burnside
General Crassus
General Custer
Colonel Potter
Private Bickle

How It Works

None of the soldier records actually contain the value you fi rst need to sort on, so construct a hash
named %sort_order_for to contain your sort value. The fi rst sort criteria evaluates as the numeric
value you need to sort on. Had you merely sorted on rank, Colonel Potter would have been listed
higher than those Generals (not a bad thing given those Generals’ records for historic defeats).

However, for each of Burnside, Crassus, and Custer, the fi rst sort condition evaluates to 1 <=> 1, so
you can fall back to your second sort condition, their name, to complete the sorting:

 ||
 $a->{name} cmp $b->{name}

Had you left off the second sort condition, the list would look like this:

General Custer
General Crassus
General Burnside
Colonel Potter
Private Bickle

That shows that you have a stable sort, preserving the original order for values considered “equal.”

map and grep

Many times you want to fi lter or transform a list instead of (or in addition to) sorting the list. The
grep builtin is for fi ltering lists. Maybe you want to create a new list of all elements of an old list
that are greater than zero? The grep builtin is the tool you’re looking for.

The map builtin allows you to take a list and transform in into another list. For example, you
might want to multiply all list elements by two, but assign it to a new list rather than altering the
original.

Let’s start with fi ltering the list fi rst.

c10.indd 297c10.indd 297 8/9/12 9:54 AM8/9/12 9:54 AM

298 ❘ CHAPTER 10 SORT, MAP, AND GREP

Using grep

You used the grep builtin a few times in this book and the examples are deliberately kept simple
to make the basic use clear. However, pretend you’ve never heard of it just to give you a quick
refresher. The grep builtin takes a list and produces another list of all values matching grep’s
 criteria. For example, to use only numbers greater than zero, use this code:

my @greater = grep { $_ > 0 } @numbers;

The grep builtin takes two forms:

NEWLIST = grep BLOCK LIST;
NEWLIST = grep EXPRESSION, LIST;

The fi rst form, used in the preceding code is probably the most popular. You could have written the
“greater than zero” fi lter as any of these three:

my @greater = grep { $_ > 0 } @numbers;
my @greater = grep $_ > 0, @numbers;
my @greater = grep($_ > 0, @numbers);

The grep BLOCK does not take a comma after the block, whereas grep EXPRESSION does.

When using grep, you can iterate over every element in the LIST, setting each element in turn to $_.
The grep builtin returns only elements for which the BLOCK or EXPRESSION returns true. You can
have arbitrarily complex expressions in the grep. To grab the palindromes from a list, use this code:

my @palindromes = grep { uc eq reverse uc } @words;

NOTE Your author debated quite a bit about writing this palindrome checker:

my @palindromes = grep { uc eq reverse uc } @words;

Ignoring Unicode issues here (in some encodings, characters are diff erent

depending on their location in a word), it might seem “friendlier” to write the

code like this:

my @palindromes = grep { uc($_) eq scalar reverse uc($_) }
 @words;

The reason the fi rst version works is because uc operates on the $_ version

by default. The scalar builtin is often used with reverse to force it to reverse

a string, but the eq forces scalar context, rendering the scalar keyword

 redundant. Although you should use the longer form to avoid confusion, you

need to get used to seeing the shorter forms, so they will be used from time

to time.

c10.indd 298c10.indd 298 8/9/12 9:54 AM8/9/12 9:54 AM

map and grep ❘ 299

Because a bare regex matches against $_, this is often seen in grep. To fi nd words beginning with
the vowels a, e, i, o, or u, use this code:

my @starts_with_vowels = grep { /^[aeiou]/ } @words;

Because grep returns a list, you can combine this with sort. To fi nd all numbers greater than or
equal to 10 and return them sorted from lowest to highest, use this code:

my @numbers = (13, 3, -2, 7, 270, 19, -3.2, 10.1);
my @result = sort { $a <=> $b } grep { $_ >= 10 } @numbers;
print join ‘, ‘, @result;

And that prints the following:

10.1, 13, 19, 270

When chaining list builtins like this, many people prefer to write them on separate lines to make
things more clear:

my @result = sort { $a <=> $b }
 grep { $_ >= 10 } @numbers;

When using list builtins such as grep, they can operate on an entire list. Sometimes you see code
like this:

my @positive = grep { $_ > 0 } @numbers;
my $first = $positive[0];

That can be ineffi cient, particularly if you have a lot of @numbers. A for loop with last is better.

my $first;
for (@numbers) {
 if ($_ > 0) {
 $first = $_;
 last;
 }
}

That for loop terminates the search through @numbers on the fi rst successful match, if any.
Of course, if none of the @numbers are greater than zero, it’s not more effi cient than the grep.

TRY IT OUT Grepping for Prime Numbers

Often, you might want to create a new list from an old list based on particular criteria, but that criteria
can be expensive to compute. The following program returns a list of primes from a list but caches all
prime numbers found so that you don’t waste time recalculating whether a given number is prime.

Assume that your resulting list of primes should contain all primes from the supplied list of numbers,
even if they’re duplicates. Also assume that you’re printing only unique primes. Otherwise, your list
will be rather large and fi lled with duplicate numbers. All the code for this Try It Out can be found in
the code fi le example_10_2_is_prime.pl.

c10.indd 299c10.indd 299 8/9/12 9:54 AM8/9/12 9:54 AM

300 ❘ CHAPTER 10 SORT, MAP, AND GREP

1. Type in the following program, and save it as example_10_2_is_prime.pl:

use strict;
use warnings;
use diagnostics;
use List::MoreUtils ‘uniq’;
use Time::HiRes qw(gettimeofday tv_interval);
my $is_slow = 0;
my @numbers = qw(3 2 39 7919 997 631 200 7919 459 7919 623 997 867 15);
@numbers = (@numbers) x 200000;
my @primes;
my $start = [gettimeofday];
if ($is_slow) {
 @primes = grep { is_prime($_) } @numbers;
}
else {
 my %is_prime;
 @primes = grep {
 (exists $is_prime{$_} and $is_prime{$_})
 or
 ($is_prime{$_} = is_prime($_))
 } @numbers;
}
my $elapsed = tv_interval($start);
printf “We took %0.1f seconds to find the primes\n”, $elapsed;
print join ‘, ‘ => sort { $a <=> $b } uniq @primes;
sub is_prime {
 my $number = $_[0];
 return if $number < 2;
 return 1 if $number == 2;
 for (2 .. int sqrt($number)) {
 return if !($number % $_);
 }
 return 1;
}

2. Run the program with perl example_10_2_is_prime.pl. You should see output similar to the
following:

We took 2.7 seconds to find the primes
2, 3, 631, 997, 7919

 The exact number of seconds depends on how fast your computer is.

3. Now, change my $is_slow = 0; to my $is_slow = 1; and run it again. You see output similar
to the following, again dependent on how fast your computer is:

We took 10.1 seconds to find the primes
2, 3, 631, 997, 7919

 When you use the slow version, fi nding primes takes almost four times longer than your fast
version.

c10.indd 300c10.indd 300 8/9/12 9:54 AM8/9/12 9:54 AM

map and grep ❘ 301

How It Works

Let’s revisit the defi nition of a prime number. A prime number is any integer greater than 1 that is
evenly divisible (in other words, no remainder) only by 1 and itself. You know 5 is prime because
 dividing it by 2 leaves a remainder of 1, 3 leaves a remainder of 2, and 4 leaves a remainder of 1. The
number 15 is not prime because dividing it by 5 leaves a remainder of 0, so it’s evenly divisible by 5.

That leaves you with the following defi nition of is_prime():

sub is_prime {
 my $number = $_[0];
 return if $number < 2;
 return 1 if $number == 2;
 for (2 .. int sqrt($number)) {
 return if !($number % $_);
 }
 return 1;
}

This is not the most effi cient primality test, but it’s easy to understand. It’s also slow, so you can cache
its results.

You return false (return with no arguments) if the number is less than 2 ($number < 2) because by
defi nition, it’s not prime. You also return true (1) if the number is 2. That’s because the test in the for
loop would incorrectly return false for 2, which is prime:

return if !($number % 2);

Now break that down so you can understand this rather common idiom.

The % operator is the modulus operator. (See Chapter 4 if you don’t remember this.) If your number is
8, you know that 8 % 2 returns zero, so that line evaluates to this:

return if !(0);

The ! symbol negates the truth value of its argument, so the line then evaluates to the following:

return if 1;

And that is equivalent to:

return;

Because a bare return (a return that doesn’t return any arguments) is evaluated as false, you are
 effectively returning false from this function. However, the return if !($number % 2) line would
return false for 2, so check to see if your $number is 2 on the line prior to the for loop.

Then you have the actual loop:

 for (2 .. int sqrt($number)) {
 return if !($number % $_);
 }
 return 1;

c10.indd 301c10.indd 301 8/9/12 9:54 AM8/9/12 9:54 AM

302 ❘ CHAPTER 10 SORT, MAP, AND GREP

The loop iterates from 2 to the square root of the number passed to it. Remember that the range
operator, .. , (see Chapter 4) creates a range from the left number to the right number. For every
iteration through the loop, if any number you test returns 0 for $number % $_, you know that the
$number is evenly divisible by some number other than 1 and itself, and you thus return. When you
get to the end of the loop, you return a true value to indicate that you have a prime number. You may
want to walk through this function a couple of times to understand it.

Now that you have the prime number check out of the way, take a look at the rest:

use List::MoreUtils ‘uniq’;
use Time::HiRes qw(gettimeofday tv_interval);

Import the uniq function from List::MoreUtils. (You may have to install this module from the
CPAN.) That later enables you to have only uniq number for printing. The Time::HiRes module was
included in Perl 5.7.3 and later, so you probably already have it on your system. See the documentation
for how it works. You are just going to use it to show elapsed time.

The $is_slow variable is merely a boolean indicating whether you’re going to use the slow version of
your grep or the fast version.

Next, you have this curious bit:

my @numbers = qw(3 2 39 7919 997 631 200 7919 459 7919 623 997 867 15);
@numbers = (@numbers) x 200000;

The @numbers array contains 14 numbers. The line after this uses the (VARIABLE) x REPEAT syntax.
As explained in Chapter 4, when you put parentheses around the value to the left of the x operator, it’s
in list context and replicates that list REPEAT times. Thus, your original 14 numbers expand into a list
of 2,800,000 elements (almost 3 million elements!). That’s quite a large list to search through.

If $is_slow is true, you executes the following normal grep statement:

 @primes = grep { is_prime($_) } @numbers;

However, because you must recompute the value of is_prime() every time, it can be quite slow, par-
ticularly when you have a list of almost 3 million elements to search through.

If $is_slow is false, you execute the following code:

 my %is_prime;
 @primes = grep {
 (exists $is_prime{$_} and $is_prime{$_})
 or
 ($is_prime{$_} = is_prime($_))
 } @numbers;

The %is_prime hash is your cache. If a number is in that hash, you know you already calculated its
primality:

(exists $is_prime{$_} and $is_prime{$_})

Otherwise, you calculate its primality and store it in the hash, taking advantage that an assignment
also returns the value assigned.

c10.indd 302c10.indd 302 8/9/12 9:54 AM8/9/12 9:54 AM

map and grep ❘ 303

($is_prime{$_} = is_prime($_))

Finally, you have your print statement:

print join ‘, ‘ => sort { $a <=> $b } uniq @primes;

You sort after you fi nd the unique values because there’s no point to sort the entire list only to throw
away duplicates.

Because you put the prime number calculation into the function is_prime(), if you have a faster prime
number calculation function, you can easily replace just this one function and not touch the rest of the
program.

If some of this program is unclear, download it from Wrox.com and play around with it. (Better yet,
type it in yourself.) You’ll learn a lot about various issues in programming.

Using map

The map builtin, like the grep builtin, takes a list and returns a new list. It maps old values to new
values. Its syntax is virtually identical to grep’s:

NEWLIST = map BLOCK LIST;
NEWLIST = map EXPRESSION, LIST;

So to uppercase every word in a list, use this code:

my @UPPER = map { uc } @words;

Like grep, map operates on every element in a list, so use it only if you want to transform an entire
list. And like grep, because it returns a list, you can chain with grep and sort. Say you have an
array of numbers, and you want to take the square roots of those numbers greater than zero:

my @roots = map { sqrt($_) }
 grep { $_ > 0 } @numbers:

TRY IT OUT Printing Celsius Values from Fahrenheit

Often, you need to convert a list to a new set of values. Converting from Fahrenheit to Celsius is an
 age-old problem. Following is one way to do this, using map. All the code in this Try It Out is found in
code fi le example_10_3_celsius.pl.

1. Type in the following program, and save it as example_10_3_celsius.pl.

use strict;
use warnings;
binmode STDOUT, ‘:encoding(UTF-8)’;
my %fahrenheit = (
 ‘absolute zero’ => -459.67,

c10.indd 303c10.indd 303 8/9/12 9:54 AM8/9/12 9:54 AM

http://Wrox.com

304 ❘ CHAPTER 10 SORT, MAP, AND GREP

 ‘freezing water’ => 32,
 ‘body temperature’ => 98.6,
 ‘boiling water’ => 212,
);
my %celsius =
 map { $_ => 5 / 9 * ($fahrenheit{$_} - 32) } keys %fahrenheit;
while (my ($name, $temp) = each %celsius) {
 print “The temperature for $name is $temp\N{U+00B0} celsius\n”;
}

2. Run the program with perl example_10_3_celsius.pl. You should see the following output
(because this is a hash, the order on your system may be different):

The temperature for freezing water is 0° celsius
The temperature for body temperature is 37° celsius
The temperature for boiling water is 100° celsius
The temperature for absolute zero is -273.15° celsius

How It Works

Transforming a hash via a map is a bit trickier than transforming a list, but it still uses everything you
learned so far. The main magic is right here:

my %celsius =
 map { $_ => 5 / 9 * ($fahrenheit{$_} - 32) }
 keys %fahrenheit;

You’ll note that keys %fahrenheit returns a list of the keys. Each one is set to $_. That’s the “left
side” of the hash in the $_ => construct. The right side (the value you need to create), needs the appro-
priate value for the key, so merely use $fahrenheit{$_} to do this, and use the standard Fahrenheit-to-
Celsius formula.

In reality, what the map does is return an even-sized list like this:

“freezing water”, 0, “body temperature”, 37, “boiling water”, 100,
“absolute zero”, -273.15

The order of each pair is effectively random; however when this list is assigned to %celsius, you have
the wanted hash.

The while loop prints out your %celsius hash.

while (my ($name, $temp) = each %celsius) {
 print “The temperature for $name is $temp\N{U+00B0} celsius\n”;
}

The U+00B0 Unicode code point is the degree symbol, °, and you can use the \N{...} syntax for
this. The binmode tells STDOUT that it’s going to get UTF-8 and avoids the Wide character in print
warnings.

c10.indd 304c10.indd 304 8/9/12 9:54 AM8/9/12 9:54 AM

map and grep ❘ 305

Aliasing Issues

One signifi cant issue to be aware of with both map and grep is that when individual elements of the
list are assigned to $_, they are aliased to the original value. This means that if you change the value
of $_, you change the value of the original item. The following is a short program to demonstrate
just how terribly wrong things can go if you’re not aware of this. Use a lesser-known feature of
Data::Dumper to name your variables in your output to make it easier to follow.

use Data::Dumper;
my @numbers = qw{ 1 2 3 4 5 };
my @incremented = map $_++, @numbers; # No!
print Data::Dumper->Dump(
 [\@numbers, \@incremented],
 [‘*numbers’, ‘*incremented’]
);

And that prints out the following:

@numbers = (
 ‘2’,
 ‘3’,
 ‘4’,
 ‘5’,
 ‘6’
);
@incremented = (
 ‘1’,
 ‘2’,
 ‘3’,
 ‘4’,
 ‘5’
);

What’s going on here? You haven’t incremented the numbers you intended, and you incremented the
original list you meant to leave alone!

Because $_ is an alias, the $_++ changes the original numbers, but because the ++ is the postfi x
 version of the autoincrement operator, it changes the value after it’s been returned. Thus, your new
list gets the old values and your old list gets the new values! Here is one way to write that the way
you intended it:

my @incremented = map $_ + 1, @numbers;

Also, if you use the block form of map, you can localize the value of $_ in the block, but it’s begin-
ning to look like an ugly hack.

my @incremented = map { local $_ = $_; ++$_ }, @numbers;

c10.indd 305c10.indd 305 8/9/12 9:54 AM8/9/12 9:54 AM

306 ❘ CHAPTER 10 SORT, MAP, AND GREP

Trying to Do Too Much

At their core, sort, map, and grep all take an existing list and return a new list. There’s nothing
complicated about this, but the sorting, fi ltering, or transforming may be complicated. Keep them
simple or else they’re hard to follow. You’ve already shown how to do it with sort by taking this:

@employees= sort {
 $b->{years} <=> $a->{years}
 ||
 $a->{payscale} <=> $b->{payscale}
 ||
 $a->{name} cmp $b->{name}
} @employees;

And turning it into this:

@employees = sort by_seniority_then_pay_then_name @employees;

However, you may remember this rather complicated grep:

my %is_prime;
@primes = grep {
 (exists $is_prime{$_} and $is_prime{$_})
 or
 ($is_prime{$_} = is_prime($_))
 } @numbers;

It was deliberately left complicated in the code to show how some people will write a grep state-
ment. Instead, you can push the caching into the is_prime() function:

{
 my %is_prime;
 sub is_prime {
 my $number = $_[0];
 return $is_prime{$number} if exists $is_prime{$number};
 $is_prime{$number} = 0 if $number < 2;
 $is_prime{$number} = 1 if $number == 2;
 for (2 .. int sqrt($number)) {
 if (!($number % $_)) {
 $is_prime{$number} = 0;
 last;

NOTE Many Perl developers are not aware of this alternative syntax

for Data::Dumper, and if they are, they often avoid it because it’s rather

 cumbersome to use. See perldoc Data::Dumper to understand it.

You author has released Data::Dumper::Names and Data::Dumper::Simple

to the CPAN to make this easier to use. They behave slightly diff erently, so read

their documentation to understand the diff erences.

c10.indd 306c10.indd 306 8/9/12 9:54 AM8/9/12 9:54 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

map and grep ❘ 307

 }
 }
 $is_prime{$number} = 1 if !exists $is_prime{$number};
 return $is_prime{$number};
 }
}

By doing that, your grep then becomes this:

@primes = grep { is_prime($_) } @numbers;

Not only is that much easier to read, but also any other code that now calls is_prime() gets to take
advantage of the caching.

Also, the actual grep() is faster than it was originally. You can discover easier ways to verify that
with the Benchmark module covered in Chapter 18.

Trying to Be Clever

The sort, map, and grep functions are the type of functions that developers love to abuse. Sadly,
many developers think being clever is more important than writing maintainable code so they write
something like this:

my %person = (
 id => 6,
 name => ‘The Prisoner’,
 profession => ‘Ex-Spy’,
 status => ‘Silent’,
);
my $result = ‘’;
foreach (sort { $a ne ‘id’ } keys %person) {
 my $value = $person{$_};
 $result .= sprintf “%-10s - $value\n”, $_;
}
print $result;

And that prints out this:

id - 6
name - The Prisoner
status - Silent
profession - Ex-Spy

The order of name, status, and profession may be different on your system, but id is guaranteed
to be fi rst. Why? Because of the strange sort { $a ne ‘id’ } construction. As you may recall,
both the cmp and <=> operators return -1, 0, or 1 depending on whether the left value is less than,
equal to, or greater than the right value. The $a ne ‘id’ returns false (the empty string, in this
case) that Perl treats as 0 (zero) and $a ne $anything_else returns 1, ensuring that the value ‘id’
is always sorted fi rst.

c10.indd 307c10.indd 307 8/9/12 9:54 AM8/9/12 9:54 AM

308 ❘ CHAPTER 10 SORT, MAP, AND GREP

This sort of cleverness can be fun if you’re just playing around, but for serious code, particularly in
a Comp environment in which someone may need to fi x something quickly, try to be clear. The
following is a better solution:

my $format = “%-10s - %s\n”;
always have id as the first line
my $result = sprintf $format, ‘id’, delete $person{id};
foreach (keys %person) {
 my $value = $person{$_};
 $result .= sprintf $format, $_, $value;
}

PUTTING IT ALL TOGETHER

Now that you’ve covered sort, map, and grep, it’s time to put all of them together for some more
advanced techniques. The techniques presented here can help make your sorting much faster. They
combine map and sort to great effect. You can also combine grep with sort and you’ll see an
example of that in the Exercises for this chapter. You won’t see these as often in your code, but
when you need them, they can help you out.

Schwartzian Transform (aka decorate, sort, undecorate)

Many sorting operations can be extremely expensive if you need to calculate the value to be sorted
on. The Schwartzian Transform enables you to calculate once and only once a sort key, sort on
it, and then strip the sort key. In other languages, this technique is sometimes known as decorate,
sort, and undecorate.

Assume you have the following data in a fi le:

James|007|Spy
Number 6|6|Ex-spy
Agent 99|99|Spy with unknown name
Napoleon Solo|11|Uncle spy
Unknown|666|Maybe a spy

Except it’s actually approximately 300,000 lines or so, and you need to sort on the number between
the pipes, such as |007|. So you try a straightforward sort like this:

my @sorted = sort by_id <>;
sub by_id {
 $a =~ /\|(\d+)/;
 my $a_id = $1;
 $b =~ /\|(\d+)/;
 my $b_id = $1;
 return $a_id <=> $b_id;
}

What you’ve done is use a regular expression to extract the number into a variable, and then you
return the variables compared with the spaceship operator. You’ve also been good, and you’ve

c10.indd 308c10.indd 308 8/9/12 9:54 AM8/9/12 9:54 AM

Putting It All Together ❘ 309

 written a sort subroutine to make the sort operation easier to follow, but when you run this, you
fi nd it takes 7 or 8 seconds to run.

This might be fast enough for you. If this is a one-off script, you may not care about speed. If this is
part of a process that runs once a night, again you may not care about speed. However, if you call
this a lot, that extra time might be problematic, so switch to the Schwartzian Transform.

my @sorted = map { $_->[0] } # undecorate
 sort { $a->[1] <=> $b->[1] } # sort
 map { /\|(\d+)/; [$_, $1] } <>; # decorate

Now, instead of 7 or 8 seconds, it takes about 2 seconds to sort 300,000 lines, but how does
it work?

NOTE If you don’t remember <>, the diamond operator, go to Chapter 9 and

reread “The Diamond Operator” section. This operator takes a bit of time to get

used to.

Both sorts compare every number to every other number, but the naïve sort must use a regular
expression to extract the ID every time, even if it’s been previously extracted. With the
Schwartzian Transform, you can extract the number only once with the fi rst map, known as the
“ decorate” step.

map { /\|(\d+)/; [$_, $1] } <>; # decorate

The [$_, $1] is an array reference that has the original value in the fi rst element (remember,
that’s index 0) and the sort key (the ID, in this case) from $1 in the second element (index 1).

Then the second step, the sort, just sorts on element 1, the sort key:

sort { $a->[1] <=> $b->[1] } # sort

Finally, the last map (undecorate) returns element 0, the original string.

my @sorted = map { $_->[0] } # undecorate

By not re-extracting the ID for every comparison, you gain a signifi cant speed improvement, which
is the beauty of the Schwartzian Transform.

The intermediate container doesn’t need to be an array. You can use a hash reference if you prefer.

my @sorted = map { $_->{original} }
 sort { $a->{id} <=> $b->{id} }
 map { /\|(\d+)/; { original => $_, id => $1 } } <>;

c10.indd 309c10.indd 309 8/9/12 9:54 AM8/9/12 9:54 AM

310 ❘ CHAPTER 10 SORT, MAP, AND GREP

Hash lookups are slightly slower than array lookups, but even the preceding code is twice as fast as
the naïve sort.

NOTE The Schwartzian Transform is a famous technique named after the

well-known Perl hacker Randal Schwartz. He explains this technique in a UNIX

Review column at http://www.stonehenge.com/merlyn/UnixReview/col64

.html.

For the micro-optimization fans, you can shave another 5 to 10 percent of the time by using index
instead of regular expressions.

my @sorted = map { $_->[0] }
 sort { $a->[1] <=> $b->[1] }
 map { my $i = 1 + index $_, “|”;
 my $length = index($_, “|”, $i) - $i;
 [$_, substr $_, $i, $length]
 } <>;

How that works is an exercise left for you. You will fi nd people trying to shave tiny amounts of time
with code like this, but unless you can prove why you need to save that time, the author strongly
urges you not to write code this tricky. It’s a beast to maintain and can make your coworkers
unhappy with your “cleverness.” If you must write that, document it well.

Guttman-Rosler Transform

The Guttman-Rosler Transform sort technique is advanced, and you can skip this section if you
want, but it’s included for completeness.

When using sort, if you can eliminate the dereferencing in the sort block, you can have a faster
sort. The paper “A Fresh Look at Effi cient Perl Sorting” (http://www.sysarch.com/Perl/
sort_paper.html) by Uri Guttman and Larry Rosler, introduces the Guttman-Rosler Transform.
(Although they did not call it that.)

 my @sorted = map { substr $_, 4 }
 sort
 map { /\|(\d+)/; pack(“A4”, $1).$_ } <>;

This looks strange and you need to read perldoc perlpacktut to understand how pack works.
The pack template, A4, creates a four-octet ASCII string out of the ID and that is prepended to the
beginning of the string. As a result, the sort itself can rely on its standard sort behavior, and the
fi nal map removes the packed data. On the computer your author used to write this chapter, Table
10-1 shows the typical performance of each sort method on the test fi le with a 300,000 line fi le with
random integers for IDs.

c10.indd 310c10.indd 310 8/9/12 9:54 AM8/9/12 9:54 AM

http://www.stonehenge.com/merlyn/UnixReview/col64.html
http://www.stonehenge.com/merlyn/UnixReview/col64.html
http://www.sysarch.com/Perl/sort_paper.html
http://www.sysarch.com/Perl/sort_paper.html

Summary ❘ 311

As you can see, the Guttman-Rosler transform is fast, but it is rarely used because most Perl devel-
opers are not familiar with the pack function.

SUMMARY

In this chapter you’ve learned about sort, map, and grep, three powerful functions that transform a
list into a new list. You’ve learned a variety of sorting techniques and how to use sort subroutines.
And you now know how to effi ciently fi lter a list of values with grep and how to transform an old
list of values into a new list of values with map. Finally, you’ve learned ways to combine these
functions together to get powerful data manipulation techniques.

EXERCISES

 1. Given the following list of hexadecimal numbers, print them in descending numeric order;

my @numbers = (0x23, 0xAA, 0xaa, 0x01, 0xfB);

 2. Given a list of numbers, use grep to return only the numbers that are perfect squares. Then print

them in ascending numeric order.

 Assume the following list of numbers:

my @numbers = (28, 49, 1000, 4, 25, 49, 529);

 Write the grep in both BLOCK and EXPRESSION form.

NEWLIST = grep BLOCK LIST;
NEWLIST = grep EXPRESSION, LIST;

 What happens if one of the values in the @numbers array is actually the string Get a job,

hippy!? How would this change your code?

TABLE 10-1: Sort Time Comparisons

SORT METHOD APPROXIMATE TIME

Naïve sort 7.5 seconds

Schwartzian Transform 2.5 seconds

Guttman-Rosler Transform 1.5 seconds

c10.indd 311c10.indd 311 8/9/12 9:54 AM8/9/12 9:54 AM

312 ❘ CHAPTER 10 SORT, MAP, AND GREP

 3. Given the following list, write a grep statement that creates a new list but without duplicate

elements. There are several ways you can solve this.

my @list = qw(
 bob
 sally
 Andromalius
 sally
 bob
 ned
 Andromalius
);

 4. Given the following array:

my @employees = (
 {
 fi rst_name => ‘Sally’,
 last_name => ‘Jones’,
 years => 4,
 payscale => 4,
 },
 {
 fi rst_name => ‘Abby’,
 last_name => ‘Hoffman’,
 years => 1,
 payscale => 10,
 },
 {
 fi rst_name => ‘Jack’,
 last_name => ‘Johnson’,
 years => 4,
 payscale => 5,
 },
 {
 fi rst_name => ‘Mr.’,
 last_name => ‘Magnate’,
 years => 12,
 payscale => 1,
 },
);

 Use map to create a new array that looks like this:

my @names = (
 ‘Jack Johnson’,
 ‘Sally Jones’,
 ‘Mr. Magnate’,
);

 The names are sorted by last name, ascending, and exclude employees who have been with the

company a year or less.

c10.indd 312c10.indd 312 8/9/12 9:54 AM8/9/12 9:54 AM

Summary ❘ 313

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

sort Used to order a list of data.

Sort subroutines Making complex sorts easier to understand.

Sorting Unicode Using the Unicode Collation Algorithm to sort diff erent character

sets.

grep Only select elements of a list that pass wanted criteria.

map Transform every element of a list, making a new list.

map and sort traps Aliasing, complexity, and “clever” code are not your friends.

Complex sorts Using map and sort together for more effi cient sorting.

c10.indd 313c10.indd 313 8/9/12 9:54 AM8/9/12 9:54 AM

c10.indd 314c10.indd 314 8/9/12 9:54 AM8/9/12 9:54 AM

Packages and Modules

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding packages and namespaces

 ➤ Defi ning and exporting subroutines in packages

 ➤ Using BEGIN, CHECK, INIT, and END

 ➤ Writing POD: Plain Old Documentation

 ➤ Creating packages with Module::Build and ExtUtils::MakeMaker

 ➤ How to create and install modules

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ example_11_1_convert.pl

 ➤ lib/Convert/Distance/Imperial.pm

 ➤ lib/Convert/Distance/Metric.pm

 ➤ lib/My/Number/Utilities.pm

 ➤ listing_11_1_primes.pl

Up to now, all the code has been in a single fi le. However, that doesn’t work when you build
larger systems. You need to understand how to logically break apart your applications into
separate, preferably reusable components called packages or modules. These modules generally
live in different fi les. This chapter explains how to create and organize these packages. Some

11

c11.indd 315c11.indd 315 09/08/12 10:01 AM09/08/12 10:01 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://WROX.COM
http://wrox.com

316 ❘ CHAPTER 11 PACKAGES AND MODULES

professional Perl programmers never get beyond this step and still have successful careers, and by
the end of this chapter, you’ll be well on your way to being a professional Perl programmer.

In the real world, mission-critical Perl applications range from a few lines of code to more than a
million (your author has worked on the latter).

When you have huge systems, would you actually want all that in one fi le? Probably not. Creating
modules enables you to break your application down into small, manageable chunks. Doing so
makes it easier to understand and design different parts of your system and helps to avoid what your
author thinks of as “a steaming pile of ones and zeros.”

NAMESPACES AND PACKAGES

Namespaces were very briefl y discussed in Chapter 3. A namespace is a place to organize logically
related code and data. It’s given a package name and all subroutines and package variables declared
in that namespace cannot be accessed outside of that namespace unless you prepend the package
name to them or if the package “exports” the subroutines to other packages. This allows you to
reuse names in different namespaces without worrying about collision. Declaring the subroutine
is_stupid() twice in the same namespace can generate a warning. (And the fi rst subroutine will be
overwritten.) Declaring it twice in separate namespaces is just fi ne.

A package name is one or more identifi ers separated by double colons. As you can recall from
Chapter 3, an identifi er must start with a letter or underscore. You can optionally follow that with
one or more letters, numbers, or underscores. The following are all valid package names from mod-
ules you can fi nd on the CPAN:

 ➤ File::Find::Rule

 ➤ Module::Starter

 ➤ DBIx::Class

 ➤ Moose

 ➤ aliased

Note the last one, aliased. It starts with a lowercase letter. By convention in Perl, a module whose
name is all lowercase should be a pragma that affects Perl’s compilation (as aliased and autodie
do). Think carefully about using a lowercase name for a module because it’s usually a bad idea.

NOTE Actually, as a legacy from earlier versions of Perl, you can use a

single quote mark, ‘, in place of a double colon. So you could refer to the

My::Preferred::Customer package as My’Preferred’Customer. However,

this is highly frowned upon today. I mention this because you might sometimes

fi nd a programmer trying to be “clever” and using this older style of package

name. Be wary of “clever” programmers.

Start with a simple package named My::Number::Utilities. By convention, this should corre-
spond to a path and fi lename of My/Number/Utilities.pm and it should usually be located in a
lib/ directory (in other words, lib/My/Number/Utilities.pm). The .pm extension is what Perl uses
to identify a given module. A module is simply a fi le that contains one or more packages; although

c11.indd 316c11.indd 316 09/08/12 10:01 AM09/08/12 10:01 AM

Namespaces and Packages ❘ 317

it’s generally recommended to have one package per module. It’s also strongly recommended that
your module and package names correspond. You can have a fi le called My/Sekret/Stuff.pm con-
taining a package named I::Am::A::Lousy::Programmer, but this tends to be confusing. That
module should contain a package named My::Sekret::Stuff.

Now create the lib/My/Number/ directory and create an empty Utilities.pm fi le in it. If you saved
the tree.pl utility created in Chapter 9, your fi le structure should look like this:

lib/
| My/
| | Number/
| | |--Utilities.pm

Take the fi rst is_prime() function created in Chapter 10 and use that to make your
My::Number::Utilities package. Save the following code in lib/My/Number/Utilities.pm:

package My::Number::Utilities;

use strict;
use warnings;

our $VERSION = 0.01;

sub is_prime {
 my $number = $_[0];
 return if $number < 2;
 return 1 if $number == 2;
 for (2 .. int sqrt($number)) {
 return if !($number % $_);
 }
 return 1;
}

1;

That’s it! You’ve successfully created your fi rst module. Now see how to use it.

In the directory containing the lib/ directory, create a fi le named listing_11_1_primes.pl
and save the code in Listing 11-1 to it (code fi le listing_11_1_primes.pl and lib/My/Number/
Utilities.pm). It should look familiar.

LISTING 11-1: Using OurSimple Module

use strict;
use warnings;
use diagnostics;

use lib ‘lib’; # tell Perl we’ll find modules in lib/

use My::Number::Utilities;

my @numbers = qw(
3 2 39 7919 997 631 200

continues

c11.indd 317c11.indd 317 09/08/12 10:01 AM09/08/12 10:01 AM

318 ❘ CHAPTER 11 PACKAGES AND MODULES

LISTING 11-1 (continued)

7919 459 7919 623 997 867 15
);

my @primes = grep { My::Number::Utilities::is_prime($_) }
 @numbers;
print join ‘, ‘ => sort { $a <=> $b } @primes;

When you run perl listing_11_1_primes.pl, you should see the following output and you’ve
successfully used the module:

2, 3, 631, 997, 997, 7919, 7919, 7919

NOTE It’s possible, however, that you’ll get an error similar to the following:

Can’t locate My/Number/Utilities.pm in @INC
 (@INC contains: lib t /home/ovid/perl5/perlbrew/...
BEGIN failed--compilation aborted at primes.pl line 6 (#1)
 (F) You said to do (or require, or use) a file that
 couldn’t be found. Perl looks for the file in all the
 locations mentioned in @INC,unless the file name
 included the full path to the file. Perhaps youneed
 to set the PERL5LIB or PERL5OPT environment variable
 to say wherethe extra library is, or maybe the script
 needs to add the library nameto @INC. Or maybe you
 just misspelled the name of the file. See
 perlfunc/require and lib.

Reading through that carefully should tell you where to look. In this case, you’ve

either misspelled the module name, misspelled a directory or fi lename when

creating the module, or your use lib line doesn’t actually point to the lib/

directory where the module lives. (You can use absolute paths if you need to,

but they tend not to be portable.) If you read through the @INC line, you can see

where Perl is looking for your module.

And be aware that some fi le systems are case-sensitive and others are not. For

example, on a case-insensitive fi le system you might be able to load a module

named My::Module with this (note the lowercase letters), but get strange error

messages when you try to use the code:

use my::module;

This is because lib/My/Module.pm and lib/my/module.pm are seen as the

same thing on case-insensitive fi le systems.

Be aware of this issue and make sure that the use statement, the module’s pack-

age name and the fi lename all have matching case.

Reading through error messages seems to almost be a lost art because so many

error messages are awful, but learning to pay attention to them can make your

programming life much easier.

c11.indd 318c11.indd 318 09/08/12 10:01 AM09/08/12 10:01 AM

Namespaces and Packages ❘ 319

Most of your modules have effectively the same core:

package Module::Name;

use strict;
use warnings;

our $VERSION = 0.01; # or some other version number

module code here

1;

Now look at the code for My::Number::Utilities again. The package statement is the fi rst line:

package My::Number::Utilities;

This declares that everything after this declaration belongs to the My::Number::Utilities pack-
age. The package statement is either fi le-scoped or block-scoped. In this case, from the package dec-
laration to the bottom of the fi le, everything is in the My::Number::Utilities package. If another
fi le-scoped package declaration is found, the subsequent code belongs to the new package:

package My::Math;

use strict;
use warnings;

our $VERSION = 0.01;

sub sum {
 my @numbers = @_;
 my $total = 0;
 $total += $_ foreach @numbers;
 return $total;
}

same file, different package
package My::Math::Strict;

use Scalar::Util ‘looks_like_number’;

our $VERSION = 0.01;

sub sum {
 my @numbers = @_;
 my $total = 0;
 $total += $_ foreach grep { looks_like_number($_) } @numbers;
 return $total;
}

1;

c11.indd 319c11.indd 319 09/08/12 10:01 AM09/08/12 10:01 AM

320 ❘ CHAPTER 11 PACKAGES AND MODULES

The preceding code has slightly different variants of the sum() function, but the fi rst can be called
with My::Math::sum(@numbers) and the second can be called with My::Math::Strict::sum().
Both the strict and warnings pragmas are in effect until the end of the fi le, thus affecting
My::Math::Strict.

Sometimes, though, you may want to limit the scope of a package declaration. You do this by
enclosing the package declaration in a block:

package My::Package;
use strict;
use warnings;
our $VERSION = 0.01;
{
 package My::Package::Debug;
 our $VERSION = 0.01;
 # this belongs to My::Package::Debug
 sub debug {
 # some debug routine
 }
}
any code here belongs to My::Package;
1;

Generally, though, putting each package in its own appropriately named fi le makes it much easier to
track that package down later.

You may also be curious about the bare 1 at the end of the package:
1;

In Perl, when you use a package, it must return a true value. If it does not, the use fails at compile
time. Putting a 1; at the end of the package solves this.

NOTE Ordinarily, a bare value generates a warning:

use strict;
use warnings;

‘one’;

And that warns about:

Useless use of a constant (one) in void context at ...

This warning is to let you know that you’re not assigning the constant to any-

thing (hence, “void context”). However, a bare value of 1 or 0 does not emit a

warning. This is a special case in Perl because there are a few times you will fi nd

a bare 1 or 0 useful, such as the 1; at the end of the module declaration.

c11.indd 320c11.indd 320 09/08/12 10:01 AM09/08/12 10:01 AM

Namespaces and Packages ❘ 321

use Versus require

Generally, when you need to load a module, you use it:

use My::Number::Utilities;

The use statement has a variety of different uses and these can be a bit confusing:

use VERSION
use Module VERSION LIST
use Module VERSION
use Module LIST
use Module

The use VERSION form tells Perl that it must use a minimum version of Perl. This being Perl, there
are a variety of different formats for the version number. So if you want to declare that your code
requires Perl version 5.8.1 or above:

use v5.8.1;
use 5.8.1;
use 5.008_001;

If you require Perl version 5.9.5 or above, all features available via use feature will be loaded. Thus,
instead of saying:

use feature “say”;
or
use feature “:5.12”;

You can say:

use v5.12.0;

Prefi xing the number with a v (as in v5.12.0) requires a 3-part number called a version string,
or v-string. They have some issues and not everyone likes them. See “Version Strings” in perldoc
perldata.

NOTE If you use Perl version 5.11.0 or better in your code, strict is automati-

cally enabled in your code. In other words, use strict is not required.

use Module
use Module LIST
use Module VERSION
use Module VERSION LIST

Many times you use a module with:

use Test::More;

c11.indd 321c11.indd 321 09/08/12 10:01 AM09/08/12 10:01 AM

322 ❘ CHAPTER 11 PACKAGES AND MODULES

Test::More is used in testing your code (see Chapter 14). You may fi nd that you enjoy the
subtest() feature of Test::More, but it’s not available until version 0.96, so you can assume that
you need at least that version of Test::More:

use Test::More 0.96;
or
use Test::More v0.96.0;

WARNING If the version number is less than 1.0 and you’re not using v-strings,

you must have a leading 0:

use Some::Module .32; # Syntax error, do not use!
use Some::Module 0.32; # Properly asserting the version

This broken form is a syntax error in Perl and is related to how Perl’s use state-

ment parses version numbers. Just remember that when using version numbers,

you must always have a digit before the decimal point.

When Perl loads Test::More, if its version is less than the supplied version, it will automatically
croak().

Test::More accepts an import list. When you use a module, Perl automatically looks for a func-
tion in that module named import() and, if it’s found, it calls it for you, passing in any arguments
included in the import list when you use the module. So you might use Test::More like this:

use Test::More tests => 13;

Then, the list tests, =>13 is passed as arguments to Test::More::import().

Finally, you can combine the version check and import list:

use Test::More 0.96 tests => 13;

That tells Perl that Test::More must be version 0.96 or better and passes the arguments tests and
13 to the import method.

NOTE Sometimes you want to load a module and not call its import() method.

Use parentheses for the LIST when you use the module:

Don’t export Dumper() into our namespace
use Data::Dumper ();

You can also require a module:

require My::Number::Utilities;

c11.indd 322c11.indd 322 09/08/12 10:01 AM09/08/12 10:01 AM

Namespaces and Packages ❘ 323

The use statement happens at compile time, even if it’s embedded in a code path that would not
normally be executed. The require happens at runtime. Loading a module with use is usually what
you want. However, sometimes you want to delay loading a module if you don’t need it. For example,
if you want to debug output with Data::Dumper, it automatically exports the Dumper() subroutine
(unless you use Data::Dumper ()).

use Data::Dumper;
print Dumper($some_variable);

However, sometimes you don’t want to load Data::Dumper unless there’s a problem. You might
wrap this in a subroutine and use require:

sub debug {
 my @args = @_;
 require Data::Dumper;
 warn Data::Dumper::Dumper(\@args);
}

With the debug() subroutine, Data::Dumper will never be loaded unless debug() is called. Because
it’s loaded with require and not use, Data::Dumper’s import() method is not called, so you must
call Dumper() with its fully qualifi ed subroutine name: Data::Dumper::Dumper().

Package Variables

Up to now you’ve primarily seen lexically scoped variables declared with the my builtin:

my $foo;
my @bar;
my %baz;

Those are fi le or block scoped and not visible elsewhere. However, sometimes you want a variable to
be seen by other packages. To enable the visibility you need to use fully qualifi ed package variables
(variables with a package name prefi xed to them) or declare the variables with our. The our builtin
is like my, but it’s for package variables and not lexically scoped ones.

For example, the Data::Dumper module lets you control much of its behavior with package
variables:

use Data::Dumper;

sort hash keys alphabetically
local $Data::Dumper::Sortkeys = 1;

tighten up indentation
local $Data::Dumper::Indent = 1;

print Dumper(\%hash);

c11.indd 323c11.indd 323 09/08/12 10:01 AM09/08/12 10:01 AM

324 ❘ CHAPTER 11 PACKAGES AND MODULES

You would use a package variable when you need a variable that other packages can access using its
fully qualifi ed name. Why this is usually a bad idea is explained later, but for now, here’s how you
might declare them:

package My::Number::Utilities;

use strict;
use warnings;

our $VERSION = 0.01;

$My::Number::Utilities::PI = 3.14159265359;
$My::Number::Utilities::E = 2.71828182846;
$My::Number::Uitlities::PHI = 1.61803398874; # golden ratio
@My::Number::Utilities::FIRST_PRIMES = qw(
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
);

sub is_prime {
 #
}

1;

As you can see, several package variables are declared, but the sharp-eyed amongst our readers may
notice the problem. The $My::Number::Uitlities::PHI variable has a misspelled package name.
Oops!

Instead, you use the our declaration to omit the package name:

our $PI = 3.14159265359;
our $E = 2.71828182846;
our $PHI = 1.61803398874; # golden ratio
our @FIRST_PRIMES = qw(
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
);

NOTE Using local() to restrict the changes to package variables to the cur-

rent scope is not strictly required when using package variables, but it’s usually

good practice. Your author has stumbled on numerous bugs in Perl modules due

to authors changing package variables (or not realizing that some other code is

doing this).

Typing long package names can be frustrating and your author repeatedly types
$Data::Dumper::SortKeys = 1 and then tries to fi gure out what went wrong. Fortunately,
Data::Dumper provides an alternative, cleaner interface, so read the documentation.

c11.indd 324c11.indd 324 09/08/12 10:01 AM09/08/12 10:01 AM

Namespaces and Packages ❘ 325

Versions of Perl prior to version 5.6.1 did not have the our builtin, so they used the vars pragma
instead:

use vars qw($PI $E $PHI @FIRST_PRIMES);

$PI = 3.14159265359;
$E = 2.71828182846;
$PHI = 1.61803398874; # golden ratio
@FIRST_PRIMES = qw(
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
);

Today if you must use package variables, it is recommended that you use the our builtin instead of
the vars pragma.

So what’s wrong with package variables?

package Universe::Roman;
use My::Number::Utilities;
$My::Number::Utilities::PI = 3;

And all the other universes fall apart. The proper way to do that is:

package Universe::Roman;
use My::Number::Utilities;
local $My::Number::Utilities::PI = 3;

However, because you can’t force other packages to declare your package variables with local, it’s
better to just provide a subroutine that encapsulates this value:

package My::Number::Utilities;
use strict;
use warnings;

our $VERSION = 0.01;

sub pi { 3.14159265359 }

And now the value of PI is read-only.

package Universe::Roman;
use My::Number::Utilities;
my $PI = My::Number::Utilities::pi();

NOTE By convention, variables declared with a package scope have UPPER-

CASE identifi ers. When you’re debugging a subroutine and see an UPPERCASE

variable, it not only makes it much easier to know that it’s declared outside of

this subroutine, but it also makes it harder for you to accidentally override the

value of $PHI with a my $phi declaration later.

c11.indd 325c11.indd 325 09/08/12 10:01 AM09/08/12 10:01 AM

326 ❘ CHAPTER 11 PACKAGES AND MODULES

Do not package variables unless absolutely necessary. There is one clear exception: declaring version
numbers.

Version Numbers

In the My::Number::Utilities module, a version number is declared with our:

our $VERSION = 0.01;

Although not strictly needed, it’s strongly recommended that you declare a version number for your
modules. Thus, if your Time::Dilation module version 2.3 has a bug and you release version 2.4,
programmers who want to avoid your bug can do this:

TRIVIA TIME: A SHORT HISTORY OF MISUNDERSTANDING PI

It’s a widely held belief that the ancient Romans thought the value of π (PI) was 3.
This is a myth. The Roman mathematician Ptolemy calculated the value of π as
approximately 3.14166. Although this value is wrong, it was close enough for Roman
construction needs.

The stories of Alabama trying to pass a law legislating the value of π as 3 are also
not true, but Indiana did attempt to pass a law altering the value of π in 1897. It was
stopped due to a mathematician visiting the Indiana legislature during the debate.

http://www.agecon.purdue.edu/crd/Localgov/Second%20Level%20pages/

Indiana_Pi_Story.htm

WARNING You often see code like this at the top of modules:

package Foo;

use strict;
use warnings;

our ($THIS, $THAT, $OTHER) = qw(foo bar baz);

When a variable should be available throughout the entire package, program-

mers often use the our builtin to declare these variables at the top of the pack-

age. Unless you have a good reason for allowing other packages to read (and

change) these variables directly, this is a bad idea. Just declare the variables

with my.

my ($THIS, $THAT, $OTHER) = qw(foo bar baz);

This at least protects these variables from other packages changing their value.

c11.indd 326c11.indd 326 09/08/12 10:01 AM09/08/12 10:01 AM

http://www.agecon.purdue.edu/crd/Localgov/Second%20Level%20pages/Indiana_Pi_Story.htm
http://www.agecon.purdue.edu/crd/Localgov/Second%20Level%20pages/Indiana_Pi_Story.htm

Subroutines in Other Packages ❘ 327

use Time::Dilation 2.4;

When you assert a version of a module in a use statement, Perl checks the package variable
$Module::Name::VERSION and throws an exception if the version is lower than the version needed.

If you do not provide a version number for the module, it makes life diffi cult for other developers
trying to use your code. As a general rule, the version declaration previously shown should be suf-
fi cient for your needs, but some argue for the following:

our $VERSION = ‘0.001’; # make sure it’s in quotes!
$VERSION = eval $VERSION;

David Golden has an excellent description of why this is the preferred way to write version numbers:

http://www.dagolden.com/index.php/369/version-numbers-should-be-boring/

In short, it allows Perl’s version number to always be considered the same, regardless of how the
module is used, such as when the $VERSION is parsed for a CPAN upload or which version of Perl
you use. The full reasons are beyond the scope of this book, but it’s worth reading David Golden’s
writing on this topic.

SUBROUTINES IN OTHER PACKAGES

When building software, you have different parts of the software for different tasks. However, you
probably don’t want to type my $pi = My::Number::Utilities::pi() all the time. Also, the
My::Number::Utilities module likely has “private” subroutines that you should not be able to
call. The former is handled by exporting, and the latter is handled by naming conventions.

Exporting

Now look at theMy::Number::Utilities package again:

package My::Number::Utilities;

use strict;
use warnings;

our $VERSION = 0.01;

sub pi() { 3.14166 } # good enough for 2,000 year
 # old aqueducts and bridges
sub is_prime {
 my $number = $_[0];
 return if $number < 2;
 return 1 if $number == 2;
 for (2 .. int sqrt($number)) {
 return if !($number % $_);
 }
 return 1;
}

1;

c11.indd 327c11.indd 327 09/08/12 10:01 AM09/08/12 10:01 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.dagolden.com/index.php/369/version-numbers-should-be-boring/

328 ❘ CHAPTER 11 PACKAGES AND MODULES

Others using this package will be annoyed at typing My::Number::Utilities::pi() and
My::Number::Utilities::is_prime() every time they want to use those functions, so you can
export those functions to the calling code’s namespace. The most popular module for doing this is
Exporter, which has shipped with Perl since version 5. Here’s another case in which you need to use
package variables because Exporter’s interface requires it.

Near the top of module code you review, you’ll often see the following:

use base ‘Exporter’;
our @EXPORT_OK = qw(pi is_prime);
our %EXPORT_TAGS = (all => \@EXPORT_OK);

This means that those functions, pi() and is_prime(), can be exported. Now, when someone
wants to use your module, they can import those functions by specifying their names in the
import list:

use My::Number::Utilities ‘pi’, ‘is_prime’;

Or if they prefer, they can import only the functions they want:

use My::Number::Utilities ‘is_prime’;
print is_prime($number)
 ? “$number is prime”
 : “$number is not prime”;

When you use base ‘Exporter’, you inherit from the Exporter module. (Chapter 12 covers inher-
itance. For now, just follow along.) When someone uses your module, the Exporter::import()
function is called. It uses your module name and fi nds the @EXPORT, @EXPORT_OK, and %EXPORT_
TAGS package variables to determine what functions can be exported. Only function names in @
EXPORT_OK and @EXPORT can be exported, but using @EXPORT is usually not recommended because
@EXPORT exports all the functions listed in the array, and the programmer using your module no
longer has control over what is imported into their namespace. It’s no fun accidentally importing a
build() function and overwriting the build() function you have in your namespace.

NOTE Although Chapter 12 explains inheritance when you cover objects, for

modules not object oriented, some people object to inheriting from Exporter.

Exporter enables you to import the import() subroutine, if preferred:

use Exporter ‘import’;

This imports the import() subroutine directly into your namespace. No other

change in your code is required.

With the preceding code, if programmers want all the functions, they can ask for that with :all.

use My::Number::Utilities ‘:all’;

c11.indd 328c11.indd 328 09/08/12 10:01 AM09/08/12 10:01 AM

Subroutines in Other Packages ❘ 329

The %EXPORT_TAGS package hash has key/value pairs specifying groups of functions that can be
exported. When using your module, a developer uses a key name from %EXPORT_TAGS, prefi xed with
a colon, :, to say the he wants that group of functions.

NOTE You can also export package variables with Exporter, but this is a bad

idea for the reasons already discussed in the “Package Variables” section of this

chapter.

If your My::Number::Utilities module has subroutines for mathematical constants such as pi, e,
and phi, you can allow those to be imported separately from the :all tag:

our %EXPORT_TAGS = qw(
 all => \@EXPORT_OK,
 constants => [qw(ph e phi)],
);

NULL PROTOTYPES

You may have noticed that the pi constant subroutine was declared with a null
prototype:

sub pi() { 3.14159265359 }

When Perl sees such a prototype, if the body of the subroutine is simple, Perl tries at
compile time to replace all instances of that subroutine call with the value it returns.
This is faster than the subroutine call and is called inlining. So if you have a null
prototype, this:

use My::Number::Utilities ‘pi’;
print pi;

Is equivalent to this:

use My::Number::Utilities ‘pi’;
print 3.14159265359;

See “Constant Functions” in perldoc perlsub.

And someone who just wants the constants and not the is_prime() function can ask for them:

use My::Number::Utilities ‘:constants’;

You often see the constant pragma used to declare constants. These can be exported just like any
other subroutine because they’re just created as subroutines with null prototypes.

c11.indd 329c11.indd 329 09/08/12 10:01 AM09/08/12 10:01 AM

330 ❘ CHAPTER 11 PACKAGES AND MODULES

our @EXPORT_OK = qw(PI E PHI);
use constant PI => 3.14159265359;
use constant E => 2.71828182846;
use constant PHI => 1.61803398874;

Though Exporter is the most common way of exporting functions into other namespaces, modules
such as Exporter::NoWork, Perl6::Export and others exist for those who do not care for the
Exporter syntax. See a CPAN near you for the latest and greatest alternatives.

Naming Conventions

You’ve seen that subroutines representing constants are often UPPERCASE subroutines, but what
about other functions?

For a function that other modules are allowed to use, a normal function name is standard:

sub unique {
 #
}

However, for subroutines you want to remain private, by convention those are prefi xed with an
underscore:

sub _log_errors {
 #
}

Although developers may know about those subroutines, they also know that they should not
rely on them. This is no guarantee that they won’t try to use these subroutines, but good develop-
ers knows that they should not. Perl doesn’t try to rigorously enforce privacy by default. You’re
expected to behave yourself.

NOTE If you insist on truly private subroutines, use an anonymous subroutine

assigned to a scalar, for example:

package Really::Private;

use strict;
use warnings;
use Carp ‘croak’;

our $VERSION = ‘0.01’;

my $is_arrayref_of_hashrefs = sub {
 my $arg = shift;
 # is it an array ref?
 return unless ‘ARRAY’ eq ref $arg;
 # return boolean indicating if all elements are hashrefs.
 return @$arg == grep { ‘HASH’ eq ref $_ } @$arg;
};

c11.indd 330c11.indd 330 09/08/12 10:01 AM09/08/12 10:01 AM

Subroutines in Other Packages ❘ 331

For subroutines that should return a boolean value, start them with is_.

sub is_prime { … }

Also, you’re strongly urged to use_underscores_to_separate_names insteadOfUpperCase
Letters. Underscores are much easier to read, particularly if English is not your fi rst language.

TRY IT OUT Distance Conversion

All the code in this Try It Out comes from code fi le lib/Convert/Distance/Imperial.pm, and
example_11_1_convert.pl.

Write a module with six functions:

 ➤ miles_to_yards

 ➤ yards_to_miles

 ➤ miles_to_feet

 ➤ feet_to_miles

 ➤ miles_to_inches

 ➤ inches_to_miles

Each of these functions is exported only if requested or all may be requested at once.

 1. In lib/Convert/Distance/Imperial.pm, type the following code:

package Convert::Distance::Imperial;

use strict;
use warnings;
use diagnostics;

our $VERSION = ‘0.001’;

sub process_records {
my ($records) = @_;
 unless ($is_arrayref_of_hashrefs->($records)) {
 croak “process_records() needs an array ref of hashrefs”;
 }
 # process records here
}

1;

In the Really::Private package described, the $is_arrayref_of_hashrefs

variable contains an anonymous subroutine reference called by process_

records(). Because the subroutine reference is bound to a lexical scalar, it is

not available outside of this package.

c11.indd 331c11.indd 331 09/08/12 10:01 AM09/08/12 10:01 AM

332 ❘ CHAPTER 11 PACKAGES AND MODULES

$VERSION = eval $VERSION;

use Exporter ‘import’;
our @EXPORT_OK = qw(
 miles_to_yards
 yards_to_miles
 miles_to_feet
 feet_to_miles
 miles_to_inches
 inches_to_miles
);
our %EXPORT_TAGS = (all => \@EXPORT_OK);

use constant FEET_PER_MILE => 5_280;
use constant FEET_PER_YARD => 3;
use constant INCHES_PER_FOOT => 12;

sub miles_to_yards {
 my $miles = shift;
 return miles_to_feet($miles) / FEET_PER_YARD;
}

sub yards_to_miles {
 my $yards = shift;
 return feet_to_miles($yards * FEET_PER_YARD);
}

sub miles_to_feet { my $miles = shift;
 return $miles * FEET_PER_MILE;
}

sub feet_to_miles {
 my $feet = shift;
 return $feet / FEET_PER_MILE;
}

sub miles_to_inches {
 my $miles = shift;
 return miles_to_feet($miles) * INCHES_PER_FOOT;
}

sub inches_to_miles {
 my $inches = shift;
 return feet_to_miles($inches / INCHES_PER_FOOT);
}

1;

 2. Create a program, example_11_1_convert.pl, with the following code:

use strict;
use warnings;
use diagnostics;
use lib ‘lib’;

c11.indd 332c11.indd 332 09/08/12 10:01 AM09/08/12 10:01 AM

Subroutines in Other Packages ❘ 333

use Convert::Distance::Imperial ‘:all’;

printf “there are %d yards in a mile\n” => miles_to_yards(1);
printf “there are %d feet in a mile\n” => miles_to_feet(1);
printf “there are %d inches in a mile\n” => miles_to_inches(1);

printf “there are %0.2f miles in a %d yards\n” => yards_to_miles(5000), 5000;
printf “there are %0.2f miles in a %d feet\n” => feet_to_miles(5000), 5000;
printf “there are %0.2f miles in a %d inches\n” => inches_to_miles(5000), 5000;

If you have created this in the same directory you created the lib/My/Number/Utilities.pm
and the listing_11_1_primes.pl program from Listing 11-1, you should have the follow-
ing directory structure, as output from tree.pl:

|--convert.pl
| lib/
| | Convert/
| | | Distance/
| | | |--Imperial.pm
| | My/
| | | Number/
| | | |--Utilities.pm
|--primes.pl

 3. Run the program with perl example_11_1_convert.pl. You should see the following output:

There are 1760 yards in a mile
There are 5280 feet in a mile
There are 63360 inches in a mile
There are 2.84 miles in a 5000 yards
There are 0.95 miles in a 5000 feet
There are 0.08 miles in a 5000 inches

By an astonishing stroke of luck, those numbers turn out to be correct.

How It Works

Start with the standard strict, warnings, and diagnostics. (Although at this point, you could prob-
ably do without diagnostics and fi gure out what’s going on.) Then you have the use lib line:

use lib ‘lib’;

This tells Perl that before searching for modules in @INC, check the lib/ directory. If you had several
extra places you wanted Perl to look for modules, you could pass them all to lib’s import list:

use lib ‘lib’, ‘mylib’, ‘other/lib’;

Next, set up your subroutine exporting with the following:

use Exporter ‘import’;
our @EXPORT_OK = qw(
 miles_to_yards

c11.indd 333c11.indd 333 09/08/12 10:01 AM09/08/12 10:01 AM

334 ❘ CHAPTER 11 PACKAGES AND MODULES

 yards_to_miles
 miles_to_feet
 feet_to_miles
 miles_to_inches
 inches_to_miles
);
our %EXPORT_TAGS = (all => \@EXPORT_OK);

This lets you import any of those functions individually upon request, or in the case of your convert.pl
program, you imported them via the :all tag.

Next, defi ne several useful constants:

use constant FEET_PER_MILE => 5_280;
use constant FEET_PER_YARD => 3;
use constant INCHES_PER_FOOT => 12;

You could have simply typed these directly into your subroutines, but if you did something silly like
mistakenly assume that there are 5,200 feet per mile, you’d need to change this value in several places.
Instead, use the constant pragma to create easy-to-read labels for each value, and later if you fi nd one is
in error, you have to change it only in one place.

Also, you could have declared the constants all at one time like this:

use constant {
 FEET_PER_MILE => 5_280,
 FEET_PER_YARD => 3,
 INCHES_PER_FOOT => 12,
};

Next, you have the functions implementing your actual code. The miles_to_feet() and feet_to_
miles() functions are actually your core functions here:

sub miles_to_feet {
 my $miles = shift;
 return $miles * FEET_PER_MILE;
}

sub feet_to_miles {
 my $feet = shift;
 return $feet / FEET_PER_MILE;
}

Those should be clear. Each of them depends only on the FEET_PER_MILE constant and the value passed
into it. Note that even when these subroutines are exported into your namespace, they can still refer-
ence the value in FEET_PER_MILE, despite it being defi ned in a different package.

Looking at other subroutines, such as miles_to_yards(), you can see that they are defi ned in terms of
miles_to_feet().

sub miles_to_yards {
 my $miles = shift;

c11.indd 334c11.indd 334 09/08/12 10:01 AM09/08/12 10:01 AM

BEGIN, UNITCHECK, CHECK, INIT, and END ❘ 335

 return miles_to_feet($miles) / FEET_PER_YARD;
}

You do this to make things more clear and to avoid repeating your miles-to-feet calculation.

The miles_to_yards() function relies on FEET_PER_YARD and miles_to_feet(). When exported,
miles_to_yards() still knows about those and returns correct answers even if FEET_PER_YARD and
miles_to_feet() are not exported. You can verify that by only exporting miles_to_yards() and see
that it still works correctly:

use lib ‘lib’;
use Convert::Distance::Imperial ‘miles_to_yards’;
printf “There are %d yards in a mile\n” => miles_to_yards(1);

BEGIN, UNITCHECK, CHECK, INIT, AND END

There are four special blocks, BEGIN, CHECK, INIT, and END, which are executed at different stages
of your program. There is also UNITCHECK, which was introduced in Perl version 5.9.5. These blocks
execute code at specifi c times of the program. They sometimes check that a necessary resources,
such as data fi les, exist, but you can use them any time you feel you must have code execute at a
 particular time in your program’s compilation, rather than explicitly calling it.

These blocks look like subroutines, but they’re not. (You can prefi x them with the sub keyword, but
it’s considered bad style.) They automatically execute and cannot be called. Furthermore, you can
have multiples of each of these blocks, for example:

package Foo;

use strict;
use warnings;

BEGIN {
 print “This is the first BEGIN block\n”;
}

BEGIN {
 print “This is the second BEGIN block\n”;
}

And when you use Foo (or even if you just check its syntax with perl -c Foo.pm), it prints out:

This is the first BEGIN block
This is the second BEGIN block

NOTE You can read more about BEGIN, INIT, CHECK, UNITCHECK, and END in

perldoc perlmod.

c11.indd 335c11.indd 335 09/08/12 10:01 AM09/08/12 10:01 AM

336 ❘ CHAPTER 11 PACKAGES AND MODULES

To understand these special blocks, think of a Perl program’s “lifecycle” in terms of the following
steps. (This is an oversimplifi cation.)

 1. The program is compiled.

 2. The program is executed.

 3. The program is fi nished.

BEGIN blocks

BEGIN blocks fi re during program compilation (step 1), as soon as the trailing } is found. BEGIN
blocks are useful for a variety of purposes, such as checking whether or not necessary fi les exist
before the program runs or verifying that you are on the correct operating system.

Ordinarily a print statement happens in step 2, when the program is executed, so this:

BEGIN {
 print “This is the first BEGIN block\n”;
}

print “The program is running\n”;

BEGIN {
 print “This is the second BEGIN block\n”;
}

Prints this:

This is the first BEGIN block
This is the second BEGIN block
The program is running

If your program contains a syntax error after a BEGIN block, the BEGIN block still executes because
it is executed as soon as it is compiled and before the program fi nishes compiling. So this:

BEGIN {
 print “This is the first BEGIN block\n”;
}

print “The program is running\n”;

BEGIN {
 print “This is the second BEGIN block\n”;
}
my $x =;

Prints something like this:

syntax error at some_program.pl line 8, near “=;”
Execution of some_program.pl aborted due to compilation errors.
This is the first BEGIN block
This is the second BEGIN block

c11.indd 336c11.indd 336 09/08/12 10:01 AM09/08/12 10:01 AM

BEGIN, UNITCHECK, CHECK, INIT, and END ❘ 337

Because STDERR and STDOUT are separate fi lehandles, they are not guaranteed to print in sequence,
thus leading to this strange case in which you may get the syntax error printed before you have the
BEGIN block output printing. This is an artifact of how operating systems work and is not a fl aw in
Perl.

BEGIN blocks always execute in the order they are found.

NOTE Note that this:

use Module ();

Is equivalent to this:

BEGIN{ require Module; }

That’s because the parentheses with use Module () tell Perl not to call the

import() function and the BEGIN block using require, therefore it does the

same thing.

END Blocks

END blocks are like BEGIN blocks, but they happen in step 3, when the program is exiting. They
will even be called if you die(), but signals and (the incredibly rare) segfaults can cause them to be
skipped. They are useful if you need to clean anything up after your program fi nishes running.

They are executed in the reverse order that they are defi ned. Thus, this:

END {
 print “This is the first END block\n”;
}
END {
 print “This is the second END block\n”;
}

Prints this:

This is the second END block
This is the first END block

INIT, CHECK, and UNITCHECK Blocks

When your program fi nishes compiling but before it executes is when INIT, CHECK, and UNITCHECK
blocks fi re. Because of this, unlike BEGIN blocks, they do not execute if there is a syntax error. A
CHECK blocks runs immediately after step 1 (compilation) is fi nished, in a LIFO (last in, fi rst out)
order. INIT blocks run after CHECK blocks and just before step 2, the program execution. They run
in the order they are defi ned (FIFO, fi rst in, fi rst out).

c11.indd 337c11.indd 337 09/08/12 10:01 AM09/08/12 10:01 AM

338 ❘ CHAPTER 11 PACKAGES AND MODULES

INIT {
 print “This is the first INIT block\n”;
}
CHECK {
 print “This is the first CHECK block\n”;
}
INIT {
 print “This is the second INIT block\n”;
}
CHECK {
 print “This is the second CHECK block\n”;
}

That prints out:

This is the second CHECK block
This is the first CHECK block
This is the first INIT block
This is the second INIT block

As you can see, the CHECK blocks run before the INIT blocks, in reverse order. The INIT blocks are
run in the order defi ned.

UNITCHECK was introduced in Perl 5.9.5. It was designed to solve a problem in which code loaded
during program execution (such as with a require MODULENAME or a string eval) will not execute
CHECK and INIT blocks. They would not be executed because those blocks execute only after pro-
gram compilation and before program execution, not during program execution.

A UNITCHECK runs immediately after the code containing it is compiled, even if you are already in
the program execution phase. This allows you to “check” necessary conditions before the contain-
ing code is executed.

PLAIN OLD DOCUMENTATION (POD)

Documentation is worth it just to be able to answer all your mail with
‘RTFM’—Alan Cox

So you’ve written a lot of code by now, but what about documenting it? Whenever you read a mod-
ule’s documentation on the CPAN, you’re reading POD, short for Plain Old Documentation. POD is
a quick-and-easy way to write documentation for your modules, and it’s quick to learn.

NOTE POD is not just for modules. You are encouraged to use it in all your code

that has a lifespan greater than a few hours. You will thank yourself.

When reading module documentation on your computer, you generally do so with the perldoc
command. When you type something like perldoc Convert::Distance::Imperial, it searches
through @INC for Convert/Distance/Imperial.pm and Convert/Distance/Imperial.pod. It

c11.indd 338c11.indd 338 09/08/12 10:01 AM09/08/12 10:01 AM

Plain Old Documentation (POD) ❘ 339

attempts to format a .pm fi le if it contains POD. It automatically assumes that a .pod fi le is POD.
This allows you to write a module and keep the documentation in a separate fi le, if wanted:

|--convert.pl
| lib/
| | Convert/
| | | Distance/
| | | |--Imperial.pm
| | | |--Imperial.pod

POD starts with a command paragraph. A command paragraph is any text starting with = and fol-
lowed by an identifi er. Though it’s called a paragraph, it is usually on a single line. POD ends with the
=cut command paragraph (or the end of the fi le). There must be no whitespace to the left of the =.

WARNING Though the =cut on a line by itself is usually suffi cient to indicate

the end of the POD section, some POD parsers require a blank line before (and

sometimes after) the =cut.

In general, any text typed as a paragraph in POD is rendered as such. Here’s a POD paragraph
between two subroutines:

sub reciprocal { return 1 / shift }

=pod

This is a paragraph in a POD section. When run through a formatter, the
paragraph text will rewrap as necesseary to fit the needs of your
particular output format.

=cut

sub not_reciprocal { return shift }

The following command paragraphs are recognized. You may create custom ones if you create your
own POD parser.

=pod
=head1 Heading Text
=head2 Heading Text
=head3 Heading Text
=head4 Heading Text
=over indentlevel
=item stuff
=back
=begin format
=end format
=for format text...
=encoding type
=cut

c11.indd 339c11.indd 339 09/08/12 10:01 AM09/08/12 10:01 AM

340 ❘ CHAPTER 11 PACKAGES AND MODULES

Although POD documentation is often interspersed with code, particularly with a documentation
section before each subroutine, many programmers prefer to put their documentation at the end of
the module, after a __END__ or __DATA__ literal. There are arguments for and against each style. It’s
up to you.

Documentation Structure

Though the exact format varies, you can notice that most modules on the CPAN follow a documen-
tation layout similar to the following (and generally in this order):

 ➤ NAME: The module name

 ➤ SYNOPSIS: A brief code snippet showing usage

 ➤ DESCRIPTION: A description of what the module is for

 ➤ EXPORT: An optional list, if any, of what the module exports

 ➤ FUNCTION/METHODS: Detailed descriptions of every subroutine/method

 ➤ BUGS: Known bugs and how to report new ones

 ➤ AUTHOR: Who wrote the module (often more than one author)

 ➤ LICENSE: The license terms of the module

It is strongly recommended that you follow this format unless you have a strong reason not to. This
makes your documentation consistent with other Perl modules and makes it easier to read. See the
documentation for DBIx::Class for a good example of why you might want a slightly different
format.

Other common sections include VERSION, DIAGNOSTICS, SEE ALSO (related modules) and
CONTRIBUTORS (nonauthors who’ve nonetheless offered useful feedback or patches).

The sections generally begin with a =head1 command paragraph:

=head1 NAME

Convert::Distance::Imperial - Convert imperial units to other units

=head1 VERSION

VERSION 0.001

=head1 SYNOPSIS

 use Convert::Distance::Imperial ‘miles_to_inches’;
 my $miles = miles_to_inches(453285);

Headings

POD, by default, supports four levels of headings:

 ➤ =head1 ALL CAPS TEXT

 ➤ =head2 Some Text

c11.indd 340c11.indd 340 09/08/12 10:01 AM09/08/12 10:01 AM

Plain Old Documentation (POD) ❘ 341

 ➤ =head3 Some text

 ➤ =head4 Some text

The pod2html formatter, included with Perl, renders these as <h1>, <h2>, <h3>, and <h4>, respec-
tively. Other POD formatters obviously make different choices. The ALL CAPS for the =head1 com-
mand is not strictly required for all POD formatters, but some require it, so you should probably
stick with it.

Paragraphs

A paragraph in POD, as mentioned, is merely text you type in a POD section. Note that there must
be no whitespace at the start of any paragraph line:

=pod

This is a POD paragraph.

This is a second POD paragraph.

=cut

Lists

A list begins with =over indentlevel (typically the number 4), has one or more =item commands,
and ends with a =back command.

=over 4

=item * This is a list item

=item * This is a second list item.

This is an optional paragraph explaining the second list item.

=back

You may have an optional paragraph after an =item command. No =headn commands are allowed,
and although you might think that a nested list is handy, not all POD formatters respect them.

If you don’t want a bulleted list, you can create a numbered list manually. Use 1., 2., 3., and so on
after each =item. Many POD parsers are weak in this area, so double-check that your desired POD
parser handles this correctly.

=over 4

=item 1. This is a list item

=item 2. This is a second list item.

c11.indd 341c11.indd 341 09/08/12 10:01 AM09/08/12 10:01 AM

342 ❘ CHAPTER 11 PACKAGES AND MODULES

This is an optional paragraph explaining the second list item.

=item 3.

=back

If you don’t want a bulleted or numbered list, just use =item followed by your desired list text.

The indentlevel is optional as it defaults to 4. Many POD formatters ignore it entirely, whereas oth-
ers consider that to be the number of ems width of indent (An em is the width of the capital letter M
in the base font of the document.)

Verbatim

So why can’t we have any whitespace at the start of a line of normal POD paragraph? Because
any text with leading whitespace is rendered verbatim. This makes it easy to insert code in your
documentation.

=head1 SUBROUTINES

=head2 C<miles_to_yards>

use Convert::Distance::Imperial ‘miles_to_yards’;
my $yards = miles_to_yards($miles);
print “$miles miles is $yards yards\n”;

The C<miles_to_yards()> subroutines takes a number, in
miles, and returns anumber, in yards.

That funky C<> stuff is explained in just a bit.

NOTE When writing documentation for your functions, try to focus on what

they do, not how they do it. This makes it more likely that you will not need to

update your documentation later if you change how your function behaves inter-

nally, but its use remains the same.

Miscellaneous

With headings, paragraphs, lists, and verbatim text, you now know most of the POD syntax people
use. However, there are a few other commands we’ll take the time to explain. These are merely the
most popular and you should read perldoc perlpod to understand what else you can do.

Formatting codes

Sometimes you want to have a bit more control over the output. It can be useful to have fixed-
width text, bold, or italic text. All paragraphs and some command paragraphs allow formatting
codes, also known as interior sequences. Here’s how you might format this paragraph in POD:

Sometimes you want to have a bit more control over the
output. It can be useful to have C<fixed-width text>,

c11.indd 342c11.indd 342 09/08/12 10:01 AM09/08/12 10:01 AM

Plain Old Documentation (POD) ❘ 343

B<bold> or I<italic> text. All paragraphs and some
command paragraphs allow formatting codes, also known
as I<interior sequences>. Here’s how you might format
this paragraph in POD:

Formatting codes begin with a single uppercase letter, followed by a <, followed by the wanted
text, and ending with a >. Some POD formatters require all these to be on the same line. Table 11-1
shows common POD formatting codes.

TABLE 11-1 Common Formatting Codes

CODE MEANING

C<text> Fixed-width (‘C’ode)

C<< text >> Fixed-width and doesn’t let the next > end the interior sequence.

(C<< $age >= 18 >>)

B<text> ‘B’old

I<text> ‘I’talics

E<text> ‘E’scape text (generally, you can use HTML escape names such as E<lt>

for the < character)

S<text> All ‘s’paces are nonbreaking

L<text> Create a ‘l’ink

Linking

Linking is often skipped in Perl modules, but it’s good to know, particularly because good linking
will show up on CPAN modules and make it easier to cross-reference other documents. Note that
names must not contain | or / and if they contain < or >, they must be balanced.

There are three primary linking formats:

 ➤ L<name>: This links to a Perl manual page, such as L<Scalar::Util> or L<perlunitut>.
This form of linking does not allow spaces in the name.

 ➤ L<name/”sec”> or L<name/sec>: A link to a section of a man page. For example,
L<perlpod/”Formatting Codes”>.

 ➤ L</”sec”> or L</sec>: A link to another section of the current POD document.

If you prefer, you can prefi x any of these with a text| to give them a more readable name:

L<Read about formatting codes|perlpod/”Formatting Codes”>

Or that’s the theory, at least. Some POD formatters struggle with this syntax.

Finally, you can link to a URL:

L<http://www.overseas-exile.com/>

c11.indd 343c11.indd 343 09/08/12 10:01 AM09/08/12 10:01 AM

http://www.overseas-exile.com

344 ❘ CHAPTER 11 PACKAGES AND MODULES

The perlpod documentation claims you cannot give a nice “text” name to a URL, meaning that the
text|link syntax does not work:

L<Overseas Exile|http://www.overseas-exile.com/>

However, that was apparently fi xed in Perl version 5.8.9, though the Pod::Checker module would
apparently complain about this syntax. If you have problems using this syntax, be sure to update
Pod::Parser with the latest version from the CPAN.

Encoding

Your POD documents are generally written in ASCII or Latin-1. However, if you need them to be in
another encoding, you must specify this with the =encoding command:

=encoding UTF-8

The Encoding::Supported module from the CPAN can give you a list of supported encodings.

CREATING AND INSTALLING MODULES

Writing a module is all fi ne and dandy, but what about installing it? When a module is properly
installed, you no longer require a use lib ‘lib’; line to tell Perl where to fi nd it. The module
will probably be installed in one of the paths in @INC and Perl will fi nd it when you use it. This is
also the fi rst step to create a distribution that can be given to other programmers for installation or
uploaded to the CPAN. Sharing is good. Installable modules are shareable modules.

Creating a Simple Module

In the old days, people used a program that ships with Perl called h2xs, but it’s so old and out of
date it’s mentioned just to say “Don’t bother.” Today many people use Dist::Zilla to create and
install modules, and while we recommend it, it’s beyond the scope of this book. Instead, we recom-
mend that you start by installing Module::Starter from the CPAN. It can provide a module-starter
program. Now create an installable version of the Convert::Distance::Imperial program:

module-starter --module=Convert::Distance::Imperial \
 --author=’Curtis “Ovid” Poe’ \
--email=ovid@cpan.org

That creates a directory named Convert-Distance-Imperial/. Using your tree.pl program, you
can see the following directory structure:

$ tree.pl Convert-Distance-Imperial/
Convert-Distance-Imperial/
|--Changes
|--MANIFEST
|--Makefile.PL
|--README
|--ignore.txt
| lib/

c11.indd 344c11.indd 344 09/08/12 10:01 AM09/08/12 10:01 AM

http://www.overseas-exile.com
mailto:ovid@cpan.org

Creating and Installing Modules ❘ 345

| | Convert/
| | | Distance/
| | | |--Imperial.pm
| t/
| |--00-load.t
| |--boilerplate.t
| |--manifest.t
| |--pod-coverage.t
| |--pod.t

There’s a lot of stuff here, so let’s go over each item.

 ➤ The Changes fi le contains a list of changes for each version of your program.

 ➤ The MANIFEST should list each fi le that must be included in the actual distribution.

 ➤ The Makefile.PL is a Perl program that creates a Makefile that you use with make (or
sometimes nmake or dmake in Windows). A Makefile is a fi le that explains how to build
your software. If you decide to read the Makefile, be careful not to change it unless you’re
familiar with writing a Makefile. It contains embedded tabs and if you accidentally convert
them to spaces, you will break the Makefile.

 ➤ The README is for the user to understand how to build and install the distribution and often
has the distribution documentation embedded in it.

 ➤ The ignore.txt is a template to use with various version control systems, such as git or
Subversion, to know which fi les to ignore. You often want to copy that fi le (or its contents)
to an appropriately named fi le for your version control system.

 ➤ The lib/ directory contains the modules you want to install.

 ➤ The t/ directory contains the tests for the module, which Chapter 14 covers.

You can just copy your copy of Convert/Distance/Imperial.pm to Convert-Distance-
Imperial/lib/Convert/Distance/Imperial.pm and you have an installable module.

NOTE You may fi nd it annoying to type your name and e-mail every time you

run module-starter. perldoc Module::Starter doesn’t (as of this writing) sug-

gest how to avoid that, but perldoc module-starter tells you that you can

create a $HOME/.module-starter/config fi le (where $HOME is your home direc-

tory) and add your name and e-mail in that:

author: Curtis “Ovid” Poe
email: ovid@cpan.org

Then you can just type:

module-starter --module=My::Module

And the author and e-mail information will be fi lled in for you.

c11.indd 345c11.indd 345 09/08/12 10:01 AM09/08/12 10:01 AM

mailto:ovid@cpan.org

346 ❘ CHAPTER 11 PACKAGES AND MODULES

You’re going to do that now in the following Try It Out.

TRY IT OUT Creating an Installable Distribution

In this Try It Out, you create an installable package for Convert::Distance::Imperial and option-
ally install it. This shows you the basic process.

 1. Run module-starter, using your name and e-mail address:

module-starter --module=Convert::Distance::Imperial \
 --author=’Curtis “Ovid” Poe’ --email=ovid@cpan.org

On Linux and OS X, the \ at the end of the line tells the operating system to continue the command
on the next line rather than execute it immediately. You can put all those on the same line if you like.

 2. Copy your version of Convert/Distance/Imperial.pm to Convert-Distance-Imperial/
lib/Convert/Distance/Imperial.pm. As an alternative, you can open up the new Convert-
Distance-Imperial/lib/Convert/Distance/Imperial.pm fi le and add your code to it directly.
This is good because most of the POD boilerplate is fi lled out for you.

 3. Change to the Convert-Distance-Imperial/ directory.

 4. Type the following commands, one at a time. If you use an alternative make command such
as dmake or nmake, substitute that command for make.

perl Makefi le.PL
make
make test

Many developers just type those on a single line:

perl Makefile.PL && make && make test

 5. If make test reports that all tests passed (and it should), then type (if you want to install this
module):

make install

If you use your system Perl (and I generally recommend against this), you may need superuser
privileges to install the module. On Linux or OS X, you can type this:

sudo make install

That prompts you for your password. Windows users often have Administrator
privileges and won’t need to worry about that. Plus, because Perl is not included by
default on Windows, you don’t need to worry as much about breaking something your system
depends on.

 6. If all went well, you should see something similar to this:

$ perl Makefi le.PL && make && make test
Checking if your kit is complete...

c11.indd 346c11.indd 346 09/08/12 10:01 AM09/08/12 10:01 AM

mailto:ovid@cpan.org

Creating and Installing Modules ❘ 347

Looks good
Writing Makefi le for Convert::Distance::Imperial
cp lib/Convert/Distance/Imperial.pm
blib/lib/Convert/Distance/Imperial.pm
Manifying blib/man3/Convert::Distance::Imperial.3
t/00-load.t 1/1 # Testing Convert::Distance::Imperial 0.01
t/00-load.t ok
t/manifest.t skipped: Author tests not required
All tests successful.
Files=2, Tests=1, 0 wallclock secs (0.03 usr 0.02 sys +
 0.06 cusr 0.01 csys = 0.12 CPU)
Result: PASS

These fi les are not included for download because you can generate them automatically with
module-starter.

How It Works

When you fi rst run module-starter, it creates a shell of a distribution, and you need to fi ll out the
important bits. If you know in advance that your distribution contains multiple modules, you can list
all of them, separated by commas (but no spaces).

module-starter --module=Convert::Distance::Imperial,\
Convert::Distance::Metric

When you change into the Convert-Distance-Imperial/ directory, take a look at the Makefile.PL.
It looks something like this:

use 5.006;
use strict;
use warnings;

use ExtUtils::MakeMaker;

WriteMakefile(
 NAME => ‘Convert::Distance::Imperial’,
 AUTHOR => q{Curtis “Ovid” Poe <ovid@cpan.org>},
 VERSION_FROM => ‘lib/Convert/Distance/Imperial.pm’,
 ABSTRACT_FROM => ‘lib/Convert/Distance/Imperial.pm’,
 ($ExtUtils::MakeMaker::VERSION >= 6.3002
 ? (‘LICENSE’=> ‘perl’)
 : ()),
 PL_FILES => {},
 PREREQ_PM => {
 ‘Test::More’ => 0,
 },
 dist => { COMPRESS => ‘gzip -9f’, SUFFIX => ‘gz’, },
 clean => { FILES => ‘Convert-Distance-Imperial-*’ },
);

I won’t go into details, but the PREREQ_PM should point to a hash reference whose keys are all modules
your code depends on and whose values are the minimum version numbers required. If you install
a module from the CPAN using standard tools, it consults the PREREQ_PM and if you do not have the
modules listed (or their minimum versions), then those modules will be installed before yours.

c11.indd 347c11.indd 347 09/08/12 10:01 AM09/08/12 10:01 AM

mailto:ovid@cpan.org

348 ❘ CHAPTER 11 PACKAGES AND MODULES

To choose a mininum version number for a required module, you might want to check the Changes fi le
included in almost every module’s distribution (you’ll fi nd a link to it on its Web page on the CPAN)
and make sure that the features you need are listed in that version.

When you run perl Makefile.PL, the ExtUtils::MakeMaker module’s WriteMakefile() function
will, unsurprisingly, write the Makefile for you.

Running make can read the Makefile and build your module correctly. The make test runs the tests
in the t/ directory. Finally, make install installs your module.

The t/boilerplate.t, t/pod.t, t/pod-coverage.t, and t/manifest.t modules are all likely to
pass or be skipped because you won’t have the proper modules installed to run them, or you won’t have
removed the “boilerplate” code that module-starter generates. To see the full list of boilerplate that you
should edit and replace, you can do this:

$ prove -l -v t/boilerplate.t

The prove command comes standard with Perl and is used to run tests. The -l switch tells prove to
look for your modules in the lib/ directory and -v says “use verbose output.” Finally, you include the
name of the test program you want to run. You can bundle the -l and -v switches into a single -lv if
you prefer. The output looks similar to this (reformatted slightly to fi t):

$ prove -lv t/boilerplate.t
t/boilerplate.t ..
1..3
not ok 1 - README # TODO Need to replace the boilerplate text
Failed (TODO) test ‘README contains boilerplate text’
at t/boilerplate.t line 24.
The README is used... appears on lines 3
‘version information here’ appears on lines 11
not ok 2 - Changes # TODO Need to replace the boilerplate text
Failed (TODO) test ‘Changes contains boilerplate text’
at t/boilerplate.t line 24.
placeholder date/time appears on lines 3
not ok 3 - Convert/Distance/Imperial.pm # TODO replace boilerplate
Failed (TODO) test ‘lib/Convert/Distance/Imperial.pm’
at t/boilerplate.t line 24.
stub function definition appears on lines 38 42 45 49
boilerplate description appears on lines 22
the great new $MODULENAME appears on lines 9
ok
All tests successful.
Files=1, Tests=3, 0 wallclock secs (0.02 usr 0.01 sys +
 0.02 cusr 0.00 csys = 0.05 CPU)
Result: PASS

This text is fairly human-readable, and if you’re careful, you can fi gure out what the test output means.
However, we’ll say no more about this until testing is covered in Chapter 14.

Now that you’ve created your fi rst “proper” module, turning it into a distribution is a snap.
After you’ve done perl Makefile.PL, make, and maketest, you can type make dist and
something called a tarball is created for you. In this case it has a name similar to

c11.indd 348c11.indd 348 09/08/12 10:01 AM09/08/12 10:01 AM

Summary ❘ 349

Convert-Distance-Imperial-0.01.tar.gz. That’s suitable for uploading to the CPAN. If you
want to do that, you need a PAUSE (Perl Authors Upload Server) account. You can apply for one at
https://pause.perl.org/ and start sharing your CPAN modules with everyone else.

After you type make, there are many extra fi les that have been built, such as a Makefile, a blib/
directory and a pm_to_blib/ directory. They can be useful for debugging build problems, but to
make them go away, you can just type make realclean. They return the next time you type make.

Makefi le.PL or Module::Build?

You might think it odd that a language such as Perl uses an external tool like a Makefile to con-
trol how it builds its modules. After all, Java has ant and Ruby has rakefiles, why not a pure
Perl alternative? This is because when Perl was fi rst introduced, long before either Java or Ruby, it
was common on UNIX-like systems, and people who were likely to use Perl already knew about
Makefiles.

The Perl module that creates the actual Makefile is called ExtUtils::MakeMaker (often referred
to simply as EUMM) and it’s a beast to maintain. This is because there are many different implemen-
tations of the make program, not all of which are compatible with one another. Further, different
operating systems have different constraints about fi lenames, paths, how commands get executed,
and so on. Because the Makefile must respect those constraints, the job gets harder. Imagine all
the different types of make utilities and the different incompatible operating systems, and you can
understand why this system has been hard to maintain.

As a result, the Module::Build project was started. It’s written entirely in Perl and is much easier
to extend than EUMM. Unfortunately, Module::Build was buggy when it fi rst came out. Further,
because EUMM had some design fl aws when it was implemented, Module::Build fi xed some of those
fl aws, and this led to subtle incompatibilities between the two. Michael Schwern, the maintainer of
EUMM, has tried to convince people to switch to Module::Build, but many developers have chosen
not to.

If you want to use Module::Build with module-starter, just pass the --mb switch to module-
starter. You’ll also want to read Module::Build::Authoring. The build process is then:

perl Build.PL
./Build
./Build test
./Build install

Finally, there’s the Module::Install module. This is designed primarily to work with
ExtUtils::MakeMaker and is easy to learn, particularly for new programmers. If you have
Perl version 5.9.4 or better, you already have Module::Build installed. You have to install
Module::Install separately.

SUMMARY

In this chapter, you have learned the basics of writing modules and building distributions. You’ve
learned about the phases of program execution and how to export subroutines to other packages.
You’ve also learned how to document your modules. You should read perldoc perlmod for more
information.

c11.indd 349c11.indd 349 09/08/12 10:01 AM09/08/12 10:01 AM

https://pause.perl.org/

350 ❘ CHAPTER 11 PACKAGES AND MODULES

EXERCISES

 1. Write a module, Convert::Distance::Metric, which contains the following subroutines:

 ➤ kilometers_to_meters

 ➤ meters_to_kilometers

 Make those subroutines optionally exportable, and let people also import all of them with:

use Convert::Distance::Metric “:all”;

 2. Add this module to your Convert-Distance-Metric distribution. Don’t forget to add it to the

MANIFEST.

 3. Add full POD to the Convert::Distance::Metric module. Include the following sections:

 ➤ NAME: The module name.

 ➤ SYNOPSIS: A brief code snippet showing usage.

 ➤ DESCRIPTION: A description of what the module is for.

 ➤ EXPORT: An optional list, if any, of what the module exports.

 ➤ FUNCTION: Detailed description of every subroutine.

 ➤ BUGS: Known bugs and how to report new ones.

 ➤ SEEALSO: A link to Convert::Distance::Imperial.

 ➤ AUTHOR: Who wrote the module (often more than one author).

 ➤ LICENSE: The license terms of the module.

 Be sure to type perldoc lib/Convert/Distance/Metric.pm to verify the POD output. You can

also run podchecker lib/Convert/Distance/Metric.pm to look for errors in your POD.

 4. Write a short program to convert 3.5 kilometers to meters and convert the answer back to kilo-

meters using the Convert::Distance::Metric module you created for Exercise 1.

 5. (Optional). Although testing hasn’t been covered yet, edit the t/00-load.t test program in

the Convert-Distance-Imperial distribution and try to add a test to verify that you can load

Convert::Distance::Metric. You can check to see if it works with:

prove -lv t/00-load.t

Or just run:

perl makefi le.pl
make
make test

c11.indd 350c11.indd 350 09/08/12 10:01 AM09/08/12 10:01 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Summary ❘ 351

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Namespace A container which groups names.

Package A namespace for package variables, subroutines, and so on.

Module A fi le that contains one or more packages.

Distribution A single fi le containing everything need to build and install a module or

group of modules.

use and require Loading modules at compile time and run time.

Exporting A way to put subroutines in other packages.

BEGIN, et al. Blocks of code that execute at specifi c phases of the program run.

POD How to document your code.

c11.indd 351c11.indd 351 09/08/12 10:01 AM09/08/12 10:01 AM

c11.indd 352c11.indd 352 09/08/12 10:01 AM09/08/12 10:01 AM

Object Oriented Perl

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding what an object is

 ➤ Learning the three rules of Perl’s OO system

 ➤ Creating a class

 ➤ How to subclass a class

 ➤ Overloading classes

 ➤ Learning OO traps for the unwary

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ example_12_1_shopper.pl

 ➤ example_12_2_episode.pl

 ➤ lib/Shopper/Personal.pm

 ➤ lib/TV/Episode.pm

 ➤ lib/TV/Episode/Broadcast.pm

 ➤ lib/TV/Episode/OnDemand.pm

 ➤ lib/TV/Episode/Version.pm

 ➤ listing_12_1_episode.pl

12

c12.indd 353c12.indd 353 10/08/12 8:24 PM10/08/12 8:24 PM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://wrox.com
http://WROX.COM

354 ❘ CHAPTER 12 OBJECT ORIENTED PERL

Chapter 10 mentioned that knowledge of the sort, map, and grep functions is sort of a litmus
test that some programmers use to know if a Perl developer is at least at an intermediate level.
Knowledge of object-oriented programming (often referred to as OOP, or just OO) is your fi rst step
toward being an advanced Perl developer. Many languages support OO programming, and learning
about it in Perl will help you in many other languages.

Two chapters discuss OOP. This chapter describes Perl’s built-in OO tools. They’re minimal, but
this minimalism gives you a lot of freedom. You need to understand how Perl’s built-in OO works
because much of the Perl software in the wild is written with this.

The next chapter, Chapter 13, covers Moose which is an incredibly powerful object system built on
top of Perl’s OO tools. It’s so powerful that it’s rapidly becoming Perl’s de facto OO system for many
developers and companies and has had a large infl uence over the development of Perl.

WHAT ARE OBJECTS? THE ÆVAR THE PERSONAL SHOPPER

Many books have been written about OOP and even among experts, there is often disagreement
about what OOP is. Many programmers have tried to explain OOP and leave the programmer
confused. A case in point is the classic “An object is a data structure with behaviors attached to it.”
Although that’s correct, that’s also an awful description and tells you almost nothing you need to
know, so instead of giving you a textbook defi nition, we’re going to tell you a story.

You’re an awfully busy person and have little free time but plenty of disposable income, so you’ve
decided to hire a personal shopper. His name is Ævar (any resemblance to reviewers of this book,
living or dead, is purely coincidental) and he’s friendly, fl amboyant, and most of all, cheap.

Because Ævar is new to both your city and the job, you have to tell him carefully how much money
he can spend, exactly what quality of products you want, and where to buy them. You may even
have to tell him which route to drive to pick up the goods and how to invoice you.

That, in essence, is procedural code and that’s what you’ve been doing up to now. You’ve been care-
fully telling the computer every step of the way what to do.

After a few months of explaining every little detail, Ævar gets upset and says, “þegiðu maður, ég
veit alveg hvað ég er að gera” (Icelandic for “Shut up dude; I know what I’m doing”). And he does.
He knows what you like and where to get it. He’s become an expert. In OO terms, you might now
be doing this:

my $aevar = Shopper::Personal->new({
 name => ‘Ævar’,
 budget => 100
});
$aevar->buy(@list_of_things_to_buy);
my $invoice = $aevar->get_invoice;

You’re no longer telling Ævar every little step he needs to take to get your shopping done.
He’s an expert, and he has all the knowledge needed to do your shopping for you and present
you with the bill.

c12.indd 354c12.indd 354 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 355

And that’s all objects are: experts about a problem you need solved. They have all the knowledge you
need to get a task done, and you don’t tell them how to do something, you merely ask them to do
something.

THREE RULES OF PERL OO

We’ve already said that Perl has a minimalist OO system. This is both good and bad. It’s bad
because if you’re familiar with OO from another language, you may be frustrated with the differ-
ences in Perl or its lack of native facilities to handle things you take for granted. However, it’s good
because it’s easy to learn and extend.

There are three simple rules to know about Perl’s OO system.

 ➤ A class is a package.

 ➤ An object is a reference that knows its class.

 ➤ A method is a subroutine.

When you understand and memorize those three rules, you’ll know most of what there is to know
about basic OO programming in Perl.

Class Is a Package

In OO programming, we often speak of classes. A class is a blueprint for something you want to cre-
ate. Just as you can use a blueprint of a house to make several houses, each painted in different colors,
you can use a Shopper::Personal class to create several personal shoppers, each with different buying
habits. The Shopper::Personal class is not the object, but it’s the blueprint you can use to create one.

NOTE Given that Perl has been heavily infl uenced by linguistics, it might also be

fair to describe a class as a noun and an instance as a proper noun. It’s the

diff erence between the generic idea of a “city” (a noun) and “Paris” (a proper

noun).

NOTE Perl’s OO is based on classes. However, this is not the only way to do OO

programming. For example, JavaScript uses a prototype-based object system.

There’s actually some disagreement about many aspects of OO programming,

but most of the OO world today (outside of JavaScript, ActionScript, and a few

other languages) have settled on class-based OO programming.

For the Shopper::Personal snippet, you can have this:

my $aevar = Shopper::Personal->new({
 name => ‘Ævar’,
 budget => 100
});

c12.indd 355c12.indd 355 10/08/12 8:24 PM10/08/12 8:24 PM

356 ❘ CHAPTER 12 OBJECT ORIENTED PERL

You’ll note the Shopper::Personal->new bit. Shopper::Personal is the class name. It looks
like a package name because it is! In Perl a class is a package and it’s declared the same way. There
is no special syntax for declaring a class. In Shopper/Personal.pm, declaring the class might start
with this:

package Shopper::Personal;
use strict;
use warnings;

sub new {
 # more code here
}

Pretty simple, eh? Sure, there’s more to the code, but a class is nothing special in Perl.

An Object Is a Reference That Knows Its Class

When you create an object, you create a reference that knows what class it belongs to. You can do
that by blessing the reference into the class using the bless builtin. The syntax looks like this:

OBJECT = bless REFERENCE, CLASSNAME;

The bless builtin tells a reference that it belongs to a class. When the object is used, it knows where
its methods are.

When you created your Shopper::Personal object and passed in a hash reference:

my $aevar = Shopper::Personal->new({
 name => ‘Ævar’,
 budget => 100
});

The code to create it may have looked like this:

package Shopper::Personal;
use strict;
use warnings;
sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 budget => $arg_for->{budget},
 }, $class;
}

In this code, the $arg_for hashref has now been blessed into the Shopper::Personal
personal class. When you or anyone else uses the object and call methods on it, the blessed
reference knows where it is, in this case the Shopper::Personal class.

c12.indd 356c12.indd 356 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 357

For some other languages that allow OO programming, new is actually a keyword used to construct
objects. In Perl this is not the case. The new() method is just another method. You could easily have
called the constructor hire() and written Shopper::Personal->hire(). However, unless you
have good reason to do so, the best thing to do is name your constructors new() to avoid confusion.

When you see this:

my $aevar = Shopper::Personal->new({
 name => ‘Ævar’,
 budget => 100
});

The Shopper::Personal->new bit is important. When you use the dereferencing operator, ->, with
a class name on the left and a method name on the right (remember that a method is a subroutine in
the class), the method receives the class name as the fi rst argument in @_ with the other arguments
added to @_ as normal.

WARNING Some OO tutorials show you this:

sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 budget => $arg_for->{budget},
 }; # assume current package, bad form
}

You blessed the reference but did not say what class to bless it in. When this

happens, Perl blesses the object into the current package. This is considered to

be bad form because if you later need to inherit from this class (explained later),

you may want to reuse the new()constructor, but you can’t because it blesses

the reference into the current class.

This is called the one-argument bless and its use is heavily discouraged.

NOTE The fi rst argument to a method is either a class name or an object.

Because it’s what is responsible for invoking the method, it’s referred to as the

invocant.

So the new() method, in the preceding example, can have the following arguments:

@_ = (‘Shopper::Personal’, { name => ‘Ævar’, budget => 100 });

So look at the constructor again:

c12.indd 357c12.indd 357 10/08/12 8:24 PM10/08/12 8:24 PM

358 ❘ CHAPTER 12 OBJECT ORIENTED PERL

sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 budget => $arg_for->{budget},
 }, $class;
}

You can see that $class contains Shopper::Personal and $arg_for contains the hash reference.

You don’t actually need to pass a hash reference. You could pass a list:

my $aevar = Shopper::Personal->new(‘Ævar’, 100);

And then the new() constructor might look something like this:

sub new {
 my ($class, $name, $budget) = @_;
 return bless {
 name => $name,
 budget => $budget,
 }, $class;
}

NOTE You can use bless with any kind of reference. Here, you bless an array

reference:

sub new {
 my ($class, $name, $budget) = @_;
 return bless [$name, $budget], $class;
}

these methods will make more sense in the next section
sub name {
 my $self = shift;
 return $self->[0];
}

sub budget {
 my $self = shift;
 return $self->[1];
}

However, as you get more experience with OO programming, blessing a hash

reference is much easier to work with than blessing other types of references,

particularly if the class may be subclassed.

A Method Is a Subroutine

Moving along, you see this:

$aevar->buy(@list_of_things_to_buy);
my $invoice = $aevar->get_invoice;

c12.indd 358c12.indd 358 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 359

Here you call two methods, buy() and get_invoice() against the $aevar object. When this hap-
pens, $aevar is passed as the fi rst argument in @_ with the other arguments following. Before look-
ing at those methods, look at the name and budget attributes passed to the constructor.

my $aevar = Shopper::Personal->new({
 name => ‘Ævar’,
 budget => 100
});

print $aevar->get_name;
print $aevar->get_budget;

Now expand the Shopper::Personal class just a bit to provide those methods.

package Shopper::Personal;

use strict;
use warnings;

sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 budget => $arg_for->{budget},
 }, $class;
}

sub get_name {
 my $self = shift;
 return $self->{name};
}

sub get_budget {
 my $self = shift;
 return $self->{budget};
}

1;

NOTE By now, some of you are wondering why the constructor is blessing a

hash reference without checking the validity of those arguments:

sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 budget => $arg_for->{budget},
 }, $class;
}

What if some of the keys are misspelled or the values contain invalid values? The

new() constructor here is actually not good practice, but it has the advantage of

being simple enough to not get in the way of explaining the basics of OOP in Perl.

c12.indd 359c12.indd 359 10/08/12 8:24 PM10/08/12 8:24 PM

360 ❘ CHAPTER 12 OBJECT ORIENTED PERL

When you call a method using a class name:

my $shopper = Shopper::Personal->new($args);

The class name is passed as the fi rst argument to @_. Naturally, when you call a method using the
instance:

my $budget = $shopper->get_budget();

The $shopper instance gets passed as the fi rst argument to @_. Thus, for the get_budget() method:

sub get_budget {
 my $self = shift @_;
 return $self->{budget};
}

You can refer to the object as $self (this is by convention, but other popular names are $this and
$object) and because it’s the fi rst argument to get_budget(), you can shift it off @_. Because $self is a
blessed hash reference it “knows” that it wants the get_budget() method from the Shopper::Personal
class. Therefore, you can fetch the budget attribute with normal dereferencing syntax:

return $self->{budget};

WARNING When you read the data in a blessed object by directly accessing

the reference, this is called reaching inside the object. In general, the only time

this should be done is for the getters and setters and even then, only inside the

class. Otherwise, use the proper methods to get the data.

my $budget = $shopper->budget; # Right.
my $budget = $shopper->{budget}; # WRONG, WRONG, WRONG!

DO NOT REACH INSIDE THE OBJECT IF YOU DO NOT HAVE TO. I cannot

emphasize this strongly enough; even though many developers seem to think it’s

Okay. The reason is simple: When you use a method call to get the value, you

do not know or care how the data is “gotten.” The maintainer of the object class

is free to change the internals of the object at any time so long as they keep the

interface the same. By reaching inside the object, you’re relying on behavior

that is not and should not be guaranteed. Many a programmer (including your

author) has learned this the hard way.

Let me repeat that: DO NOT REACH INSIDE THE OBJECT IF YOU DO NOT HAVE

TO. It’s important.

By now you can see that if you want to change the budget value, it’s fairly trivial:

sub set_budget {
 my ($self, $new_budget) = @_;
 $self->{budget} = $new_budget;
}

c12.indd 360c12.indd 360 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 361

In fact, many objects in Perl overload the budget() method to be both a setter and a getter (or
mutator/accessor, if you prefer big words).

sub budget {
 my $self = shift;
 if (@_) { # we have more than one argument
 $self->{budget} = shift;
 }
 return $self->{budget};
}

That allows you to do this:

my $budget = $aevar->budget; # get the existing budget
$aevar->budget($new_budget); # set a new budget

Some developers prefer to keep the get_ and set_ behaviors separate, such as:

my $budget = $aevar->budget; # get the existing budget
$aevar->set_budget($new_budget); # set a new budget

Others prefer to have the budget() method used for both the getter and the setter. It’s a matter of
personal choice, but whichever style you choose, stick with it to avoid confusing later developers.

One strong recommendation in favor of separate getters and setters is the case in which some getters
do not have corresponding setters because that data is read-only:

my $customer = Customer->find($customer_id);
print $customer->name;

$customer->name($new_name);
print $customer->id;

$customer->id($new_id); # boom! this is read-only

In this example, the id() method of a Customer object is assumed to be read-only, but you can’t
tell this directly from the API methods. However, if you prefi xed all setters with set_ and there was
no set_id() method, the run-time error Can’t locate object method “set_id” via package
“Customer” is a good clue that you cannot set the ID to a new value. What’s worse, the minimalist
getters that many developers write can obscure the problem:

sub id {
 my ($self) = @_;
 return $self->{id};
}

As you can see, if you tried to set a new ID with this method, it would fail, but it would do so
silently. This could be hard to debug. Failures should be loud, painful, and clear.

Getting back to Shopper::Personal, you have the following code:

package Shopper::Personal;

use strict;

c12.indd 361c12.indd 361 10/08/12 8:24 PM10/08/12 8:24 PM

362 ❘ CHAPTER 12 OBJECT ORIENTED PERL

use warnings;

sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 budget => $arg_for->{budget},
 }, $class;
}

sub get_name {
 my $self = shift;
 return $self->{name};
}

sub get_budget {
 my $self = shift;
 return $self->{budget};
}

1;

But what does the buy() method look like? Well, it might look something like this:

sub buy {
 my ($self, @list_of_things_to_buy) = @_;

 my $remaining_budget = $self->get_budget;
 my $name = $self->get_name;

 foreach my $item (@list_of_things_to_buy) {
 my $cost = $self->_find_cost_of($item);

 if (not defined $cost) {
 carp(“$name doesn’t know how to buy ‘$item’”);
 }
 elsif ($cost > $remaining_budget) {
 carp(“$name doesn’t have enough money buy ‘$item’”);
 }
 else {
 $remaining_budget -= $cost;
 $self->_buy_item($item);
 }
 }
}

You can see that this method is calling out to other methods, some of which start with an under-
score (_find_cost_of(), and _buy_item()), indicating that they are private methods that should
not be used outside of this package.

For each item, you have three possibilities:

c12.indd 362c12.indd 362 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 363

 ➤ Ævar can’t fi nd the item.

 ➤ Ævar can’t afford the item.

 ➤ The item is purchased.

Oh, and you can use the carp() subroutine, so don’t forget to include the use Carp ‘carp’; line
at the top of the code.

When you call a method against a class, such as this:

my $aevar = Shopper::Personal->new($hashref);

This method is called a class method because it can be safely called with the class name instead
of an instance of the class. In this case, the constructor is returning $aevar, an instance of the
Shopper::Personal class. Later, when you call a method against $aevar:

my $invoice = $aevar->get_invoice;

get_invoice() is called an instance method because you must have an instance of the object to
safely call that method. When you try to call a method and you get an error message like this:

Can’t use string (“Shopper::Personal”) as a HASH ref ...

It’s probably because you accidentally called an instance method as a class method:

Shopper::Personal->buy(@list_of_things_to_buy);

When you should have called it on an instance:

$aevar->buy(@list_of_things_to_buy);

New OO programmers are often confused by this, but think about blueprints again. If you use a
blueprint (class) to build several houses (instances), you could see how many bedrooms each house
(instance) has by reading the blueprint (class). However, you probably wouldn’t know what furniture
each house (instance) has.

TRY IT OUT Your First Class

Because you wrote a lot of the code for the Shopper::Personal class, fi nish writing the entire class.
All the code in this Try It Out is found in the code fi le lib/Shopper/Personal.pm and example_12_1_
shopper.pl.

 1. Make a directory path called chapter12/lib/Shopper/. Change to the chapter12 directory.
Type in the following class and save it as lib/Shopper/Personal.pm:

package Shopper::Personal;

use strict;
use warnings;

c12.indd 363c12.indd 363 10/08/12 8:24 PM10/08/12 8:24 PM

364 ❘ CHAPTER 12 OBJECT ORIENTED PERL

use Carp qw(croak carp);
use Scalar::Util ‘looks_like_number’;

our $VERSION = ‘0.01’;

sub new {
 my ($class, $arg_for) = @_;
 my $self = bless {}, $class;
 $self->_initialize($arg_for);
 return $self;
}

sub _initialize {
 my ($self, $arg_for) = @_;
 my %arg_for = %$arg_for; # make a shallow copy
 my $class = ref $self;
 $self->{purchased_items} = [];
 $self->{money_spent} = 0;
 my $name = delete $arg_for{name};
 unless (defi ned $name) {
 croak(“$class requires a name to be set”);
 }
 $self->set_budget(delete $arg_for{budget});
 $self->{attributes}{name} = $name;
 if (my $remaining = join ‘, ‘, keys %arg_for) {
 croak(“Unknown keys to $class\::new: $remaining”);
 }
}

sub get_name {
 my $self = shift;
 return $self->{attributes}{name};
}

sub set_budget {
 my ($self, $budget) = @_;
 unless (looks_like_number($budget) && $budget > 0) {
 croak(“Budget must be a number greater than zero”);
 }
 $self->{attributes}{budget} = $budget;
}

sub get_budget {
 my $self = shift;
 return $self->{attributes}{budget};
}

sub buy {
 my ($self, @list_of_things_to_buy) = @_;
 my $remaining_budget = $self->get_budget;
 my $name = $self->get_name;
 foreach my $item (@list_of_things_to_buy) {
 my $cost = $self->_fi nd_cost_of($item);
 if (not defi ned $cost) {

c12.indd 364c12.indd 364 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 365

 carp(“$name doesn’t know how to buy ‘$item’”);
 }
 elsif ($cost > $remaining_budget) {
 carp(“$name doesn’t have enough money buy ‘$item’”);
 }
 else {
 $remaining_budget -= $cost;
 $self->_buy_item($item);
 }
 }
}

sub get_invoice {
 my $self = shift;
 my @items = $self->_purchased_items;
 my $money_spent = $self->_money_spent;
 my $shopper = $self->get_name;
 my $date = localtime;
 unless (@items) {
 return “No items purchased”;
 }
 my $invoice =<<”END_HEADER”;
Date: $date
Shopper: $shopper
Item Cost
END_HEADER
 foreach my $item (@items) {
 $invoice .= sprintf “%-10s %0.2f\n”, $item,
 $self->_fi nd_cost_of($item);
 }
 $invoice .= “\nTotal + 10%: $money_spent\n”;
 return $invoice;
}

sub _purchased_items { @{ shift->{purchased_items} } }

sub _money_spent {
 my $self = shift;
 # we assume personal shoppers add 10% to the price
 # to cover the cost of their services
 return $self->{money_spent} * 1.10;
}

sub _fi nd_cost_of {
 my ($class, $item) = @_;
 my %price_of = (
 beer => 1,
 coffee => 3.5,
 ravioli => 1.5,
 ferrari => 225_000,
);
 return $price_of{lc $item};
}

c12.indd 365c12.indd 365 10/08/12 8:24 PM10/08/12 8:24 PM

366 ❘ CHAPTER 12 OBJECT ORIENTED PERL

sub _buy_item {
 my ($self, $item) = @_;
 $self->{money_spent} += $self->_fi nd_cost_of($item);
 push @{ $self->{purchased_items} }, $item;
}

1;

 2. In your chapter12 directory, save the following program as example_12_1_shopper.pl:

use strict;
use warnings;

use lib ‘lib’;
use Shopper::Personal;

my $shopper = Shopper::Personal->new({
 name => ‘aevar’,
 budget => 10,
});

$shopper->buy(
 ‘beer’,
 ‘Ferrari’,
 (‘coffee’) x 2,
 (‘ravioli’) x 2,
 ‘beer’,
);
print $shopper->get_invoice;

my $next_shopper = Shopper::Personal->new({
 name => ‘bob’,
 limit => 10,
});

When you fi nish, your current directory structure should look like this:

./
| lib/
| | Shopper/
| | |--Personal.pm
|--example_12_1_shopper.pl

 3. Run the program with perl example_12_1_shopper.pl. You should see output similar to the
following (obviously your date will be different):

aevar doesn’t have enough money buy ‘Ferrari’ at shopper.pl line 11
aevar doesn’t have enough money buy ‘ravioli’ at shopper.pl line 11
aevar doesn’t have enough money buy ‘beer’ at shopper.pl line 11
Date: Sun Feb 26 16:15:29 2012
Shopper: aevar
Item Cost
beer 1.00

c12.indd 366c12.indd 366 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 367

coffee 3.50
coffee 3.50
ravioli 1.50
Total + 10%: 10.45
Budget must be a number greater than zero at shopper.pl line 21

How It Works

Obviously this Try It Out is far more involved that much of what you’ve done before. Nothing new was
introduced in the Try It Out, but I’ve reached into my bag of tricks and put together a lot of interesting
things here. First, look at object construction. Start numbering lines of code for longer bits like this.

 1: package Shopper::Personal;
 2: use strict;
 3: use warnings;
 4: use Carp qw(croak carp);
 5: use Scalar::Util ‘looks_like_number’;
 6:
 7: our $VERSION = ‘0.01’;
 8:
 9: sub new {
 10: my ($class, $arg_for) = @_;
 11: my $self = bless {}, $class;
 12: $self->_initialize($arg_for);
 13: return $self;
 14: }
 15:
 16: sub _initialize {
 17: my ($self, $arg_for) = @_;
 18: my %arg_for = %$arg_for; # make a shallow copy
 19: my $class = ref $self;
 20:
 21: $self->{purchased_items} = [];
 22: $self->{money_spent} = 0;
 23:
 24: my $name = delete $arg_for{name};
 25: unless (defined $name) {
 26: croak(“$class requires a name to be set”);
 27: }
 28:
 29: $self->set_budget(delete $arg_for{budget});
 30:
 31: $self->{attributes}{name} = $name;
 32:
 33: if (my $remaining = join ‘, ‘, keys %arg_for) {
 34: croak(“Unknown keys to $class\::new: $remaining”);
 35: }
 36: }

Lines 1 through 7 are standard boilerplate, making your code safer and importing carp, croak, and
looks_like_number, three utility subroutines that your methods can fi nd useful.

The constructor, new() (lines 9–14), now blesses only a hash ref and then immediately passes control
to the _initialize() method. This allows the constructor to do only one thing. The _initialize()

c12.indd 367c12.indd 367 10/08/12 8:24 PM10/08/12 8:24 PM

368 ❘ CHAPTER 12 OBJECT ORIENTED PERL

method handles setting up the actual object state and making sure it’s sane. In fact, _initialize()
does three things:

 1. Create entries in the hashref for storing important data (lines 21–29).

 2. Make sure data supplied in the constructor is valid (lines 25–27).

 3. Make sure no extra keys are supplied (lines 33–33).

It’s important to look closely at lines 12 and 18:

 12: $self->_initialize($arg_for);
 18: my %arg_for = %$arg_for; # make a shallow copy

Notice that you pass the hashref, $arg_for and then dereference it in the %arg_for variable. By doing
this, you can ensure to provide a shallow copy of the hash to _initialize(). Otherwise, when you do
this:

 24: my $name = delete $arg_for{name};

If it were a reference, you would have deleted $arg_for->{name} and that would have altered the value
of the hash reference that’s passed to the constructor! You don’t want to do that.

So why delete the keys? You don’t actually need to, but if you delete all allowed keys, it makes it easy
for lines 33–35 to see that there are extra keys left over and croak() with a list of said keys. Note that
there are many other ways to verify passing the correct arguments. This is merely one of them.

If this seems like a bit of extra work, that’s because it is. Many OO authors assume that people will
just read the documentation and use the class correctly. Unfortunately, without tight validation of your
arguments, it’s easy to get this wrong and have unexpected side effects. In Chapter 13, when discussing
Moose, you’ll see how much easier classes like this are to write.

Next, you have three methods for your attributes:

 38: sub get_name {
 39: my $self = shift;
 40: return $self->{attributes}{name};
 41: }
 42:
 43: sub set_budget {
 44: my ($self, $budget) = @_;
 45: unless (looks_like_number($budget) && $budget > 0) {
 46: croak(“Budget must be a number greater than zero”);
 47: }
 48: $self->{attributes}{budget} = $budget;
 49: }
 50:
 51: sub get_budget {
 52: my $self = shift;
 53: return $self->{attributes}{budget};
 54: }

The get_name() and get_budget() methods are straightforward, but the set_budget() takes a bit
more work because line 45 checks to make sure that the budget is actually a number greater than zero.

c12.indd 368c12.indd 368 10/08/12 8:24 PM10/08/12 8:24 PM

Three Rules of Perl OO ❘ 369

Note how the _initialize() method takes advantage of the set_budget() method on line 29. That
makes it easier to avoid duplicating logic.

Next, you have the buy() method:

 56: sub buy {
 57: my ($self, @list_of_things_to_buy) = @_;
 58: my $remaining_budget = $self->get_budget;
 59: my $name = $self->get_name;
 60:
 61: foreach my $item (@list_of_things_to_buy) {
 62: my $cost = $self->_find_cost_of($item);
 63:
 64: if (not defined $cost) {
 65: carp(“$name doesn’t know how to buy ‘$item’”);
 66: }
 67: elsif ($cost > $remaining_budget) {
 68: carp(“$name doesn’t have enough money buy ‘$item’”);
 69: }
 70: else {
 71: $remaining_budget -= $cost;
 72: $self->_buy_item($item);
 73: }
 74: }
 75: }

This method iterates over the list of items to buy and, so long as you have enough money left in your
budget, you buy the item (line 72). You carp() if you cannot fi nd the price for the item (line 65) or if
you don’t have enough money left (line 68).

In particular, pay attention to lines 58 and 59:

 58: my $remaining_budget = $self->get_budget;
 59: my $name = $self->get_name;

Because you’re inside the Shopper::Personal class, why not just grab the data directly instead of the
calling these accessors?

 58: my $remaining_budget = $self->{attributes}{budget}
 59: my $name = $self->{attributes}{name};

There are several reasons for this:

 ➤ Calling the method is often more readable.

 ➤ You don’t need to worry about misspelling the hash keys.

 ➤ If you change the logic of the methods, you don’t have to change this code.

The fi nal point is particularly true when you learn about inheritance in the “Subclassing” section later
in this chapter.

Looking at get_invoice():

 77: sub get_invoice {
 78: my $self = shift;

c12.indd 369c12.indd 369 10/08/12 8:24 PM10/08/12 8:24 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

370 ❘ CHAPTER 12 OBJECT ORIENTED PERL

 79: my @items = $self->_purchased_items;
 80: my $money_spent = $self->_money_spent;
 81: my $shopper = $self->get_name;
 82: my $date = localtime;
 83: unless (@items) {
 84: return “No items purchased”;
 85: }
 86: my $invoice =<<”END_HEADER”;
 87: Date: $date
 88: Shopper: $shopper
 89:
 90: Item Cost
 91: END_HEADER
 92: foreach my $item (@items) {
 93: $invoice .= sprintf “%-10s %0.2f\n”, $item, \
 $self->_find_cost_of($item);
 94: }
 95: $invoice .= “\nTotal + 10%: $money_spent\n”;
 96: return $invoice;
 97: }

You may not be familiar with localtime, a Perl builtin used in line 82, but perldoc -f localtime
can reveal that in scalar context it returns a human-readable form of the current date and time, which
is exactly what you need for the header of the report that you generate in lines 86–89.

Lines 92–94 add the individual items to the invoice, and line 95 adds the total. Actually,
get_invoice() is a normal method.

After get_invoice(), however, all methods begin with underscores. These are private methods that
only the class should use. There are only a couple of them you might fi nd interesting.

First, the _purchased_items() method is rather simple:

 99: sub _purchased_items { @{ shift->{purchased_items} } }

Why wouldn’t you just go ahead and make that public so that anyone can use it to get a list of pur-
chased items? A good rule of thumb is to make nothing in a class public unless absolutely necessary. As
soon as you make something a public method, you’ve now committed your class to maintaining that
interface because you don’t want to break others’ code. By making it a private method, you give your-
self fl exibility. You can always make a private method public later, but making a public method private
is much more likely to break someone’s code.

The get_name() and get_budget() methods should have been private and the set_budget() budget
method should not have existed at all. Why? Because if you look at the sample code, you see that you
need only the new(), buy() and get_invoice() methods. Those are the only three methods that need
to be made public, but you made a few others public just to show a bit more about how getters/setters
typically work in Perl.

Remember: If you don’t need to make a method public, don’t.

The other potentially interesting method here is the _buy_item() method:

c12.indd 370c12.indd 370 10/08/12 8:24 PM10/08/12 8:24 PM

Objects – Another View ❘ 371

120: sub _buy_item {
121: my ($self, $item) = @_;
122: $self->{money_spent} += $self->_find_cost_of($item);
123: push @{ $self->{purchased_items} }, $item;
123: }

What do you do when you buy an item at a store: You pay for it and take it with you. That’s exactly
what the _buy_item() method does and it does nothing else. Just as a class should contain all the logic
necessary to be an “expert” on whatever problem domain the class is for — and not do anything
else — individual methods should contain all the logic needed to handle their smaller piece of the
problem — and not do anything else.

OBJECTS – ANOTHER VIEW

Sometimes objects don’t do complicated tasks like buying things. Sometimes they’re just there to
encapsulate a complex data structure and make sure it has all the needed properties of a class and
doesn’t allow invalid data to be created.

When your author worked at the BBC, he was one of the developers responsible for handling meta-
data. Metadata is information about information. It seems strange, but it’s fairly natural when you
get used to it. For example, an episode of a TV show might present a lot of information about ani-
mals, but what about the information regarding the episode? For your purposes, TV show episode
objects won’t model everything you need, but you’ll have just enough to show how this works. You
can create a small class to model this.

This really isn’t different from the “objects as experts” example earlier, but it’s a good foundation to
show how objects can sometimes be viewed as complex data types.

Using TV::Episode

You’ll startout with a basic TV::Episode class, making read-only accessors for all your data. You
can fi nd the following code in the code fi le lib/TV/Episode.pm:

package TV::Episode;

use strict;
use warnings;

use Carp ‘croak’;
use Scalar::Util ‘looks_like_number’;

our $VERSION = ‘0.01’;

my %IS_ALLOWED_GENRE = map { $_ => 1 } qw(
 comedy
 drama
 documentary

c12.indd 371c12.indd 371 10/08/12 8:24 PM10/08/12 8:24 PM

372 ❘ CHAPTER 12 OBJECT ORIENTED PERL

 awesome
);

sub new {
 my ($class, $arg_for) = @_;
 my $self = bless {} => $class;
 $self->_initialize($arg_for);
 return $self;
}

sub _initialize {
 my ($self, %arg_for) = @_;
 my %arg_for = %$arg_for;
 foreach my $property (qw/series director title/) {
 my $value = delete $arg_for{$property};
 # at least one non-space character
 unless (defined $value && $value =~ /\S/) {
 croak(“property ‘$property’ must have at a value”);
 }
 $self->{$property} = $value;
 }
 my $genre = delete $arg_for{genre};
 unless (exists $IS_ALLOWED_GENRE{$genre}) {
 croak(“Genre ‘$genre’ is not an allowed genre”);
 }
 $self->{genre} = $genre;
 foreach my $property (qw/season episode_number/) {
 my $value = delete $arg_for{$property};
 unless (looks_like_number($value) && $value > 0) {
 croak(“$property must have a positive value”);
 }
 $self->{$property} = $value;
 }
 if (my $extra = join ‘, ‘ => keys %arg_for) {
 croak(“Unknown keys to new(): $extra”);
 }
}

sub series { shift->{series} }
sub title { shift->{title} }
sub director { shift->{director} }
sub genre { shift->{genre} }
sub season { shift->{season} }
sub episode_number { shift->{episode_number} }

sub as_string {
 my $self = shift;
 my @properties = qw(
 series
 title
 director
 genre
 season
 episode_number

c12.indd 372c12.indd 372 10/08/12 8:24 PM10/08/12 8:24 PM

Objects – Another View ❘ 373

);
 my $as_string = ‘’;
 foreach my $property (@properties) {
 $as_string .= sprintf “%-14s - %s\n”, ucfirst($property),
 $self->$property;
 }
 return $as_string;
}

1;

There’s nothing terribly unusual about it; though there is a huge amount of tedious validation in the
_initialize() method. Chapter 13 covers the Moose object system and shows you how to make
most of this code go away.

One strange bit you’ll notice in the as_string() method is this:

$self->$property;

If you have code like this:

my $method = ‘genre’;
print $self->$method;

That’s equivalent to:

$self->genre;

Using a variable as a method name is illegal in many other OO languages, but Perl allows this, and
it’s handy because there are times when you might want to delay the decision about which method
to call until runtime. Otherwise, the previous code may have had this:

my $format = “%-14s - %s\n”;
my $episode = sprintf $format, ‘Series’, $self->series;
$episode .= sprintf $format, ‘Title’, $self->title;
$episode .= sprintf $format, ‘Director’, $self->director;
$episode .= sprintf $format, ‘Genre’, $self->genre;
$episode .= sprintf $format, ‘Season’, $self->season;
$episode .= sprintf $format, ‘Episode number’,
 $self->episode_number;
return $episode;

That is error prone and the foreach loop makes it simpler.

Moving along, you can use your class like this (code fi le listing_12_1_episode.pl):

use strict;
use warnings;

use lib ‘lib’;
use TV::Episode;

c12.indd 373c12.indd 373 10/08/12 8:24 PM10/08/12 8:24 PM

374 ❘ CHAPTER 12 OBJECT ORIENTED PERL

my $episode = TV::Episode->new({
 series => ‘Firefly’,
 director => ‘Marita Grabiak’,
 title => ‘Jaynestown’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 7,
});
print $episode->as_string;

And that prints out:

Series - Firefly
Title - Jaynestown
Director - Marita Grabiak
Genre - awesome
Season - 1
Episode_number - 7

And that’s great! Except for one little problem you probably don’t know about. When you create
objects, you must model your objects to fi t real-world needs, and you’ve never actually seen an epi-
sode. In reality, you’ve seen a broadcast on television or an ondemand, a streaming version that you
can watch on demand on a website (and you’re ignoring that there are different versions of episodes,
DVDs and other issues). A broadcast might have a broadcast date and an ondemand might have an
availability date range. What you need is more specifi c examples of your TV::Episode class. That’s
where subclassing comes in.

Subclassing

A subclass of a class (also known as a child class) is a more specifi c version of that class.
For example, a Vehicle class might have Vehicle::Automobile and Vehicle::Airplane
subclasses. The Vehicle::Airplane class might in turn have Vehicle::Airplane::Jet and
Vehicle::Airplane::Propeller subclasses.

A subclass uses inheritance to provide all the parent (also known as a superclass) behavior. A
method provided by a parent class and used by the subclass is called an inherited method.
For example, if class A provides a foo() method and class B inherits from A, class B will also have
the foo() method, even if it does not implement one itself. (If B does have a foo() method, this is
called overriding the inherited method.)

NOTE From here on out, I’ll use parent and superclass, child and subclass inter-

changeably. This is because they mean the same thing in Perl and the literature

on the subject uses both. Thus, I want you to be very familiar with both terms.

For the TV::Episode class, you need a TV::Episode::Broadcast subclass and a
TV::Episode::OnDemand subclass.

c12.indd 374c12.indd 374 10/08/12 8:25 PM10/08/12 8:25 PM

Objects – Another View ❘ 375

Using TV::Episode::Broadcast

When something like the TV::Episode::Broadcast class uses the TV::Episode class as its
parent, you can say that TV::Episode::Broadcast inherits from TV::Episode. To represent
the broadcast date, use the DateTime module you can download from the CPAN. Here’s how
TV::Episode::Broadcast class works. You can fi nd the following code in code fi le lib/TV/
Episode/Broadcast.pm.

package TV::Episode::Broadcast;

use strict;
use warnings;

use Try::Tiny;
use Carp ‘croak’;
use base ‘TV::Episode’; # inherit!

sub _initialize {
 my ($self, $arg_for) = @_;
 my %arg_for = %$arg_for;
 my $broadcast_date = delete $arg_for{broadcast_date};
 try {
 $broadcast_date->isa(‘DateTime’) or die;
 }
 catch {
 croak(“broadcast_date must be a DateTime object”);
 };

THE LISKOV SUBSTITUION PRINCIPLE

I mentioned that subclasses should extend the behavior of their parent classes but
not alter this behavior. This is due to something known as the Liskov Substitution
Principle. This principle effectively states the same thing. The purpose of this prin-
ciple is to ensure that in any place in your program you can use a given class; if you
actually use a subclass of that class, your program should still function correctly.

It has a few more subtleties than merely not changing parent behavior. For
example, subclasses are allowed to be less restrictive in the data they accept but
not in the data they emit. There is some controversy over the Liskov Substitution
Principle, but it’s a good idea to follow unless you have strong reasons not to.

The principle was created by Barbara Liskov, Ph.D. She won the 2008 Turing
Award (the Nobel prize for computer science) for her work in computer science and
her work has infl uenced much of computing today.

See http://en.wikipedia.org/wiki/Liskov_substitution_principle and
http://en.wikipedia.org/wiki/Barbara_Jane_Liskov for more information.
Just remember that if you cannot use a subclass in the same place where you can
use a parent class, you might have a design fl aw.

c12.indd 375c12.indd 375 10/08/12 8:25 PM10/08/12 8:25 PM

http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Barbara_Jane_Liskov

376 ❘ CHAPTER 12 OBJECT ORIENTED PERL

 $self->{broadcast_date} = $broadcast_date;
 $self->SUPER::_initialize(\%arg_for);
}

sub broadcast_date { shift->{broadcast_date} }

sub as_string {
 my $self = shift;
 my $episode = $self->SUPER::as_string;
 my $date = $self->broadcast_date;
 $episode .= sprintf “%-14s - %4d-%2d-%2d\n”
=> ‘Broadcast date’,
$date->year,
$date->month,
$date->day;
 return $episode;
}

1;

And this looks similar to TV::Episode, but now you supply the broadcast date:

my $broadcast = TV::Episode::Broadcast->new(
 {
 series => ‘Firefly’,
 director => ‘Allan Kroeker’,
 title => ‘Ariel’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 9,
 broadcast_date => DateTime->new(
 year => 2002,
 month => 11,
 day => 15,
),
 }
);
print $broadcast->as_string;
print $broadcast->series;

Running the program prints out:

Series - Firefly
Title - Ariel
Director - Allan Kroeker
Genre - awesome
Season - 1
Episode_number - 9
Broadcast date - 2002-11-15
Firefly

Because TV::Episode::Broadcast has inherited from TV::Episode, broadcasts have all the behav-
ior of episodes, so you can still call $broadcast->series, $broadcast->director, and so on.

c12.indd 376c12.indd 376 10/08/12 8:25 PM10/08/12 8:25 PM

Objects – Another View ❘ 377

There’s no need to re-implement these behaviors. This is because when you call a method on an
object, Perl checks to see if that method is defi ned in the object’s class. If it’s not, it searches the par-
ent class, and then the parent’s parent class, and so on, until it fi nds an appropriate method to call,
or dies, telling you that the method is not found.

This is why TV::Episode::Broadcast does not have a new() method. When you try to call
TV::Episode::Broadcast->new(...), Perl looks for TV::Episode::Broadcast::new()
and, not fi nding it, starts searching the superclasses and calls the fi rst new() method it fi nds
(TV::Episode::new() in this case). This is one of the reasons why OO is so powerful: It makes it
easy to reuse code.

Perl knows that TV::Episode is the parent of TV::Episode::Broadcast because of this line:

use base ‘TV::Episode’;

The base module is commonly used to establish inheritance. There’s a newer version named parent
that does the same thing:

use parent ‘TV::Episode’;

It’s a fork of the base module and mostly involves cleaning up some of the internal cruft that base
has accumulated over the years. It’s not entirely compatible with it, but you’ll likely not notice the
difference.

NOTE The base and parent modules also take lists allowing you to inherit from

multiple modules at once:

TV::Episode::AllInOne;
use base qw(
 TV::Episode::Broadcast
 TV::Episode::OnDemand
);

This is referred to as multiple inheritance. It’s usually a bad idea and its use

is controversial enough that many programming languages forbid it outright.

Chapter 13 talks about multiple inheritance when discussing roles.

For some older Perl modules, you see inheritance established with the @ISA array:

package TV::Episode::Broadcast;

with @ISA, you must first ‘use’ the modules
you wish to inherit from

use TV::Episode;
use vars ‘@ISA’;
@ISA = ‘TV::Episode’;
optionally: our @ISA = ‘TV::Episode’;

c12.indd 377c12.indd 377 10/08/12 8:25 PM10/08/12 8:25 PM

378 ❘ CHAPTER 12 OBJECT ORIENTED PERL

When Perl tries to fi gure out a module’s parent or parents, it looks at the module’s @ISA package
variable and any classes contained therein are considered parents. Although this method to estab-
lish inheritance is now discouraged, you can still sometimes see code messing with the @ISA array,
so it’s important to remember it. The base and parent modules are merely loading the parents and
 assigning to @ISA for you. They make it harder to forget to use the parent modules and also protect
from circular inheritance, a problem whereby a class accidentally inherits from itself.

Now look at your new _initialize() method. This overrides the _initialize() method from
the parent class. Because it overrides, the TV::Episode::_initialize() method will not be called
unless you call it explicitly, as you do in line 13:

 1: sub _initialize {
 2: my ($self, $arg_for) = @_;
 3: my %arg_for = %$arg_for;
 4: my $broadcast_date = delete $arg_for{broadcast_date};
 5:
 6: try {
 7: $broadcast_date->isa(‘DateTime’) or die;
 8: }
 9: catch {
 10: croak(“Not a DataTime object: $broadcast_date”);
 11: };
 12: $self->{broadcast_date} = $broadcast_date;
 13: $self->SUPER::_initialize(\%arg_for);
 14: }

The $self->SUPER::_initialize() syntax is what you use to call the superclass method. If it
doesn’t exist, you’ll get an error like:

Can’t locate object method “_initialize” via package “main::SUPER”

This allows you to override a parent method but still rely on its behavior if you need to. In this case,
you supply an extra parameter but remove it from the %arg_for hash to ensure that the
parent _initialize() method does croak() when it sees the extra argument. You can test that
the parameter is suitable with a try/catch block and an isa() test, but this is explained a bit more
when I cover the UNIVERSAL package in the “Using UNIVERSAL” section of this chapter.

NOTE Although the example code shows an overridden method calling their

parent versions with $self->SUPER::some_method, there is actually no require-

ment that you call the parent method. Use this technique here to show how you

can supplement parent method behavior, but replace it entirely with an over-

ridden method, which is fi ne so long as you don’t change the semantics of the

method. (Well, you could have your as_string() method do something radically

diff erent from the parent method, such as return an array reference, but that’s

not a good idea.)

You can do the same thing on line 3 with the as_string() method:

c12.indd 378c12.indd 378 10/08/12 8:25 PM10/08/12 8:25 PM

Objects – Another View ❘ 379

 1: sub as_string {
 2: my $self = shift;
 3: my $episode = $self->SUPER::as_string;
 4: my $date = $self->broadcast_date;
 5: $episode .= sprintf “%-14s - %4d-%2d-%2d\n” => ‘Broadcast date’,
 6: $date->year,
 7: $date->month,
 8: $date->day;
 9: return $episode;
 10: }

In this case, you use the parent’s as_string() method to create the text representation of the object
and then add an extra line of data. You probably should have pulled the format out into its own
method so that you could override the format if needed. You could have done something like this:

sub _as_string_format { return “%-14s - %4d-%2d-%2d\n” }
sub as_string {
 my $self = shift;
 my $episode = $self->SUPER::as_string;
 my $date = $self->broadcast_date;
 $episode .= sprintf $self->_as_string_format => ‘Broadcast date’,
 $date->year,
 $date->month,
 $date->day;
 return $episode;
}

But that would have required a change to the base class to support the same _as_string_format()
and you may have not had access to change the base class. If that’s the case and you needed a differ-
ent format, you would have to override the parent as_string() method and duplicated most of its
logic and not call $self->SUPER::as_string.

Class Versus Instance Data

Sometimes you want to share data across all instances of a class, for example:

package Universe;
sub new {
 my ($class, $name) = @_;
 return bless { name => $name }, $class;
}
sub name { shift->{name} }
sub pi { 3.14159265359 }
1;

That creates a read-only pi() method that you can access via Universe->pi. You can also call it on
an instance and it behaves the same way:

my $universe1 = Universe->new(‘first universe name’);
print $universe1->pi, “\n”;

my $universe2 = Universe->new(‘second universe name’);
print $universe2->pi, “\n”;

c12.indd 379c12.indd 379 10/08/12 8:25 PM10/08/12 8:25 PM

380 ❘ CHAPTER 12 OBJECT ORIENTED PERL

Each Universe you create will have a different name, but share the same value of pi().

You can also make it read-write:

package Universe;

sub new {
 my ($class, $name) = @_;
 return bless { name => $name }, $class;
}

sub name { shift->{name} }

{
 my $pi = 3.14159265359;
 sub pi {
 my $class = shift;
 if (@_) {
 $pi = shift;
 }
 return $pi;
 }
}
1;

However, be aware that this is little more than a global variable. If you change it for one universe,
you will change it for all of them. (And you didn’t even have data validation for it!)

There is, as you probably suspect by now, a CPAN module to make this easier:
Class::Data::Inheritable. This allows you to easily defi ne class data but override it in a sub-
class, if needed:

package Universe;
use parent ‘Class::Data::Inheritable’;
__PACKAGE__->mk_classdata(pi => 3.14159265359);

With that, you can now call Universe->pi and get the right answer. Of course, you can still
change it:

Universe->pi(3); # oops

A better strategy, instead of allowing this hidden global into your code, is sometimes to provide a
default:

sub new {
 my ($class, $arg_for) = @_;
 $arg_for->{pi} ||= $class->_default_pi;
 my $self = bless {}, $arg_for;
 $self->_initialize($arg_for);
 return $self;
}

You can override this in a subclass, if desired
sub _default_pi { 3.14159265359 }

c12.indd 380c12.indd 380 10/08/12 8:25 PM10/08/12 8:25 PM

A Brief Recap ❘ 381

With that, all instances of a class default to a valid value of pi, but if you change it later for one
class, it does not impact other instances. Whether this is appropriate depends on your needs.
Sometimes it’s easier to share data across instances.

A BRIEF RECAP

You’ve covered the basics of OO, so now, have a brief recap of what you’ve learned so far.

First, there are three rules to Perl’s Object-Oriented programming:

 ➤ A class is a package.

 ➤ An object is a reference blessed into a class.

 ➤ A method is a subroutine.

Classes can inherit from other classes to provide more specifi c types of a class. A class that inherits
from another class is called a subclass or child class, and the class it inherits from is the superclass or
parent class.

Methods are inherited from parent classes, but the child class can override the methods to provide
more specifi c behavior, including calling back to the parent class methods if need be. The child class
can also provide additional attributes or methods as needed.

And that’s it for basic OOP in Perl. There’s nothing complicated about it, and you can get most of
the basics down in a couple of hours. Now, however, it’s time to move along and explain a few more
things about classes that you should know about.

Overloading Objects

When you have normal variables such as scalars, it’s easy to print them, compare them, add or
concatenate them, and so on. You can do this with objects, too, by overloading them. You use the
overload pragma to do this. You’re going to create a TV::Episode::OnDemand subclass to show
how this works. You can skip (some) of the data validation to focus on the actual overloaded behav-
ior. You also take advantage of assuming that your new attributes use DateTime objects. DateTime
is also overloaded and you can see how several overloaded objects can work together to make life
easier. We’re not going to explain in-depth how overloading works (but see perldoc overload)
because most objects don’t actually use overloading, but you should be familiar with this technique
when you come across it and want to use it later.

An ondemand is industry shorthand for Video On Demand (VOD) and refers to technology allow-
ing you to watch the video when you want (in other words, “on demand”), such as when you watch
something on Hulu, YouTube, or the BBC’s iPlayer service. Rather than having a broadcast date, an
ondemand has availability. In loose terms, this means “when you can watch it.” Now you’ll create a
subclass of TV::Episode named TV::Episode::OnDemand and it will have start_date and
end_date attributes along with an available_days method. The following code uses the code
fi le lib/TV/Episode/OnDemand.pm and listing_12_1_episode.pl:

c12.indd 381c12.indd 381 10/08/12 8:25 PM10/08/12 8:25 PM

382 ❘ CHAPTER 12 OBJECT ORIENTED PERL

package TV::Episode::OnDemand;

use strict;
use warnings;
use Carp ‘croak’;

use overload ‘””’ => ‘as_string’;

use base ‘TV::Episode’;

sub _initialize {
 my ($self, $arg_for) = @_;
 my %arg_for = %$arg_for;

 # assume these are DateTime objects
 $self->{start_date} = delete $arg_for{start_date};
 $self->{end_date} = delete $arg_for{end_date};

 # note the > comparison of objects
 if ($self->start_date >= $self->end_date) {
 croak(“Start date must be before end date”);
 }
 $self->SUPER::_initialize(\%arg_for);
}

sub start_date { shift->{start_date} }
sub end_date { shift->{end_date} }

sub as_string {
 my $self = shift;
 my $episode = $self->SUPER::as_string;
 my $start_date = $self->start_date;
 my $end_date = $self->end_date;

 # overloaded stringification
 $episode .= sprintf “%-14s - $start_date\n” => ‘Start date’;
 $episode .= sprintf “%-14s - $end_date\n” => ‘End date’;
 $episode .= sprintf “%-14s - %d\n” => ‘Available days’,
 $self->available_days;
 return $episode;
}

sub available_days {
 my $self = shift;
 # hey, we can even subtract DateTime objects
 my $duration = $self->end_date - $self->start_date;
 return $duration->delta_days;
}
1;

And the script to show how this works:

use strict;
use warnings;
use DateTime;

c12.indd 382c12.indd 382 10/08/12 8:25 PM10/08/12 8:25 PM

A Brief Recap ❘ 383

use lib ‘lib’;
use TV::Episode::OnDemand;

my $ondemand = TV::Episode::OnDemand->new(
 {
 series => ‘Firefly’,
 director => ‘Allan Kroeker’,
 title => ‘Ariel’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 9,
 start_date => DateTime->new(
 year => 2002,
 month => 11,
 day => 21,
),
 end_date => DateTime->new(
 year => 2002,
 month => 12,
 day => 12,
),
 }
);
print $ondemand;

Running the script should produce output similar to the following:

Series - Firefly
Title - Ariel
Director - Allan Kroeker
Genre - awesome
Season - 1
Episode_number - 9
Start date - 2002-11-21T00:00:00
End date - 2002-12-12T00:00:00
Available days - 21

Note that this code prints $ondemand and not $ondemand->as_string. What allows you to do that
is this line:

use overload ‘””’ => ‘as_string’;

The ‘””’ argument says “we want to overload this object’s behavior when it is used as a string” and
the “as_string” is the name of the method you will use to handle this behavior. Without this, the
print $ondemand line would produce something useless like this:

TV::Episode::OnDemand=HASH(0x7f908282c9a0)

The DateTime objects have even more overloading. You can compare dates in your _initialize()
method:

if ($self->start_date >= $self->end_date) {
 croak(“Start date must be before end date”);
}

c12.indd 383c12.indd 383 10/08/12 8:25 PM10/08/12 8:25 PM

384 ❘ CHAPTER 12 OBJECT ORIENTED PERL

If overloading was not provided, you would either have to do something like this (assuming that
DateTime offered the appropriate method):

if ($self->start_date->is_greater_than_or_equal_to($self->end_date)) {
 ...
}

Or worse, try to fi gure out the date math yourself. (And that’s harder than it sounds.)

NOTE The TV::Episode, TV::Episode::Broadcast and

TV::Episode::OnDemand classes all provide private _initialize() methods

and public as_string() methods. When you call the as_string() method on

an $episode, $broadcast, or $ondemand, Perl calls the correct as_string()

method for you. This behavior is known as subtype polymorphism; though most

people just call it polymorphism. It allows you to have a uniform interface for

related objects of diff erent types.

NOTE The DateTime format wasn’t pretty when you printed the DateTime

objects directly. Read “Formatters And Stringifi cation” in perldoc DateTime for

fi ne-grained control of the print format.

The DateTime objects also have stringifi cation overloaded, allowing you to do this:

$episode .= sprintf “%-14s - $start_date\n” => ‘Start date’;
$episode .= sprintf “%-14s - $end_date\n” => ‘End date’;

Otherwise, we would have to fall back to this:

$episode .= sprintf “%-14s - %4d-%2d-%2d\n” => ‘Broadcast date’,
 $date->year,
 $date->month,
 $date->day;

You can also overload subtraction. When you subtract one DateTime object from another, it returns
a DateTime::Duration object:

sub available_days {
 my $self = shift;
 my $duration = $self->end_date - $self->start_date;
 return $duration->delta_days;
}

c12.indd 384c12.indd 384 10/08/12 8:25 PM10/08/12 8:25 PM

A Brief Recap ❘ 385

If you’ve realized how annoying it can be to fi gure out if one date is greater than another (think
about time zones and daylight savings time, among other things), then you can imagine how pain-
ful calculating the actual distance between two dates can be. A well-designed module coupled with
intelligently overloaded behavior makes this simple.

Using UNIVERSAL

All objects ultimately inherit from the UNIVERSAL class.
The TV::Episode inherits directly from UNIVERSAL and
TV::Episode::Broadcast and TV::Episode::OnDemand
inherit from TV::Episode, meaning that they both inherit
directly UNIVERSAL through TV::Episode. The object
graph looks like Figure 12-1.

The UNIVERSAL class provides three extremely useful
methods that all classes will inherit: isa(), can(), and
VERSION(). As of 5.10.1 and better, there is also a DOES()
method provided, but we won’t cover that until we explain
roles in Chapter 13.

Understanding the isa() Method

The isa() method tells you whether your object or class inherits from another class. It looks like
this:

$object_or_class->isa(CLASS);

Where $object_or_class is the object (or class) you want to test and CLASS is the class you’re com-
paring against. It returns true if $object_or_class matches CLASS or inherits from it. The follow-
ing will all return true:

$broadcast->isa(‘TV::Episode::Broadcast’);
$broadcast->isa(‘TV::Episode’);
TV::Episode::OnDemand->isa(‘TV::Episode’);
$ondemand->isa(‘UNIVERSAL’);
$episode->isa(‘UNIVERSAL’);

In fact, every object will respond true if you test it against UNIVERSAL.

Naturally, all the following return false:

$broadcast->isa(‘TV::Episode::OnDemand’);
$episode->isa(‘TV::Episode::OnDemand’);
UNIVERSAL->isa(‘TV::Episode’);

You may recall that the TV::Episode::Broadcast::_initialize()method had the following bit
of code to check to see if you had a valid broadcast date:

try {
 $broadcast_date->isa(‘DateTime’) or die;
}

UNIVERSAL

TV::Episode

TV::Broadcast TV::OnDemand

FIGURE 12-1

c12.indd 385c12.indd 385 10/08/12 8:25 PM10/08/12 8:25 PM

386 ❘ CHAPTER 12 OBJECT ORIENTED PERL

catch {
croak(“Not a DateTime object: $broadcast_date”);
};

You could have written it like this:

if (not $broadcast_date->isa(‘DateTime’)) {
 croak(“broadcast_date must be a DateTime”);
}

However, what if someone passed something strange for the broadcast_date parameter, or passed
nothing at all? The $broadcast_date->isa() check would be called against something that might
not be an object, and you could get a strange error message. Trapping the error with a try/catch
block allows you to ensure the user gets exactly the error message you want them to get.

Please note that sometimes you’ll see the following mistake:

if (UNIVERSAL::isa($broadcast_date, ‘DateTime’)) {
 # BAD IDEA!
}

The idea behind this is simple: Because the fi rst argument to a method call is the invocant, calling a
method like a subroutine and passing the invocant manually is the same thing. Plus, you don’t have
to do that annoying try/catch stuff or check to see if the invocant is actually an object.

It’s a bad idea, though. Sometimes classes override isa(), and if you call UNIVERSAL::isa()
instead of $object->isa(), you won’t get the class’s overridden version, thus leading to a possible
source of bugs. Most of the time UNIVERSAL::isa() will work just fi ne, but the one time it doesn’t
can lead to hard-to-fi nd bugs.

Understanding the can() Method

The can() method tells you whether a given object or class implements or inherits a given method.
It looks like this:

$object_or_class->can($method_name);

Because TV::Episode::Broadcast and TV::Episode::OnDemand both inherit from TV::Episode,
they will respond to true the following:

$episode->can(‘episode_number’);
$broadcast->can(‘episode_number’);
$broadcast->can(‘episode_number’);

However, because TV::Episode does not implement the broadcast_date() method, $episode-
>can(‘broadcast_date’) will return false.

c12.indd 386c12.indd 386 10/08/12 8:25 PM10/08/12 8:25 PM

A Brief Recap ❘ 387

Just like that, you’ll sometimes see:

if (UNIVERSAL::can($object, $method_name)) {
 # BAD IDEA!
}

Again, this is a bad idea because if one of your objects provides its own can() method (and this is
even more common than providing a new isa() method), then the above code is broken. Use the
proper OO behavior: $object->can($method).

Understanding the VERSION() Method

The UNIVERSAL class also provide a VERSION() method. (Why it’s in ALL CAPS when the is() and
can() are not is merely one of life’s little mysteries.) This returns the version of the object. You’ll
notice that your code often has things like:

our $VERSION = ‘3.14’;

That $VERSION is precisely what $object->VERSION returns, but in a clean interface. As you defi ned
the version as being ‘0.01’ for all of our TV:: classes, calling ->VERSION on any of them will
return ‘0.01’.

Understanding Private Methods

This chapter already mentioned that private methods traditionally begin with an underscore. This
bears a bit of explaining. In Perl, all methods are actually public. There is nothing to stop someone
from calling your “private” methods. Most good programmers know better than to call these meth-
ods, but sometimes they get sloppy or they need behavior from the class that was not made “public.”

NOTE In reality, the can() method returns a reference to the method that

would be invoked. Some programmers use this to avoid having Perl look up the

method twice:

if (my $method = $object->can($method_name)) {
 $object->$method;
}

Because a subroutine reference can evaluate to true, that’s the same as:

if ($object->can($method_name)) {
 $object->$method_name;
}

And yes, objects can call a method that is in a variable name, as shown here.

Use this with care to make sure you’re not calling a method you don’t want to

call. Your author has seen many bugs and security holes in Perl code that allows

someone to pass in the name of the method to be called.

c12.indd 387c12.indd 387 10/08/12 8:25 PM10/08/12 8:25 PM

388 ❘ CHAPTER 12 OBJECT ORIENTED PERL

This also means that subclasses inherit your “private” methods, effectively making them what some
other languages would call a protected method. This is a method that is inherited but should not be
called outside the class. Generally this is not a problem, but look at the following code:

package Customer;

sub new {
 my ($class, $args) = @_;
 return bless $args, $class;
}

sub outstanding_balance {
 my $self = shift;
 my @accounts = $self->_accounts;
 my $total = 0;
 $total += $_->total foreach @accounts;
 return $total;
}

sub _accounts {
 my $self = shift;
 # lots of code
 return @accounts;
}

more code here

Now imagine a Customer::Preferred class that inherits from Customer but implements its own
accounts() method that returns an array reference of the customer accounts. If the outstanding
balance() method is not overridden, you’ll have a run-time error when outstanding_balance()
expects a list instead of an array reference.

In reality, this problem doesn’t happen a lot. Part of the reason is simply because programmers who
want to subclass your code often read it and make sure they’re not breaking anything, or they write
careful tests to verify that they haven’t broken anything. However, as your systems get larger, you’re
more likely to accidentally override methods, and you should consider yourself lucky if it causes a
fatal error. It’s also possible to cause a subtle run-time error that generates bad data rather than kill-
ing your program. When you try to debug a problem in a system with a few hundred thousand lines
of code, this type of error can be maddening.

If you are concerned about this, there are a couple of ways to deal with this. One is to simply docu-
ment your “private” methods and whether they’re appropriate to subclass. Another strategy is to
declare private methods as subroutine references assigned to scalars:

package Customer;

sub new {
 my ($class, $args) = @_;
 return bless $args, $class;
}

my $_accounts = sub {

c12.indd 388c12.indd 388 10/08/12 8:25 PM10/08/12 8:25 PM

A Brief Recap ❘ 389

 my $self = shift;
 # lots of code
 return @accounts;
};

sub outstanding_balance {
 my $self = shift;
 my @accounts = $self->$_accounts;
 my $total = 0;
 $total += $_->total foreach @accounts;
 return $total;
}

Here, you assign a code reference to the $_accounts variable and later call it with $self->$_
accounts. You can even pass arguments as normal:

my @accounts = $self->$_accounts(@arguments);

Note that this technique creates truly private methods that cannot be accidentally overridden.
(Actually, you can change them from outside the class, but it’s an advanced technique that requires
advanced knowledge of Perl.) Most Perl programmers do not actually use this technique and expect
people who subclass their modules to test that they haven’t broken anything.

NOTE For what it’s worth, your author did an informal poll of Perl developers

and all of them denied that they have ever worked on code where someone

has accidentally overridden a private method. This leaves me in the awkward

position of recommending a solution to a problem that no one seems to have

experienced.

TRY IT OUT Creating Episode Versions

Earlier this chapter pointed out that you don’t watch episodes; you usually watch a broadcast of an
episode or an ondemand of an episode. That was actually a bit of a lie. You watch a broadcast of a ver-
sion of an episode, or an ondemand of a version of an episode. It might be the original version, edited
for adult content (such as naughty words bleeped out), edited for legal reasons (accidentally defaming
someone, for example), or any number of reasons. So you’re going to create a version subclass of epi-
sodes and alter your ondemands and broadcasts to inherit from that instead. All the code in this Try It
Out is available in the code fi le lib/TV/Episode/Version.pm.

 1. Type in the following program and save it as lib/TV/Episode/Version.pm:

package TV::Episode::Version;

use strict;
use warnings;
use base ‘TV::Episode’;

our $VERSION = ‘0.01’;

c12.indd 389c12.indd 389 10/08/12 8:25 PM10/08/12 8:25 PM

390 ❘ CHAPTER 12 OBJECT ORIENTED PERL

sub new {
 my ($class, $arg_for) = @_;
 my $self = bless {} => $class;
 $self->_initialize($arg_for);
 return $self;
}

sub _initialize {
 my ($self, $arg_for) = @_;
 my %arg_for = %$arg_for;
 $self->{description} = exists $arg_for{description}
 ? delete $arg_for{description}
 : ‘Original’;
 $self->SUPER::_initialize(\%arg_for);
}

sub description { shift->{description} }

sub as_string {
 my $self = shift;
 my $as_string = $self->SUPER::as_string;
 $as_string .= sprintf “%-14s - %s\n” => ‘Version’,
 $self->description;
 return $as_string;
}

1;

 2. At this point, you have a decision to make. Many developers prefer to have the class struc-
ture refl ected in the name of the class, meaning the TV::Episode::Broadcast and
TV::Episode::OnDemand would become TV::Episode::Version::Broadcast
and TV::Episode::Version::OnDemand. Each part of the class name shows how you’re getting
more and more specifi c. But what if your code is used in other projects that you don’t have control
over? Instead, you’ll decide to keep their class names, and for broadcasts and on demands, you’ll
merely change their inheritance line to:

package TV::Episode::Broadcast;
snip
use base ‘TV::Episode::Version’;

This may not be the best name for the broadcast or ondemand classes, but it’s the sort of
 compromises you make in real-world code.

Another choice (which, for the sake of simplicity, you’re not taking) is to create the new classes
like this:

package TV::Episode::Version::Broadcast;
use base ‘TV::Episode::Broadcast::_initialize;
1;

That allows people to use either name, but there’s one more change to make:

c12.indd 390c12.indd 390 10/08/12 8:25 PM10/08/12 8:25 PM

A Brief Recap ❘ 391

package TV::Episode::Broadcast;

use Carp ‘cluck’;

sub new {
 my ($class, $arg_for) = @_;
 if ($class eq __PACKAGE__) {
 cluck(<<”END”);
Package TV::Episode::Broadcast is deprecated. Please use
TV::Episode::Version::Broadcast instead.
END
 }
 my $self = bless {} => $class;
 $self->_initialize($arg_for);
 return $self;
}

By adding such a deprecation warning (and documenting this in your POD!), you can give other
programmers advance warning of the package name change. This allows their code to continue
working and gives them time to make the needed updates to their code.

 3. After you update TV::Episode::OnDemand to inherit from TV::Episode::Version, write the fol-
lowing and save it as example_12_2_episode.pl:

use strict;
use warnings;
use DateTime;

use lib ‘lib’;
use TV::Episode::OnDemand;

my $ondemand = TV::Episode::OnDemand->new(
 {
 series => ‘Firefl y’,
 director => ‘Allan Kroeker’,
 title => ‘Ariel’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 9,
 start_date => DateTime->new(
 year => 2002,
 month => 11,
 day => 21,
),
 end_date => DateTime->new(
 year => 2002,
 month => 12,
 day => 12,
),
 }
);
print $ondemand;

c12.indd 391c12.indd 391 10/08/12 8:25 PM10/08/12 8:25 PM

392 ❘ CHAPTER 12 OBJECT ORIENTED PERL

 4. Run the program with perl example_12_2_episode.pl. You should see the following output:

Series - Firefl y
Title - Ariel
Director - Allan Kroeker
Genre - awesome
Season - 1
Episode_number - 9
Version - Original
Start date - 2002-11-21T00:00:00
End date - 2002-12-12T00:00:00
Available days - 21

How It Works

By this time you should have an idea of how subclassing works, and there is nothing new here, but now
look at a couple of interesting bits, starting with the _initialize() method:

 1: sub _initialize {
 2: my ($self, $arg_for) = @_;
 3: my %arg_for = %$arg_for;
 4:
 5: $self->{description} = exists $arg_for{description}
 6: ? delete $arg_for{description}
 7: : ‘Original’;
 8: $self->SUPER::_initialize(\%arg_for);
 9: }

Instead of calling croak() when you don’t have a description, note how lines 5 through 7, assign the
value Original to it. This allows you to create a new version and, if this value is not present, assume
that it’s the original version. However, it has a more important benefi t. If other developers are already
using the TV::Episode::Broadcast and TV::Episode::OnDemand classes, they are not setting the
description property. If you simply called croak() here, you’d break everyone’s code and they’d prob-
ably be upset with you.

Also, note theas_string() method:

 1: sub as_string {
 2: my $self = shift;
 3: my $as_string = $self->SUPER::as_string;
 4: $as_string .= sprintf “%-14s - %s\n” => ‘Version’,
 5: $self->description;
 6: return $as_string;
 7: }

You have again duplicated the “%-14s - %s\n” format, so it’s probably a good time to abstract this out
into a method in your TV::Episode base class. If you want to change how this behavior formats in the
future, it will be easier to do so.

c12.indd 392c12.indd 392 10/08/12 8:25 PM10/08/12 8:25 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Gotchas ❘ 393

GOTCHAS

When writing object-oriented code, there are a number of problem areas you should be aware of.
We’ll only cover a few, but these are important issues that can make your code harder to use or
more likely to break.

Unnecessary Methods

Often when people write objects, they correctly think of them as “experts.” However, they then
rationalize that the object must do everything conceivable that someone wants, rather than simply
provide an intended behavior. Rule: Don’t provide behavior unless you know that people need it. A
good example is people making all object attributes read-write. For example, with TV::Episode, say
that you want to make the episode number optional and people can set it later if they want to:

use Scalar::Util ‘looks_like_number’;
sub episode_number {
 my $self = shift;
 if (@_) {
 my $number = shift;
 unless (looks_like_number($number) and $number > 0) {
 croak(“episode_number is not a positive integer: $number”);
 }
 $self->{episode_number} = $number;
 }
 return $self->{episode_number};
}

That looks harmless enough, right?

Later on you create a TV::Season object and it looks like this:

my $season = TV::Season->new({
 season_number => 3,
 episodes => \@episodes,
});

If you assume that all TV::Episode objects in @episodes must have unique number, you can easily
validate this when you construct the TV::Season object. However, if you later do this to one of the
objects passed to TV::Season:

$episode->episode_number(3);

If another one of the episodes already has an episode_number of 3, you may have two episodes
in a season with the same episode_number! That’s because objects are merely blessed references.
Change the data contained in a reference, and the place you store that reference will be pointing to
the same data. Errors like this are much harder to avoid if you allow attributes to be set after you’ve
constructed the object. Think carefully if this is a design requirement.

c12.indd 393c12.indd 393 10/08/12 8:25 PM10/08/12 8:25 PM

394 ❘ CHAPTER 12 OBJECT ORIENTED PERL

“Reaching Inside”

If you know something is an attribute, it can be tempting to do this:

my $name = $shopper->{name};

That seems OK because you know that name is in that hash slot, and hey, dereferencing the hash is
faster than calling an object method!

And it’s stupid, too. The reason that OO developers provide methods to let you get that data is
because they must be free to change how the objects work internally, even if you don’t see the change
on the outside. You want to use $shopper->name because although it may be defi ned like this:

sub name { $_[0]->{name} }

The next release of the software might defi ne it like this:

sub name {
 my $self = shift;
 return join ‘ ‘ => $self->first_name, $self->last_name;
}

Even inside the class you should avoid reaching inside of the object. You might say, “But I know that
$self->{name}” is okay — until someone subclasses your module and the name() method is com-
pletely redefi ned. Or you are moaning over a nasty bug, not realizing that $self->{naem} is embed-
ded somewhere in your code.

Finally, the object method that sets a value might validate that the value is valid. Reaching inside the
object completely skips this validation.

Mu ltiple Inheritance

Tighten up your seat belts. This is going to get a little rough, and it’s worth reading through a cou-
ple of times to understand what’s going on.

Multiple inheritance is inheriting from more than one class at the same time. For example, imagine
you’re writing a game and you want to create a talking box. Because your Creature class can speak
and your Box class is a box, you decide that you want to inherit from both of them rather than
rewrite the behaviors:

package Creature;
use base ‘Physical::Object’;
sub speak { ... }
package Box
use base ‘Physical::Object’;
sub put_inside { ... }
sub take_out { ... }
package Box::Talking;
use base qw(Creature Box);

c12.indd 394c12.indd 394 10/08/12 8:25 PM10/08/12 8:25 PM

Gotchas ❘ 395

And now your Box::Talking can respond to the speak(), put_inside(), and take_out()
methods.

On the surface, this looks okay, but multiple inheritance is so problematic that many programming
languages ban it outright. What are the constructors going to look like? Do you call both of your
parent constructors? What if they do confl icting things?

Imagine what happens if the classes Box and Physical::Object both have a weight() method.
When you want to fi nd out its weight you might do this:

my $weight = $talking_box->weight;

However, Perl, by default, uses a left-most, depth-fi rst inheritance search
strategy. Now look at the inheritance hierarchy in Figure 12-2.

In this case, when you call $talking_box->weight(), it looks for
the weight method in Box::Talking and, not fi nding it, searches
Creature. And failing to fi nd that, it looks for the weight() method
in Physical::Object and calls that. The Box::weight() method will
never get called. The Physical::Object might simply report its weight
even though you wanted the Box class’s weight() method because it
responds with its weight plus all the objects inside of it.

You could fi x that by reversing the order in which you inherit from those:

use base qw(Box Creature);

Then, when you call $talking_box->weight(), you’ll get the weight() method from Box.

You can solve this problem without changing the inheritance order by using something
called C3 linearization. (See the C3 or mro modules on the CPAN.) They use a left-most,
breadth-fi rst method resolution strategy. Perl would search, in order, Box::Talking,
Creature, Box, and then Physical::Object methods and would fi nd Box::weight() before
Physical::Object::weight().

Physical::Object

Box::Talking

Creature Box

FIGURE 12-2

NOTE If Perl cannot fi nd the method, you usually get an error message

similar to:

Can’t locate object method “do_stuff” via package “MyPackage”

However, sometimes there is an AUTOLOAD method available. If Perl does not fi nd

the method, it resumes its search through the inheritance hierarchy looking for a

method named AUTOLOAD and calls the fi rst AUTOLOAD method it fi nds. We gener-

ally do not recommend this because it is tricky to write properly, is slow, and can

easily hide errors. See the Autoloading section in perldoc perlsub for more

information.

c12.indd 395c12.indd 395 10/08/12 8:25 PM10/08/12 8:25 PM

396 ❘ CHAPTER 12 OBJECT ORIENTED PERL

Confused yet? It gets worse.

Now assume that Box::Talking has inherited from Box fi rst and then Creature?

use base (‘Box’, ‘Creature’);

Now imagine that you have a move() method in both Create and Box and you want to call the
Creature method instead of the Box method? Perl’s default method resolution order would be to
search Box::Talking, Box, Physical::Object, and then Creature. You would never call the
Creature::move() method.

If you switch to the C3 method resolution order, Perl searches Box::Talking, Box, Creature, and
Physical::Object. Because it can still fi nd the Box::move() method fi rst, you still get the wrong
method.

NOTE The order in which Perl searches for the method in classes is called the

method resolution order, or MRO for short. There is an mro module on the CPAN

that enables you to change the method resolution order.

If you don’t like Perl’s default method order, your author recommends that you

do not change it. Simply use the Moose OO system as explained in Chapter 13. It

uses the left-most, breadth-fi rst C3 MRO by default.

Fortunately, if you never use multiple inheritance, the MRO issues do not apply

to your code.

You can solve this in your Box::Talking class with the following ugly code:

sub move {
 my ($self, $movement) = @_;
 return $self->Creature::move($movement);
}

Calling fully qualifi ed method names like this is legal, but it’s not common, and it’s a symptom of
bad class design. If you decided to refactor your classes, these hard-coded class names in your code
can lead to confusing errors.

If this section of the chapter confused you, don’t worry. Many good programmers have been bitten
by multiple inheritance, and every year there seems to be a new computer science paper describing
why it’s bad. Strong advice: Even though Perl lets you use multiple inheritance, don’t use it unless
you’re very, very sure you have no other choice.

Chapter 13 explains how to avoid this problem by using Moose. (Have we hyped Moose enough yet
for you?)

c12.indd 396c12.indd 396 10/08/12 8:25 PM10/08/12 8:25 PM

Summary ❘ 397

SUMMARY

Object-oriented programming is a way to create “experts” for particular problems your software
may need to solve. A class is a package and describes all data and behavior the object needs to deal
with. The object is a reference blessed into that class. Methods are subroutines and the class name
or object is always the fi rst argument.

Inheritance is where you create a more-specialized version of a class. It inherits from another class
and gains all its behavior and data, along with adding its own behavior and possibly data. If you call
a method on an object and the objects class does not provide that method, Perl searches the objects
inheritance tree to fi nd the correct method to call.

All objects ultimately inherit from the UNIVERSAL class. This class provides isa(), can(), and
VERSION() methods to all classes.

So you’ve taken a long time to get to this incredibly short summary. Objects in Perl are straightfor-
ward, but you’ve taken the time to consider examples of real-world objects to give you a better idea
of what they’re often like in Comp code.

EXERCISES

 1. Representing people in software systems is a common task. Create a simple Person class with

a name attribute and a birthdate attribute. The latter should be a DateTime object. Provide a

method named age() that returns the person’s age in years.

 Hint: You can use DateTime->now to get a DateTime object for today’s date. Subtracting the per-

son’s birthdate from today’s date returns a DateTime::Duration object.

 2. The following code works, but it will likely break if you try to subclass it. Why?

package Item;
use strict;
use warnings;
sub new {
 my ($class, $name, $price) = @_;
 my $self = bless {};
 $self->_initialize($name, $price);
 return $self;
}
sub _initialize {
 my ($self, $name, $price) = @_;
 $self->{name} = $name;
 $self->{price} = $price;
}
sub name { $_[0]->{name} }
sub price { $_[0]->{price} }
1;

 3. Using the Person class described in exercise 1 of this chapter, create a Customer subclass. Per

company policy, you will not accept customers under 18 years of age.

c12.indd 397c12.indd 397 10/08/12 8:25 PM10/08/12 8:25 PM

398 ❘ CHAPTER 12 OBJECT ORIENTED PERL

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Class An abstract “blueprint” for an object.

Method A subroutine in a class that takes the class name or object as its fi rst

argument.

Object An “expert” about a problem domain.

bless A builtin that binds a reference to a class.

Inheritance How Perl creates a more specifi c version of a class.

Subclass A more specifi c type of a class. Also called a child class.

Superclass The parent of a subclass.

UNIVERSAL The ultimate parent of all classes.

c12.indd 398c12.indd 398 10/08/12 8:25 PM10/08/12 8:25 PM

Moose

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding Moose Syntax including attributes, constructors, and

inheritance

 ➤ Using Type constraints, Method modifi ers, roles, and popular Moose

extensions

 ➤ Understanding Moose Best Practices

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=11 18013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ example_13_1_person.pl

 ➤ example_13_2_episode.pl

 ➤ lib/Person.pm

 ➤ lib/My/Company/Moose/Types.pm

 ➤ lib/TV/Episode.pm

 ➤ lib/TV/Episode/Broadcast.pm

 ➤ listing_13_1_age.pl

In the beginning there was Perl and on the fi fth version Larry blessed references and said,
“Let there be objects” and all was good.

13

c13.indd 399c13.indd 399 8/9/12 2:09 PM8/9/12 2:09 PM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://WROX.COM
http://wrox.com

400 ❘ CHAPTER 13 MOOSE

Well, sort of. Chapter 12 showed how to create objects with Perl’s builtin bless syntax, but there’s
a lot of tedium in validating that your data is correct and setting up your classes properly. If you’re
familiar with object-oriented programming (OOP) in other languages, you may have found Perl’s
implementation to be a bit crufty. You’d be right.

To work around Perl’s rather simple object facilities, many programmers have taken a swing
at making it easier to write objects. There is Class::MakeMethods, Class::MethodMaker,
Class::BuildMethods, Class::Accessor, Object::Tiny, and so on. As of this writing, there are
approximately 500 different packages in the Class:: and Object:: namespaces, many of which
aren’t actually object builders. How do you fi gure out which one you want? They offer bewildering
sets of features, and you certainly don’t have time to evaluate all of them.

Eventually, a rather brilliant programmer named Stevan Little wrote Moose, which is probably one
of the most advanced object systems available. It draws heavily on theory from a wide variety of
sources, but puts it all together in a way that suits Perl. Many companies are now adopting Moose
as the standard way todo object-oriented programming in Perl and the benefi ts are huge, not the
least of which is that it has a predictable syntax, meaning that it’s often much easier to understand a
Moose class than a regular Perl class.

Though you see quite a bit of Moose in this chapter, I’m only going to scratch the surface of its
capabilities, so consider this chapter an introduction to the most common features, not an in-depth
tutorial.

Moose is not shipped with Perl, so you need to install it from the CPAN.

UNDERSTANDING BASIC MOOSE SYNTAX

Writing a Moose class is mostly a matter of declaring attributes and methods. For example, say you
want to create a drawing program. You might start with a simple x and y coordinate system:

package Point;

use Moose;

has ‘x’ => (is => ‘ro’, isa => ‘Num’, required => 1);
has ‘y’ => (is => ‘ro’, isa => ‘Num’, required => 1);

1;

And that’s all you need! Here’s an example of how to use it:

my $point = Point->new({ x => 3.2, y => -7 });
printf “x: %f y: %f\n” => $point->x, $point->y;

And that prints out:

x: 3.200000 y: -7.000000

What’s going on is that the has function is exported by Moose and it’s used to declare attributes.
When used correctly, you no longer need a constructor (a new() method), nor do you need to

c13.indd 400c13.indd 400 8/9/12 2:09 PM8/9/12 2:09 PM

Understanding Basic Moose Syntax ❘ 401

create a bunch of helper methods to fetch these values. I’ll explain in-depth how to use them in
the “Using Attributes” section of this chapter.

Now maybe you want a line. A line is defi ned by its two endpoints:

package Line;

use Moose;

has ‘point1’ => (is => ‘ro’, isa => ‘Point’, required => 1);
has ‘point2’ => (is => ‘ro’, isa => ‘Point’, required => 1);

sub length {
 my $self = shift;
 return sqrt(
 ($self->point1->x - $self->point2->x)**2
 +
 ($self->point1->y - $self->point2->y)**2
);
}

1;

And to use it:

my $line = Line->new({
 point1 => Point->new({ x => 1, y => -1 }),
 point2 => Point->new({ x => 4, y => -5 }),
});
print $line->length;

And that prints 5 as the length of that line.

NOTE Chapter 12 shows constructors as always receiving a hash reference as

the argument. This makes it easier to know that you have key/value pairs, and

you see the error quickly when the object code tries to dereference something

that is not a hash reference.

Moose makes this optional. Although hash references to the constructors are in

the examples, you don’t need them with Moose. You may fi nd your code cleaner

without them.

my $line = Line->new(
 point1 => Point->new(x => 1, y => -1),
 point2 => Point->new(x => 4, y => -5),
);
print $line->length;

However, if you always stick to a hash references, you’ll get a warning if you

pass an odd number of elements by accident. (Remember, a hash is a set of key

and value pairs.)

c13.indd 401c13.indd 401 8/9/12 2:09 PM8/9/12 2:09 PM

402 ❘ CHAPTER 13 MOOSE

Among other things, you can note that strict or warnings are not used. Why not? Because when
you use Moose, it automatically uses strict and warnings for you.

You also don’t have to declare a new() constructor. Moose provides that for you, enabling you to
assign values to the declared attributes. Much easier, right? And if you tried to do this:

Point->new({ x => ‘Foo’, y => 3 });

You get a long stack trace starting with the message:

Attribute (x) does not pass the type constraint because:
 Validation failed for ‘Num’ with value Foo at ...

Needless to say, this is much easier than working with Perl’s standard bare-bones OO. The CPAN
page Moose::Manual::Unsweetened shows how much easier with a Moose versus Perl 5 OO
example.

NOTE A stack trace is a list of every subroutine called, along with their

 arguments, from the point where the error occurred back to the calling code that

generated the error. They’re long and messy, but they’re invaluable to help you

understand how your code committed suicide.

NOTE Actually, you don’t even need the is => ‘...’ for the attribute, but that

creates an attribute with no accessor. There are reasons you might want to do

that, but they aren’t covered here.

Using Attributes

An attribute is a piece of data, such as quantity or color, associated with an object. They’re
described in full in perldoc Moose::Manual::Attributes. The simplest attribute looks like this:

has ‘name’ => (is => ‘ro’);

The is => ‘ro’ means that the attribute is read-only. You can set it when you create the object,
but you cannot change it later. If you want it to be read-write, declare it with ‘rw’.

has ‘name’ => (is => ‘rw’);

Usually you want to specify what types the attribute can accept. For example, a name attribute
should probably be a string:

has ‘name’ => (is => ‘ro’, isa => ‘Str’);

c13.indd 402c13.indd 402 8/9/12 2:09 PM8/9/12 2:09 PM

Understanding Basic Moose Syntax ❘ 403

The isa => ‘Str’ says “this attribute isa string.” You can see the full list of built-in types with
perldoc Moose::Util::TypeConstraints:

 Any
 Item
 Bool
 Maybe[`a]
 Undef
 Defined
 Value
 Str
 Num
 Int
 ClassName
 RoleName
 Ref
 ScalarRef[`a]
 ArrayRef[`a]
 HashRef[`a]
 CodeRef
 RegexpRef
 GlobRef
 FileHandle
 Object

Most of those types should be self-explanatory, except for a few items we haven’t gone in-depth
about:

 ➤ Any means “anything.” An Item is the same as Any. You could think of it as the difference
between “something” and “anything.” In other words, it will not be of much practical
difference in your work.

 ➤ A Str is a string, a Num is any number, an Int is an integer, and so on. A Bool may be
undef, the empty string, 0 or 1.

 ➤ A Value is “anything which is defi ned and not a reference.” This can include something
called a glob (instead of a GlobRef, as listed in the Ref types).

 ➤ The [`a] is a type parameter. For any types, you can follow them with the type parameter,
replacing the `a with a given type, for example:

has ‘temperatures’ => (
 is => ‘rw’,
 isa => ‘ArrayRef[Num]’,
 required => 1,
);

And that enables you to create a temperatures attribute that, if present, must be an array reference
containing only numbers. You could use that to create an average_temperature() method. We
used required => 1 to ensure that the temperatures attribute must be supplied.

c13.indd 403c13.indd 403 8/9/12 2:09 PM8/9/12 2:09 PM

404 ❘ CHAPTER 13 MOOSE

use List::Util ‘sum’;

sub average_temperature {
 my $self = shift;
 my $temperatures = $self->temperatures;
 my $num_temperatures = @$temperatures
 or return; # an empty temperatures arrayref
 return sum(@$temperatures) / $num_temperatures;
}

You can force the $temperatures array reference to have at least one value:

use Moose;
use Moose::Util::TypeConstraints; # for subtype, as, where

has ‘temperatures’ => (
 is => ‘rw’,
 isa => subtype(as ‘ArrayRef[Num]’, where { @$_ > 0 }),
 required => 1,
);

Then, if you try to pass an empty array reference, Moose throws an exception. That’s a bit obscure
right now but is covered with type constraints in the “Using Type Constraints” section of this chap-
ter. (And inline subtypes like that are generally not recommended in case other modules will want to
use that subtype.)

A Maybe[`a] value enables you to have either undef or a specifi c value in an attribute.
So Maybe[Int]enables either undef or Int.

If you don’t like your setter and getter to be a single method, then separate them:

has ‘name’ => (
 is => ‘rw’,
 isa => ‘Str’,
 writer => ‘set_name’,
 reader => ‘get_name’,
);

Or you can use the MooseX::FollowPBP, and all attributes will be named get_* and set_* for you.
(But you won’t get set_* unless you use is => ‘rw’.)

use Moose;
use MooseX::FollowPBP; # get_name and set_name will now be created
has ‘name’ => (
 is => ‘rw’,
 isa => ‘Str’,
);

You can also use isa to declare that the attribute is a specifi c type of object:

has ‘birthdate’ => (
 is => ‘ro’,
 isa => ‘DateTime’,
);

c13.indd 404c13.indd 404 8/9/12 2:09 PM8/9/12 2:09 PM

Understanding Basic Moose Syntax ❘ 405

And now if you pass something that is not a DateTime object to birthdate, Moose throws an
exception.

You can also assign defaults to attributes. With the following, if you don’t supply a minimum_age to
the constructor, it defaults to 18:

has ‘minimum_age’ => (
 is => ‘ro’,
 isa => ‘Int’,
 default => 18,
);

If your default is a reference, you must wrap it in sub {} to ensure a new reference is returned
every time:

has ‘minimum_age’ => (
 is => ‘ro’,
 isa => ‘DateTime::Duration’,
 default => sub { DateTime::Duration->new(years => 18) },
);

Moose will throw an exception if your default is a reference without the sub {} around it.
The sub{} ensures that every instance of the class will get a different reference.

NOTE The name MooseX::FollowPBP refers to Perl Best Practices, by Damian

Conway. It’s a few years old, and some module recommendations are out of

date, particularly the reference to using Class::Std to create your classes, but

it’s still an excellent book.

There’s a lot more power in attributes, so read Moose::Manual::Attributes to see what other
nifty things you can do.

Using Constructors

As explained, Moose provides a new() constructor for you. If you need to alter its behavior, do not
override new(). Instead, use BUILDARGS to modify arguments before new() is called, with BUILD
being used after the constructor is called when you need further validation of the state of the object.
Consider BUILDARGS fi rst, which has an unusual syntax.

BUILDARGS

You saw from the Point example that you can create a point like this:

my $point = Point->new(x => 3, y => 2);

c13.indd 405c13.indd 405 8/9/12 2:09 PM8/9/12 2:09 PM

406 ❘ CHAPTER 13 MOOSE

But you might want to write Point->new(3, 2). That’s what BUILDARGS is for.

package Point;

use Moose;

has ‘x’ => (is => ‘ro’, isa => ‘Num’, required => 1);
has ‘y’ => (is => ‘ro’, isa => ‘Num’, required => 1);

around ‘BUILDARGS’ => sub {
 my $orig = shift;
 my $class = shift;
 if (@_ == 2) {
 my ($x, $y) = @_; # Point->new(x, y);
 return $class->$orig(x => $x, y => $y);
 }
 else {
 # Point->new(@list_or_hashref);
 return $class->$orig(@_);
 }
}; # Needs a trailing semicolon

1;

That lets you write:

my $point = Point->new(3, 2);

or, the same thing
my $point = Point->new(x => 3, y => 2);

The Point->new(3, 2) version works because the fi rst branch of the if/else block sees that you
have two arguments and rewrites the arguments for you.

When you include the use Moose line, your class inherits from Moose::Object. There is a
BUILDARGS method that checks to see if you’ve passed a hashref or a list and ensures that the object
is called correctly.

The around() function takes the name of a method and a subroutine reference. A reference to the
original method is passed as the fi rst argument ($orig) and the invocant (a class name in this
case, but it can also be an instance of an object) is the second argument. Any further arguments
are passed as normal in @_. You can then test your arguments and call $class->$orig
(@new_ arguments) to build your object.

The around() function is called a method modifi er, which is covered in the “Method Modifi ers”
section of this chapter.

BUILD

The BUILD method is called after new() and can be used to validate your object. Its return value is
ignored, and, unlike BUILDARGS, it has a normal method syntax. You should throw an exception if
you encounter any errors. For your Line example, assume that your two points cannot be the same.

c13.indd 406c13.indd 406 8/9/12 2:09 PM8/9/12 2:09 PM

Understanding Basic Moose Syntax ❘ 407

package Line;

use Moose;
use Carp ‘croak’;

has ‘point1’ => (is => ‘ro’, isa => ‘Point’, required => 1);
has ‘point2’ => (is => ‘ro’, isa => ‘Point’, required => 1);

sub BUILD {
 my $self = shift;
 if ($self->point1->x == $self->point2->x
 && $self->point1->y == $self->point2->y)
 {
 croak(“Line points must not be the same”);
 }
}

sub length {
 my $self = shift;
 return sqrt(
 ($self->point1->x - $self->point2->x)**2
 +
 ($self->point1->y - $self->point2->y)**2
);
}

1;

You can see that this BUILD method lets you have tighter validation of your object than attributes
alone can provide. If you pass in the same point twice, or two separate points with the same
coordinates, Line->new will croak() with an appropriate error message.

NOTE If you’re curious about how BUILD works, internally your code inherits

from Moose::Object. It has a BUILDALL method that gets called and checks if

you have any BUILD methods defi ned. If you do, BUILDALL calls these methods

for you. If you have inherited from other classes, the BUILD methods for every

class are called. However, parent class BUILD methods are called before

child class BUILD methods. This guarantees that by the time your class are built,

everything in the parent classes is already set up correctly for you.

You could have used BUILDARGS, too, to pass a list of two points. This would have looked similar to
the Point::BUILDARGS method.

around ‘BUILDARGS’ => sub {
 my $orig = shift;
 my $class = shift;
 if (@_ == 2) {

c13.indd 407c13.indd 407 8/9/12 2:09 PM8/9/12 2:09 PM

408 ❘ CHAPTER 13 MOOSE

 my ($point1, $point2) = @_;
 return $class->$orig(
 point1 => $point1,
 point2 => $point2,
);
 }
 else {
 return $class->$orig(@_);
 }
}; # Don’t forget that trailing semicolon!

And now you can write:

my $line = Line->new(
 Point->new(1, -1),
 Point->new(4, -5),
);

Instead of the more verbose:

my $line = Line->new(
 point1 => Point->new(x => 1, y => -1),
 point2 => Point->new(x => 4, y => -5),
);

Understanding Inheritance

Inheritance in Moose is easy. With Perl’s basic OO behavior, TV::Episode::Broadcast
would inherit from TV::Episode via one of these techniques:

use base ‘TV::Episode’;
or
use parent ‘TV::Episode’;
or
use TV::Episode;
our @ISA = ‘TV::Episode’;

In Moose, every Moose object inherits from Moose::Object. So you can’t use those techniques
directly or else you lose your inheritance from Moose::Object. Instead, you use the extends
function:

package TV::Episode::Broadcast;

use Moose;

extends ‘TV::Episode’;

That does assume your parent class is a Moose class. If you’re using Moose, that’s usually the case,
but sometimes you need to inherit from a class not built with Moose. See MooseX::NonMoose for
that. If TV::Episode::Broadcast is written with Moose and TV::Episode is not a Moose class,

c13.indd 408c13.indd 408 8/9/12 2:09 PM8/9/12 2:09 PM

Understanding Basic Moose Syntax ❘ 409

package TV::Episode::Broadcast;

use Moose;
use MooseX::NonMoose;

extends ‘TV::Episode’;

That will take care of lots of fi ddly bits for you and everything should work fi ne.

Taking Care of Your Moose

When you use Moose, it exports a lot of helper functions into your class, such as:

 ➤ after

 ➤ around

 ➤ augment

 ➤ before

 ➤ extends

 ➤ has

 ➤ inner

 ➤ override

 ➤ super

 ➤ with

You’ve seen a couple of them, such as has and around. Later, when someone is using your class,
if they write:

$moose_object->can(‘around’);

That returns a true value because subroutines and methods are treated the same way by Perl. You
probably don’t want this behavior, and there’s no need to leave all those helper functions lying
around. To deal with this, use namespace::autoclean (available on the CPAN):

package TV::Episode::Broadcast;

use Moose;
use namespace::autoclean;

more code here

1;

That automatically removes all those helper functions for you.

c13.indd 409c13.indd 409 8/9/12 2:09 PM8/9/12 2:09 PM

410 ❘ CHAPTER 13 MOOSE

Also, just before that trailing 1, you want to make your class immutable. A standard skeleton of a
good Moose class looks like this:

package My::Class::Name;
use Moose;
use namespace::autoclean;

your code here

__PACKAGE__->meta->make_immutable;

1;

The __PACKAGE__->meta->make_immutable doesn’t change the behavior, but it does a few
 internal things that make your code run a bit faster. The trade-off is that you can’t use metapro-
gramming (that’s what the __PACKAGE__->meta is often used for) to change your class later unless
you fi rst call the __PACKAGE__->meta->make_mutable method. We don’t cover this here but if
you know what that is, you know when to not make your class immutable.

NOTE What is meta programming? If you like the Moose object system but you

want to change or extend some of its core behavior, then you’re beginning to

get an idea of what metaprogramming is. See the full Moose docs on the CPAN.

Every time you use has, extends, and a variety of other functions, you’re altering

a class defi nition and, under the hood, it’s done with metaprogramming.

If you actually want to know, you can start with perldoc Moose::Manual::MOP

(MOP stands for Meta Object Protocol) and then start reading Moose::Cookbook::

Meta::Recipe1 through Moose::Cookbook::Meta::Recipe7. It’s advanced stuff ,

so don’t worry if it doesn’t make much sense to you.

When using Moose, the Method Resolution Order (mro) pragma is in effect. Not only does this
use breadth-fi rst C3 method resolution order that was described in Chapter 12, it also substitutes
the SUPER::some_method call with next::method, and $object->can($some_method) becomes
$object->next::can($somet_method). If you do not use multiple inheritance — and its use is
discouraged — you will likely see no difference in behavior aside from the syntax.

For example, you may recall the as_string() method from TV::Episode::Broadcast:

sub as_string {
 my $self = shift;
 my $episode = $self->SUPER::as_string;
 my $date = $self->broadcast_date;
 $episode .= sprintf “%-14s - %4d-%2d-%2d\n” => ‘Broadcast date’,
 $date->year,
 $date->month,
 $date->day;
 return $episode;
}

c13.indd 410c13.indd 410 8/9/12 2:09 PM8/9/12 2:09 PM

Understanding Basic Moose Syntax ❘ 411

That overrides the TV::Episode::as_string() method. When you convert it to Moose, you might
want to make the following change:

 # my $episode = $self->SUPER::as_string;
 my $episode = $self->next::method;

Note that there is no need to embed the method name in the call to the parent method. This can
avoid annoying bugs if you try to rename a method. For our example code, there is no functional
difference, but there are times, not covered here, when it will make a difference and it’s something
you’ll often see in Moose code.

As a lovely bit of syntactic sugar, you can also override Moose methods with the override function:

package TV::Episode::Broadcast;

use Moose;
extends ‘TV::Episode’;

lots of code

override ‘as_string’ => sub {
 my $self = shift;
 my $episode = super();
 my $date = $self->broadcast_date;
 $episode .= sprintf “%-14s - %4d-%2d-%2d\n” => ‘Broadcast date’,
 $date->year,
 $date->month,
 $date->day;
 return $episode;
}

This has two strong advantages. First, it’s excellent documentation to a maintenance programmer that
this method overrides a parent method. Second, the call to super() passes the same arguments to the
parent method (if any) that were passed to the child’s as_string() method, ensuring that you do not
accidentally change the interface. Any arguments to super() are ignored and you cannot change @_.

TRY IT OUT Write a Person Class

In the fi rst exercise of Chapter 12, you created a Person class. It had two attributes, a name and a
birthdate, plus an age() method for returning the Person’s age in years. Writing this in Moose is
much simpler. Note that all the code for this Try It Out is found in code fi le lib/Person.pm.

1. Type in the following program and save it as lib/Person.pm.

package Person;
use Moose;
use namespace::autoclean;
use DateTime;
has ‘name’ => (
 is => ‘ro’,
 isa => ‘Str’,
 required => 1,
);

c13.indd 411c13.indd 411 8/9/12 2:09 PM8/9/12 2:09 PM

412 ❘ CHAPTER 13 MOOSE

has ‘birthdate’ => (
 is => ‘ro’,
 isa => ‘DateTime’,
 required => 1,
);
sub age {
 my $self = shift;
 my $duration = DateTime->now - $self->birthdate;
 return $duration->years;
}
__PACKAGE__->meta->make_immutable;
1;

2. Write the following code and save it as example_13_1_person.pl:

use lib ‘lib’;
use strict;
use warnings;
use DateTime;
use Person;
my $person = Person->new({
 name => ‘Bertrand Russell’,
 birthdate => DateTime->new(
 year => 1872,
 month => 5,
 day => 18,
),
});
print $person->name, ‘ is ‘, $person->age, ‘ years old’;

3. Run the program with perl example_13_1_person.pl. You should see the following output:

Bertrand Russell is 139 years old

How It Works

There’s actually not much to say here. Moose is so simple to use that the preceding code should be
self-explanatory. However, if you did the exercises for Chapter 12, you probably wound up with
something like this:

package Person;

use strict;
use warnings;

use DateTime;
use Carp ‘croak’;

sub new {
 my ($class, $args) = @_;
 my $self = bless {} => $class;
 $self->_initialize($args);
 return $self;
}

c13.indd 412c13.indd 412 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 413

sub _initialize {
 my ($self, $args) = @_;
 my %args = %$args;
 my $name = delete $args{name};
 my $birthdate = delete $args{birthdate};

 # must have at least one non-whitespace character
 unless ($name && $name =~ /\S/) {
 croak “Person name must be supplied”;
 }

 # trap the error if it’s not an object
 unless (eval { $birthdate->isa(‘DateTime’) }) {
 croak “Person birthdate must be a DateTime object”;
 }
 $self->{name} = $name;
 $self->{birthdate} = $birthdate;
}

sub name { $_[0]->{name} }
sub birthdate { $_[0]->{birthdate} }

sub age {
 my $self = shift;
 my $duration = DateTime->now - $self->birthdate;
 return $duration->years;
}

1;

That’s much longer and harder to read. Further, the more attributes you have, the shorter the Moose
code tends to be in comparison to the standard OO code. That’s why you often see many programmers
creating their objects like this:

sub new {
 my ($class, $arg_for) = @_;
 return bless {
 name => $arg_for->{name},
 birthdate => $arg_for->{birthdate},
 }, $class;
}

That works if, and only if, the person using your class never messes up and passes in the wrong data.
With Moose, you have a simple, declarative interface, and it’s much easier to use.

ADVANCED MO OSE SYNTAX

In a few short pages, you’ve seen Moose and how easy it is to create objects with it. We’ve also
mentioned several times that there are “advanced” features of Moose. What we’ve already covered
deals primarily with using Moose to easily replicate what you can do with standard Perl classes.

c13.indd 413c13.indd 413 8/9/12 2:09 PM8/9/12 2:09 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

414 ❘ CHAPTER 13 MOOSE

The advanced features will show you how easy it is to have full control over your class behavior
with very little code.

Using Type Constraints

When you declare an attribute, you can also declare what type it is:

package Hand;

use Moose;

has ‘fingers’ => (
 is => ‘ro’,
 isa => ‘Int’,
 required => 1,
);

Now presumably, your Hand can’t have less than zero fi ngers. You could write a BUILD method and
validate that your object has zero or more fi ngers, but you really don’t want to do that for every class
where you need to assert a non-negative integer. So you can use Moose::Util::TypeConstraints
to create a custom type:

package Hand;

use Moose;
use Moose::Util::TypeConstraints;

use namespace::autoclean;

subtype ‘NonNegativeInteger’
 => as ‘Int’
 => where { $_ >= 0 }
 => message { “A Hand must have 0 or more fingers, not $_” };

has ‘fingers’ => (
 is => ‘ro’,
 isa => ‘NonNegativeInteger’,
 required => 1,
);

__PACKAGE__->meta->make_immutable;
1;

With that subtype, when you try to create an object with fewer than 0 fi ngers:

Hand->new(fingers => -3);

You get a useful error message (with a stack trace that I’ve omitted):

Attribute (fingers) does not pass the type constraint because:
 A Hand must have 0 or more fingers, not -3 at ...

c13.indd 414c13.indd 414 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 415

To create your own subtypes, you use the Moose::Util::TypeConstraints module to add a few
new helper functions to your code.

A subtype is a more specifi c version of an existing type. In this case, it’s a more specifi c version of an
Int (integer). That’s what the as => ‘Int’ is for.

subtype ‘NonNegativeInteger’
 => as ‘Int’
 => where { $_ >= 0 }
 => message { “You must provide an integrer> 0, not $_” };

The where { ... } is a code block that is executed with $_set to the supplied value of the attribute.
If it returns false, the type check fails and the optional message { ... } is displayed. If you don’t
supply the message, the error can be rather confusing:

Attribute (fingers) does not pass the type constraint because:
 Validation failed for ‘__ANON__’ with the value -3 ...

However, what you actually want to do is create your own type library so that you can share these
types across your various classes. It’s recommended that you do two things:

 ➤ Put all your subtypes in one package that you use.

 ➤ Name yoursubtypes so that they won’t confl ict with other subtypes.

Say that you work for a company named My Company. Customers must be 18 years old or older,
so you must create a subtype to handle that. Here’s one way to create the type package (code fi le
lib/My/Company/Moose/Types.pm):

package My::Company::Moose::Types;

use Moose::Util::TypeConstraints;
use DateTime;

subtype ‘MyCompany:NonNegativeInteger’
 => as ‘Int’
 => where { $_ >= 0 }
 => message { “You must provide a non-negative integer, not $_” };

subtype ‘MyCompany:18orOlder’
 => as ‘DateTime’
 => where { (DateTime->now - $_)->years >= 18 }
 => message {
 my $age = (DateTime->now - $_)->years;
 “DateTime supplied must be 18 years old or older, not $age years”
 };

1;

c13.indd 415c13.indd 415 8/9/12 2:09 PM8/9/12 2:09 PM

416 ❘ CHAPTER 13 MOOSE

Now you create a little test program for it (code fi le listing_11_1_age.pl):

{
 # remember that the package declaration is lexically scoped,
 # so the brackets around this package keep it separate from
 # the rest of your code
 package Person;

 use Moose;
 use DateTime;
 use My::Company::Moose::Types;

 has ‘name’ => (
 is => ‘ro’,
 isa => ‘Str’,
 required => 1,
);

 has ‘age’ => (
 is => ‘ro’,
 isa => ‘MyCompany:18orOlder’,
 required => 1,
);
}

my $youngster = Person->new(
 name => ‘Youngster’,
 age => DateTime->new(
 year => 2000,
 month => 1,
 day => 1,
),
);

When you run that, it generates an error similar to the following (at the time the author
wrote this):

 Attribute (age) does not pass the type constraint because:
 DateTime supplied must be 18 years old or older, not 12 years at ...

NOTE The names of the sample subtypes are My:CompanyNonNegativeInteger

and MyCompany:18orOlder. Neither of those is a valid package name, but that’s

okay. Just make sure that your names don’t confl ict with anything else.

c13.indd 416c13.indd 416 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 417

Using Method Modifi ers

One interesting feature of Moose is the concept of method modifi ers. These are subroutines that
you can attach to existing Moose subroutines to add to or alter behavior. You have already seen the
around and override modifi ers. There are also before, after, augment, and inner modifi ers.

The before and after Modifi ers

As you might expect, the before modifi er runs before the method is called. Sometimes you want
additional checks on methods that may not make sense for a type constraint, or a subclass may have
different checks from another subclass. A before modifi er can make life simpler. The modifi er is
passed the same arguments as the original method, for example:

before ‘buy_item’ => sub {
 my ($self, $item) = @_;
 if ($item->is_age_restricted
 && $self->age < $self->locale->minimum_age_to_purchase($item))
 {
 my $name = $self->name;
 my $item_name = $item->name;
 croak “$name is not old enough to buy $item”;
 }
}; # don’t forget that trailing semicolon!

Note that unlike the example with around and override, you do not need to explicitly call the
actual method. The before modifi er is called automatically before the modifi ed method is called.
Also, any changes made to @_ are ignored, as is any return value from the modifi er.

NOTE You may have been curious about this construct:

my $age = (DateTime->now - $_)->years;

Chapter 12 showed how subtracting one DateTime object from another returns

a DateTime::Duration object. The Exercises for Chapter 12 showed how to

use the years() method with DateTime::Duration to determine the number

of years the duration represents. When you wrap parentheses around expres-

sions, the code inside of the parentheses is executed, and the return value is

substituted for the parentheses, making the code more or less equivalent to the

following:

my $duration = DateTime->now - $_;
my $age = $duration->years;

This type of code is moderately common with experienced Perl hackers, and

you will see it in Comp code, so it seemed appropriate to twist your brain a little

more at this time.

c13.indd 417c13.indd 417 8/9/12 2:09 PM8/9/12 2:09 PM

418 ❘ CHAPTER 13 MOOSE

The after modifi er behaves similarly to the before modifi er and runs immediately after the execu-
tion of the method:

after ‘buy_item’ => sub {
 my ($self, $item) = @_;
 if ($item->is_age_restricted) {
 $self->log_purchase($item);
 }
};

As with the before modifi er, changes to @_ are ignored, as is the return value.

The augment/inner Pair

The augment and inner modifi ers work together and are the two modifi ers that Perl programmers
get the most confused about. Effectively, they let you call the parent method instead of the child
method. The parent is responsible for calling the child methods for you. Or to put it another way: It
sort of inverts the inheritance tree. Got that?

No, you may not have gotten that, so let’s go with an example.

When you have a name attribute, it can be kind of hard to stop someone from setting a name to
dsn334548h21234;& and, in fact, there’s a good chance you don’t want to do that. Some people
have names that are just numbers, or unpronounceable symbols, or perhaps written in a character
set you don’t recognize. More important, getting a name wrong is common and tends not to be
disastrous.

Calculating the payroll wrong would be disastrous, however, so you might want a bit more protec-
tion for the salary() method. When you create an Employee class and you’ve designed it to be
subclassed, there might be a variety of subclasses that implement the salary() method in different
ways. Now look at how someone writing payroll code might calculate the payroll:

my @employees = $company->get_employees;
my $month = $company->get_fiscal_month;
my $payroll = 0;

foreach my $employee (@employees) {
 $payroll += $employee->salary($month);
}

The @employees array might contain a wide variety of different payroll subclasses, including
Employee::Standard, Employee::Manager, Employee::Consultant, and so on. Each of those
might have salary methods that behave differently, such as Employee::Consultant returning a
Salary::External object, Employee::Standard expecting to receive “hours worked” instead of a
fi scal month, and a completely different subclass with a bug returning a negative salary if the month
is February.

In short, you don’t want the salary() method to be wrong. This is how you might implement
salary() in your Moosifi ed (your author should trademark that term) Employee base class, using
the inner() function.

c13.indd 418c13.indd 418 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 419

package Employee;

use Moose;

lots of code omitted

sub salary {
 my ($self, $fiscal_month) = @_;
 unless ($fiscal_month->isa(‘Fiscal::Month’)) {
 croak “Argument to salary() must be a Fiscal::Month object”;
 }
 my $salary = inner(); # this calls the child version of salary()
 if (ref $salary or $salary < 0) {
 croak “Salary must be a non-negative number: $salary”;
 }
 return $salary;
}

The inner() function calls your subclass implementation of salary() and that must be declared
with augment():

package Employee::Manager.

use Moose;
extends ‘Employee’;

lots of code omitted

augment ‘salary’ => sub {
 my $self = shift;
 # lots of code
 return $salary;
};

Assuming all subclasses properly declared salary() with augment, when you call $employee->
salary, regardless of what subclass you use, you get the superclass Employee::salary() method,
and it calls inner() to call the augmented salary method in the child class, passing it the same
 arguments that you passed to salary(). You can have program pre- and post-conditions into your
salary() method to verify that you are not accepting or returning incorrect values.

NOTE Those of you with a computer science background may recognize

augment/inner as implementing a technique known as Design by Contract. See

http://en.wikipedia.org/wiki/Design_by_contract for more details.

If you want to use this technique with non-Moose classes, you can have this in your Employee class:

sub salary {
 my ($self, $fiscal_month) = @_;
 unless ($fiscal_month->isa(‘Fiscal::Month’)) {
 croak “Argument to salary() must be a Fiscal::Month object”;

c13.indd 419c13.indd 419 8/9/12 2:09 PM8/9/12 2:09 PM

http://en.wikipedia.org/wiki/Design_by_contract

420 ❘ CHAPTER 13 MOOSE

 }
 my $salary = $self->_salary($fiscal_month); # inner()
 if (ref $salary or $salary < 0) {
 croak “Salary must be a non-negative number: $salary”;
 }
 return $salary;
}

And in your documentation, explain that all subclasses must implement salary() as _salary()
(note the leading underscore).

Understanding and Using Roles

A role provides additional methods for a class, along with listing methods it requires to implement
those methods. Effectively, it’s a named set of methods that you can’t use independently but a class
can include to provide extra behavior. In fact, multiple unrelated classes can use the same role or
roles to provide identical behavior. There are several implementations in Perl, but the most common
is Moose::Role. It’s a fairly advanced technique, but it’s powerful enough that you should take some
time to understand it.

Generally speaking, the set of methods a role provides should be something that the class might
provide but is not inherent to the class’s expert knowledge. For example, with a Person class, she
may have a name, a birthdate, and be able to “talk.” But should a person intrinsically know how to
serialize herself with an as_json() method? Probably not, but you’ll notice that the TV::Episode
classes and subclasses all had the capability to serialize themselves as strings with an as_string()
method. In fact, many completely unrelated classes might have an as_json() method, so it’s a
perfect candidate to put into a role.

NOTE Though not covered extensively inthis book, JSON, short for JavaScript

Object Notation, is a popular method of serializing data, converting it to a format

that can be shared or stored. It is formally described at http://www.json.org/,

but the Wikipedia article gives better examples: http://en.wikipedia.org/

wiki/Json.

For the examples that require theJSON module, you need to install it from the CPAN.

Basic Roles

A class that uses one or more roles is said to consume those roles. As for the roles, they are defi ned
by the methods they require the class to provide and the methods the role provides to the class.
Here’s how your role providing the as_json() method might look:

package Role::Serializable::JSON;

use Moose::Role;
use JSON ‘encode_json’;

c13.indd 420c13.indd 420 8/9/12 2:09 PM8/9/12 2:09 PM

http://www.json.org/
http://en.wikipedia.org/wiki/Json
http://en.wikipedia.org/wiki/Json

Advanced Moose Syntax ❘ 421

you can list multiple methods here

requires qw(
 serializable_attributes
);

sub as_json {
 my $self = shift;
 my %object = map { $_ => $self->$_ } $self->serializable_attributes;
 return encode_json(\%object);
}

1;

This role requires the consuming class to have a method named serializable_attributes(). If
the class does not have this method, your class throws an error similar to:

‘Role::Serializable::JSON’ requires the method
‘serializable_attributes’to be implemented by
‘Some::Class::Name’

This error will be thrown at compile time. No more 2:30 A.M. frantic phone calls from work about
Method Not Found errors!

NOTE A role might have only a requires section and provide no methods.

When it does, it’s what other languages defi ne as an interface: It guarantees

that any class consuming the role has a well-defi ned set of methods the class

provides.

The Role::Serializable::JSON method provides the as_json() method to the class.
However, the encode_json() function, imported into the role namespace, will not be provided.

A class consuming this role may look like this:

package Soldier;

use Moose;
use namespace::autoclean;
with “Role::Serializable::JSON”;

has ‘name’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘rank’ => (is => ‘ro’, isa => ‘Str’, required => 1);

sub serializable_attributes {
 return qw(name rank);
}

__PACKAGE__->meta->make_immutable;

1;

c13.indd 421c13.indd 421 8/9/12 2:09 PM8/9/12 2:09 PM

422 ❘ CHAPTER 13 MOOSE

And here’s a sample program:

my $soldier = Soldier->new(
 {
 name => “Schultz”,
 rank => “Sergeant”,
 }
);
print $soldier->as_json;

And that prints out the attribute key/value pairs as JSON:

{“name”:”Schultz”,”rank”:”Sergeant”}

You can reuse this role with many other classes, regardless of whether they inherit from one
another.

NOTE We’ve had a few examples of classes that have a hard-coded list of

methods. You might fi nd that annoying and so does your author. This is an

example of where metaprogramming can make your life easier. Instead of

requiring the serializable_attributes() method, you could write something

like this:

sub as_json {
 my $self = shift;
 my @attributes = map { $_->name }
 $self->meta->get_all_attributes;
 my %object = map { $_ => $self->$_ } @attributes;
 return encode_json(\%object);
}

The $self->meta call returns an instance of the metaclass for the object and the

get_all_attributes() method returns a set of attribute objects. Of course, you

might wonder if some of those should not be serialized into a JSON data struc-

ture (such as a password attribute). Metaprogramming enables you

to extend your class behavior to say which data can and cannot be exposed

like this.

Also, not all attributes will have accessor methods with the same attribute name,

so this code will often work, but it’s not entirely generic.

If you use a class and want to know if the class has a particular role, you cannot use the
$object->isa($some_class) method. That’s because roles are not inherited. Instead, you
use the does() method:

print $soldier->does(‘Role::Serializable::JSON’) ? ‘Yes’ : ‘No’;

c13.indd 422c13.indd 422 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 423

That snippet prints Yes. Also, note that role methods are added directly into your class defi nition
during role composition (when you use the with() function). This is known as fl attening the
methods into your class.

Advanced Roles

Roles allow you to share behavior among unrelated classes, but if that’s all they did, they wouldn’t
be terribly exciting. After all, other languages have various strategies for accomplishing this, such as
mixins in Ruby.

Roles, however, attempt to guarantee compositional safety. This is easier to explain with an
example. Say that you are writing a game and you want to create a PracticalJoke class. When
someone walks into a room, a fuse() method is called on the PracticalJoke instance, and it
will explode() after the fuse() is done. Being a good programmer, you know that your Bomb and
Spouse classes each have fuse() and explode() methods. Table 13-1 explains their properties.

TABLE 13-1: Available methods in our parent classes

METHOD DESCRIPTION

Bomb::fuse() Burns for a fi xed amount of time

Spouse::fuse() Burns for a random amount time

Bomb::explode() Lethal

Spouse::explode() Wish it were lethal

For your practical joke, you want the Bomb::fuse() method because you want to control the time it
takes to explode, but you want the Spouse::explode()method because you don’t want to actually
kill the player. With inheritance, this is tricky and you need to set up delegates for one or the other.

package PracticalJoke;

use strict;
use warnings;

use base qw(Bomb Spouse);

sub new {
 ...
}

sub explode {
 my $self = shift;
 $self->Spouse::explode();
}

c13.indd 423c13.indd 423 8/9/12 2:09 PM8/9/12 2:09 PM

424 ❘ CHAPTER 13 MOOSE

Having to write a delegate to $self->Spouse::explode() is because you inherit from Bomb
fi rst, and if you just relied on inheritance, you would call the Bomb::explode() method and
kill your hapless player. But hard-coding class names like this is doing work that object-oriented
programming is supposed to do for you! And if you later decide to inherit from a different class
that provides an explode() method, you have to fi nd all the places where you’ve hard-coded the
Spouse::explode() method and rewrite them. This is begging for bugs, and it’s more work than
you should have to do.

Instead, assume that you want to share the Bomb and Spouse behavior with many different classes
and put them into roles:

{
 package Bomb;
 use Moose::Role;
 sub fuse { print “Bomb fuse\n” }
 sub explode { print “Bomb explode\n” }
}
{
 package Spouse;
 use Moose::Role;
 sub fuse { print “Spouse fuse\n” }
 sub explode { print “Spouse explode\n” }
}
{
 package PracticalJoke;
 use Moose;
 with qw(Bomb Spouse);
}
my $joke = PracticalJoke->new();
$joke->explode();
$joke->fuse();

If you try to run this code, you get the following error at compiletime:

Due to method name conflicts in roles ‘Bomb’ and ‘Spouse’,
the methods ‘explode’ and ‘fuse’ must be implemented or
excluded by ‘PracticalJoke’ at ...

NOTE We’ve mentioned a couple of times that certain errors with roles will

happen at compile time. This is a lie. They actually happen at composition time.

This is a Moose-specifi c term, and it happens after compile time but before your

program runs.

This error happens because Moose sees that Bomb and Spouse each provide explore() and fuse()
methods, but Moose has no way to know which you want. You can either implement the methods
yourself in your class, thus causing the corresponding role methods to be ignored, or you can
exclude the methods you don’t want, keeping only the methods you do:

c13.indd 424c13.indd 424 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 425

package PracticalJoke;
use Moose;
with ‘Bomb’ => { excludes => ‘explode’ },
 ‘Spouse’ => { excludes => ‘fuse’ };

If you make that change and rerun the code, it prints out:

Spouse explode
Bomb fuse

And that’s exactly what you were looking for.

Note that the order in which you consume the roles is not relevant (though if you have method
modifi ers on role methods, this may not be true). Further, because most developers list the roles the
class consumes at the top, a well-named set of roles can allow maintenance programmers a quick-
and-easy way to glance at a class and understand which behaviors it implements without necessarily
digging deep into an inheritance hierarchy. When you understand them, roles can make your OO
codebase easier to manage and extend.

NOTE On a somewhat controversial note, your author has built large OO

systems using only roles and no inheritance. By viewing roles as a collection of

building blocks to assemble into classes, he’s found it easy to add new behavior

safely to large systems. Others with whom he has spoken have reported similar

results. However, the idea of completely eliminating inheritance in favor of roles

is controversial, so just pretend you didn’t read this note.

To better understand roles, we recommend:

 ➤ perldoc Moose::Role

 ➤ Various role recipes in the Moose::Cookbook

 ➤ http://www.slideshare.net/Ovid/inheritance-versus-roles-1799996

Exploring MooseX

When learning Moose, you’ll sometimes fi nd that you want to do things a bit differently. We’ve
alluded to metaprogramming, but you’ll be happy to know that for many of the most common
tasks, there are modules on the CPAN that handle them for you. By convention, modules that are
“unoffi cial” extensions to other modules have an X in the name, so the unoffi cial Moose extension
modules are in the MooseX:: namespace. The ones that the core Moose team likes are described in
Moose::Manual::MooseX. We’ll cover a few of the MooseX:: modules here. These modules are not
included with Moose and must be installed separately.

c13.indd 425c13.indd 425 8/9/12 2:09 PM8/9/12 2:09 PM

http://www.slideshare.net/Ovid/inheritance-versus-roles-1799996

426 ❘ CHAPTER 13 MOOSE

MooseX::StrictConstructor

Chapter 12 often had the following bit of code at the end of the _initialize() methods to ensure
that no unknown arguments were passed to the constructor.

if (my $remaining = join ‘, ‘, keys %arg_for) {
 croak(“Unknown keys to $class\::new: $remaining”);
}

By default, Moose checks only known arguments to the constructor. However, if you have an
optional birthdate attribute and you misspell it as birtdhate, Moose assumes you didn’t supply
the birthdate and ignores the birtdhate argument. With MooseX::StrictConstructor, this
becomes a fatal error.

package Person;
use Moose;
use MooseX::StrictConstructor;
has ‘name’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘birthdate’ => (is => ‘ro’, isa => ‘DateTime’, required => 0);

And later when you do this:

Person->new(name=>’foo’, birtdhate => 1);

You get the following error:

Found unknown attribute(s) passed to the constructor: birtdhate

If you want a strong OO system, this module is highly recommended.

MooseX::Method::Signatures

The MooseX::Method::Signatures module is lovely. It gives you proper method signatures for
your methods. Your author knows of one team who is using this on high-volume BBC code, so it
may be an excellent choice if you long for the method signatures found in other languages.

NOTE A method signature is a common feature of many programming

languages. Consider the following function:

sub reciprocal {
 my $number = shift;
 return 1/$number;
}

For many languages, that would be written like this pseudo-code:

float reciprocal(int $number) {
 return 1/$number;
}

c13.indd 426c13.indd 426 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 427

From the documentation (note that this package declares no attributes):

 package Foo;
 use Moose;
 use MooseX::Method::Signatures;
 method morning (Str $name) {
 $self->say(“Good morning ${name}!”);
 }
 method hello (Str :$who, Int :$age where { $_ > 0 }) {
 $self->say(“Hello ${who}, I am ${age} years old!”);
 }
 method greet (Str $name, Bool :$excited = 0) {
 if ($excited) {
 $self->say(“GREETINGS ${name}!”);
 }
 else {
 $self->say(“Hi ${name}!”);
 }
 }
 $foo->morning(‘Resi’); # This works.
 $foo->hello(who => ‘world’, age => 42); # This too.
 $foo->greet(‘Resi’, excited => 1); # Yup.
 $foo->hello(who => ‘world’, age => ‘fortytwo’); # Nope.
 $foo->hello(who => ‘world’, age => -23); # Too bad.
 $foo->morning; # Won’t work.
 $foo->greet; # Fail!

You don’t need to declare the variables with my and you don’t need to declare $self. In your
author’s opinion, this is one of the most exciting things to happen in Perl for years. Lacking proper
subroutine and method signatures is one of the biggest complaints registered about Perl.

MooseX::SemiAff ordanceAccessor

The MooseX::SemiAffordanceAccessor module automatically names your read-write attributes as
$attribute and get_$attribute. Try running this code:

{
 package Soldier;
 use Moose;
 use MooseX::SemiAffordanceAccessor;
 has name => (is => ‘ro’, isa => ‘Str’, required => 1);
 has rank => (is => ‘rw’, isa => ‘Str’, required => 1);
}

Method signatures make it easier to see what kind of data your functions

accepts and returns. Plus, they can handle some of the data validation for you.

For languages with proper method signatures, they’ll throw an exception (or fail

to compile) if you try to pass a string to a function expecting an integer.

The MooseX::Method::Signatures module does not specify the return type.

c13.indd 427c13.indd 427 8/9/12 2:09 PM8/9/12 2:09 PM

428 ❘ CHAPTER 13 MOOSE

my $soldier = Soldier->new(
 name => “Billy”,
 rank => “Private”,
);
$soldier->set_rank(“Corporal”);
$soldier->set_name(“Barbara”);

That will fail with:

Can’t locate object method “set_name” via package “Soldier” at ...

As you can see, while a soldier’s rank is read-write, the name cannot be changed. We assume the
military is happy with this.

There are many more MooseX modules, of course, but these give you a great idea of some of the
potential out there.

Rewriting Television::Episode

Now use Moose to rewrite our TV::Episode class from Chapter 12. It looked like this:

package TV::Episode;

use strict;
use warnings;

use Carp ‘croak’;
use Scalar::Util ‘looks_like_number’;

our $VERSION = ‘0.01’;

my %IS_ALLOWED_GENRE = map { $_ => 1 } qw(
 comedy
 drama
 documentary
 awesome
);

sub new {
 my ($class, $arg_for) = @_;
 my $self = bless {} => $class;
 $self->_initialize($arg_for);
 return $self;
}

sub _initialize {
 my ($self, %arg_for) = @_;
 my %arg_for = %$arg_for;
 foreach my $property (qw/series director title/) {
 my $value = delete $arg_for{$property};

 # at least one non-space character
 unless (defined $value && $value =~ /\S/) {

c13.indd 428c13.indd 428 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 429

 croak(“property ‘$property’ must have at a value”);
 }
 $self->{$property} = $value;
 }
 my $genre = delete $arg_for{genre};
 unless (exists $IS_ALLOWED_GENRE{$genre}) {
 croak(“Genre ‘genre’ is not an allowed genre”);
 }
 $self->{genre} = $genre;
 foreach my $property (qw/season episode_number/) {
 my $value = delete $arg_for{$property};
 unless (looks_like_number($value) && $value > 0) {
 croak(“$value must have a positive value”);
 }
 $self->{$property} = $value;
 }
 if (my $extra = join ‘, ‘ => keys %arg_for) {
 croak(“Unknown keys to new(): $extra”);
 }
}
sub series { shift->{series} }
sub title { shift->{title} }
sub director { shift->{director} }
sub genre { shift->{genre} }
sub season { shift->{season} }
sub episode_number { shift->{episode_number} }

sub as_string {
 my $self = shift;
 my @properties = qw(
 series
 title
 director
 genre
 season
 episode_number
);
 my $as_string = ‘’;
 foreach my $property (@properties) {
 $as_string .= sprintf “%-14s - %s\n”, ucfirst($property),
 $self->$property;
 }
 return $as_string;
}

1;

There are many strategies you could reuse to rewrite that. For this example, embed
Moose::Util::TypeConstraints directly into your module and use an anonymous enum type for
the genre to create an IntPositive type for the episode_number and season, as shown in the
following code (code fi le TV/Episode.pm):

c13.indd 429c13.indd 429 8/9/12 2:09 PM8/9/12 2:09 PM

430 ❘ CHAPTER 13 MOOSE

package TV::Episode;

use Moose;
use MooseX::StrictConstructor;
use Moose::Util::TypeConstraints;

use namespace::autoclean;

use Carp ‘croak’;
our $VERSION = ‘0.01’;

subtype ‘IntPositive’,
 as ‘Int’,
 where { $_ > 0 };

has ‘series’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘director’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘title’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘genre’ => (is => ‘ro’, isa => ‘Genre’, required => 1);
has ‘season’ => (is => ‘ro’, isa => ‘IntPositive’, required => 1);
has ‘episode_number’ => (is => ‘ro’, isa => ‘IntPositive’, required => 1);

sub as_string {
 my $self = shift;
 my @attributes =
 map { $_->name }
 $self->meta->get_all_attributes;
 my $as_string = ‘’;
 foreach my $attribute (@attributes) {
 $as_string .= sprintf “%-14s - %s\n”,
 ucfirst($attribute),
 $self->$attribute;
 }
 return $as_string;
}

__PACKAGE__->meta->make_immutable;

1;

As you can see, this version is much shorter than the original version. In fact, if you pushed the
as_string method into a role, you could reduce the class to this:

package TV::Episode;

use Moose;
use MooseX::StrictConstructor;
use My::CustomTypes; # for Genre and IntPositive

with ‘Does::ToString’; # for the as_string method

use namespace::autoclean;

our $VERSION = ‘0.01’;

c13.indd 430c13.indd 430 8/9/12 2:09 PM8/9/12 2:09 PM

Advanced Moose Syntax ❘ 431

has ‘series’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘director’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘title’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘genre’ => (is => ‘ro’, isa => ‘Genre’, required => 1);
has ‘season’ => (is => ‘ro’, isa => ‘IntPositive’, required => 1);
has ‘episode_number’ => (is => ‘ro’, isa => ‘IntPositive’, required => 1);

__PACKAGE__->meta->make_immutable;

1;

As you can see, by carefully planning out your code, you can make new classes simple and easy
to build and maintain. This is why Moose has become the OO system of choice for many Perl
programmers.

Considering that the original version was almost twice as long as our revised version, and almost
four times longer than our “ideal” version, which would you rather write?

TRY IT OUT Rewrite Television::Episode::Broadcast with Moose

You might recall the old version of TV::Episode::Broadcast. All the code in this Try It Out is in the
code fi le TV/Episode/Broadcast.pm.

package TV::Episode::Broadcast;
use strict;
use warnings;
use Try::Tiny;
use Carp ‘croak’;
use base ‘TV::Episode’;
sub _initialize {
 my ($self, $arg_for) = @_;
 my %arg_for = %$arg_for;
 my $broadcast_date = delete $arg_for{broadcast_date};
 try {
 $broadcast_date->isa(‘DateTime’) or die;
 }
 catch {
 croak(“broadcast_date requires a DateTime object”);
 };
 $self->{broadcast_date} = $broadcast_date;
 $self->SUPER::_initialize(\%arg_for);
}
sub broadcast_date { shift->{broadcast_date} }
sub as_string {
 my $self = shift;
 my $episode = $self->SUPER::as_string;
 my $date = $self->broadcast_date;
 $episode .= sprintf “%-14s - %4d-%2d-%2d\n”
 => ‘Broadcast date’,
 $date->year,
 $date->month,
 $date->day;
 return $episode;
}
1;

c13.indd 431c13.indd 431 8/9/12 2:09 PM8/9/12 2:09 PM

432 ❘ CHAPTER 13 MOOSE

With Moose, that is tremendously simplifi ed. We’ll go ahead and extend our Moosifi ed version
to TV::Episode.

1. Type in the following class and save it as lib/TV/Episode/Broadcast.pm.

package TV::Episode::Broadcast;
use Moose;
use namespace::autoclean;
extends ‘TV::Episode’;
has ‘broadcast_date’ => (
 is => ‘ro’,
 isa => ‘DateTime’,
 required => 1,
);
__PACKAGE__->meta->make_immutable;
1;

2. Type in the following program and save it as example_13_2_episode.pl.

use strict;
use warnings;
use DateTime;

use lib ‘lib’;
use TV::Episode;
use TV::Episode::Broadcast;

my $episode = TV::Episode->new(
 {
 series => ‘Firefly’,
 director => ‘Marita Grabiak’,
 title => ‘Jaynestown’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 7,
 }
);
print $episode->as_string;
print “----\n”;

my $broadcast = TV::Episode::Broadcast->new(
 {
 series => ‘Firefly’,
 director => ‘Allan Kroeker’,
 title => ‘Ariel’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 9,
 broadcast_date => DateTime->new(
 year => 2002,
 month => 11,
 day => 15,
),
 }
);
print $broadcast->as_string;

c13.indd 432c13.indd 432 8/9/12 2:09 PM8/9/12 2:09 PM

Moose Best Practices ❘ 433

3. Run the program with perlexample_13_2_episode.pl. You should see output similar to the
following:

Director - MaritaGrabiak
Episode_number - 7
Genre - awesome
Season - 1
Series - Firefly
Title - Jaynestown

Broadcast_date - 2002-11-15T00:00:00
Director - Allan Kroeker
Episode_number - 9
Genre - awesome
Season - 1
Series - Firefly
Title - Ariel

How It Works

This one is awesome. We’ve gone from a third-one-line version of TV::Episode::Broadcast to a
seven-line version.

In this case, the magic was adding the broadcast_date attribute and taking advantage of the following
line in our TV::Episode::as_string() method:

my @attributes = sort map { $_->name }
$self->meta->get_all_attributes;

When you subclass and call an inherited method, the metaclass returned by $self->meta is for the
subclass, not the parent class. Because the subclass inherits the superclass’s behavior, all of its attributes
are reported in the get_all_attributes() method class. This power is part of what allows you to do
things with Moose much more easily than with Perl’s built-in OO.

And for those developers who object that they now lack control over how the items in as_string() are
ordered: they’re quite right. However, there are several strategies to get around this, such as providing
an _ordered_attributes() method and overriding it in a subclass, or delving into more metapro-
gramming to allow you to attach additional information to attributes to better control their sort order.
We’ll leave that as an exercise for you.

MOOSE BEST PRACTICES

If you read perldocMoose::Manual::BestPractices, you can get a handful of best practices for
using Moose. Following them can make your code cleaner and easier to maintain. We’ll highlight a
few of them here and toss in some of our own, but remember, there’s an exception for every rule.
The key thing to remember here is that you should understand why these are best practices. If you
don’t, you will likely make bad decisions when you decide to break them.

Note that this is not an exhaustive list.

c13.indd 433c13.indd 433 8/9/12 2:09 PM8/9/12 2:09 PM

434 ❘ CHAPTER 13 MOOSE

Use namespace::autoclean and Make Your Class Immutable

A shell of all Moose classes should look like this:

package Person;
use Moose;
use namespace::autoclean;
extends, roles, attributes, etc.
methods
__PACKAGE__->meta->make_immutable;
1;

By using namespace::autoclean, you guarantee that imported functions are not accidentally
treated as methods. By making your class immutable, you gain a signifi cant performance
improvement in your code.

Never Override new()

BUILDARGS enables you to alter the argument list before calling new(), and BUILD allows you to do
validation on your object that may be diffi cult in the constructor.

Always Call Your Parent BUILDARGS Method

If you inherit from a class providing a BUILDARGS method, use super() to call that parent method.
You’ve seen this from the override() function described earlier.

Provide Defaults if an Attribute is Not Required

This is often bad:

has ‘budget’ => (is => ‘ro’, isa => ‘Num’);

If you are not going to require an attribute to be provided, your code may blow up when you try to
use the attribute value. A better strategy is to provide a default and document it:

has ‘budget’ => (is => ‘ro’, isa => ‘Num’, default => 100);

Remember that if the default is a reference, you must wrap it in an anonymous subroutine:

has ‘birthday’ => (
 is => ‘ro’,
 isa => ‘DateTime’,
 default => sub { DateTime->now });

Default to Read-Only

Generally you want your attributes to be read-only. This makes it much harder for someone to
change the state of the object to something invalid later on. Sometimes, though, your class needs
to change the attribute value internally, so make a private “writer”:

c13.indd 434c13.indd 434 8/9/12 2:09 PM8/9/12 2:09 PM

Moose Best Practices ❘ 435

has ‘budget’ => (
 is => ‘ro’,
 isa => ‘Num’,
 writer => ‘_set_budget’,
);

Put Your Custom Types in One Module and Give Them
a Namespace

subtype ‘My::Company::NonNegativeInteger’
 => as ‘Int’
 => where { $_ >= 0 }
 => message { “A Hand must have 0 or more fingers, not $_” };

By doing this, it’s easy to fi nd the types and manage them. Also, by adding a custom My::Company::
prefi x to the subtype name, you are less likely to confl ict with another subtype of the same name.

Don’t Use Multiple Inheritance

Use roles instead.

If you feel that you must use multiple inheritance to solve a problem, pull out the code you want to
share, and put it in a role. The extra class (or classes!) you want to inherit from should now use that
role, and the new class you are writing can use that role, too. This should make your code much
easier to maintain and avoids bugs in inheritance order and accidentally overriding methods you did
not mean to override.

Always Consume All Your Roles at Once

It’s perfectly legal to do this:

package Foo;
use Moose;
with ‘RoleA’;
with ‘RoleB’;

But what happens if both RoleA and RoleB provide a discharge() method? Well, RoleA will pro-
vide the discharge() method and RoleB’s discharge() method will be silently ignored. This is
because when you consume a role, Moose assumes that your class’s methods take precedence over
role methods. Thus, when RoleA’sdischarge() method is added to your class, by the time you
consume RoleB, Moose sees that your Foo class already has a discharge() method and ignores the
one from RoleB.

Instead, be explicit about what you want:

package Foo;
use Moose;
with ‘RoleA’ => { excludes => “discharge” },
 ‘RoleB’;

c13.indd 435c13.indd 435 8/9/12 2:09 PM8/9/12 2:09 PM

436 ❘ CHAPTER 13 MOOSE

Even if you actually did want to exclude the RoleB discharge method:

package Foo;
use Moose;
with ‘RoleA’,
 ‘RoleB’ => { excludes => “discharge” };

In this case, it might be functionally equivalent to consuming those roles separately; it’s cleaner and
self-documenting. To understand this, consider our PracticalJoke class from earlier:

package PracticalJoke;
use Moose;
with ‘Bomb’ => { excludes => ‘explode’ },
 ‘Spouse’ => { excludes => ‘fuse’ };

If you had written:

package PracticalJoke;
use Moose;
with ‘Bomb’;
with ‘Spouse’;

You may not have spotted the method confl icts and thus had your code fail in ways you did not
expect.

Consume all your roles at once, and be explicit about what you are doing.

SUMMARY

In this chapter, you’ve learned about Moose, the OO programming module that is becoming the
de facto standard for OO programming in Perl. Moose allows you to easily declare attributes,
their types, whether they are required or read-only, what their default values are, and much more.
The type constraints in Perl are easily extended, and you can share behavior between unrelated
classes with roles. Classes are easier to write, easier to read, and easier to maintain.

Your author has been known to write non-Moose classes from time to time, but that’s the excep-
tion rather than the rule. If you want to do OO programming in Perl, you should understand Perl’s
default OO facilities, but write your classes in Moose if you have the choice.

c13.indd 436c13.indd 436 8/9/12 2:09 PM8/9/12 2:09 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Summary ❘ 437

EXERCISES

 1. Passwords are generally supplied in plain text. However, it’s a very, very bad idea to ever

store them like this. Many developers use an MD5 “digest” to rewrite the password. An MD5

digest takes a string and converts it into a series of characters that are unique to that string.

However, the process is one-way. Without using software such as rainbow tables (http://

en.wikipedia.org/wiki/Rainbow_table), you cannot get the original string back.

 Write a User class that requires a username and password, but has a BUILD method that

immediately changes the password to an MD5 digest. The Digest::MD5 module was fi rst

released with Perl 5.7.3 and its use looks like this:

use Digest::MD5 ‘md5_hex’;
my $digest = md5_hex($string);

 Make sure to include a password_eq() method to verify that a new password matches the

old password.

 Note: This example should not be considered cryptographically secure. There are some issues

with it, but hey, this isn’t a book on software security!

 2. Create a role named Does::ToHash that returns a hash reference representation of an object.

It should be used only for attributes that do not return a reference. Have your User class from

exercise 1 consume this role and print out the resulting object.

 Note that Moose automatically provides a dump() method ($user->dump) to do this for you. This

exercise is to help you learn how to create roles.

c13.indd 437c13.indd 437 8/9/12 2:09 PM8/9/12 2:09 PM

http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table

438 ❘ CHAPTER 13 MOOSE

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Moose A powerful object system available from the CPAN.

Attributes Basic pieces of data used by your classes.

BUILDARGS A method to override how arguments are supplied to new().

BUILD A method to validate your classes after construction.

extends The keyword to use to inherit from another Moose class.

subtype The keyword to declare new type constraints in Moose.

before/after Method modifi ers called before and after methods.

around A special modifi er used to wrap a Moose method.

augment/inner Special modifi ers that allow a parent class full control over a method’s

behavior.

Roles A new, improved way to share behavior among classes.

MooseX:: The default namespace for modules that extend Moose’s capabilities.

c13.indd 438c13.indd 438 8/9/12 2:09 PM8/9/12 2:09 PM

#
 Testing

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding basic tests

 ➤ Learning the Test::More module in depth

 ➤ Using diff erent testing modules

 ➤ Understanding xUnit style testing

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ lib/TestMe.pm

 ➤ t/testit.t.pm

 ➤ lib/TestQuery.pm

 ➤ t/query.t

 ➤ lib/Person.pm

 ➤ t/test_classes.t

 ➤ t/test_classes.t

 ➤ t/lib/TestsFor/Person.pm

 ➤ lib/Customer.pm

 ➤ t/lib/TestsFor/Customer.pm

 ➤ lib/TV/Episode.pm

14

c14.indd 439c14.indd 439 09/08/12 9:27 AM09/08/12 9:27 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://wrox.com
http://WROX.COM

440 ❘ CHAPTER 14 TESTING

The author recently downloaded and built Perl version 5.15.9. All 521,047 tests passed. That’s
right: Perl ships with more than a half-million tests. Not all of them are perfect, and sometimes they
verify that a feature works the way it was written and not the way that was intended, but it’s still an
incredible number. Few programming languages ship with more than a half-million tests. Testing
your software is easy, and the Perl community is keen on testing. A few years ago, some people still
argued against testing, but today professional Perl developers test more often than not.

BASIC TESTS

Consider the following line of code:

sub reciprocal { return 1 / shift }

Because the reciprocal of a number is 1 divided by that number, this looks like the canonical
 defi nition of a reciprocal. What could possibly go wrong?

When developers write tests, they often write a test to verify that the code does what it is supposed
to do when the input is correct, but they don’t think about incorrect input. So what happens if you
pass reciprocal() a string? Or a hash reference? Or a zero? There are a variety of subtleties here
that you may or may not care about, so let’s delve into them.

 Using Test::More

The standard testing module for Perl is Test::More, fi rst released in Perl version 5.6.2. Test::More
exports many helpful functions into your namespace, enables you to set the test plan (the number of
tests), and makes writing tests simple. A basic test script might look like this:

use strict;
use warnings;
use Test::More tests => 3;
ok 7, ‘7 should evaluate to a true value’;
is 5 - 2, 3, ‘... and 5 - 2 should equal three’;
ok 0, ‘This test is designed to fail’;

The tests => 3 arguments to Test::More is called the plan. In this case, it states that you will run
three tests. If you run fewer tests or more tests than the number of tests planned, even if all of them
pass, the test script reports a failure.

The ok() and is() functions are each considered a single test. Thus, you have three tests in the
 preceding test script (two ok() and one is()), which are explained in a bit.

If you run this snippet of code, you should see the following output:

1..3
ok 1 - 7 should evaluate to a true value
ok 2 - ... and 5 - 2 should equal three
not ok 3 - This test is designed to fail
Failed test ‘This test is designed to fail’
at some_test_script.t line 7.
Looks like you failed 1 test of 3.

c14.indd 440c14.indd 440 09/08/12 9:27 AM09/08/12 9:27 AM

Basic Tests ❘ 441

The 1..3 bit in the output is from the plan you asserted in the code. It means “we’ll be running
three tests.”

Each line of test output is in this form:

ok $test_number - $test_message

Or:

not ok $test_number - $test_message;

Any line beginning with a # is called a diagnostic and should be a human readable message to help
you fi gure out what your tests are doing. It is ignored for purposes of considering whether tests
passed or failed.

NOTE The test output format is the Test Anything Protocol, also known as

TAP. It’s designed to be both readable by both humans and machines. If you’re

 curious about this protocol, see http://www.testanything.org/.

WARNING The message for each test is optional. You could have written this:

ok 7;
is 5 - 2, 3;
ok 0;

However, if you do that, your test output looks like this:

1..3
ok 1
ok 2
not ok 3
Failed test at some_test_script.t line 7.
Looks like you failed 1 test of 3.

Needless to say, this makes it much harder to read the test output and under-

stand what is going on. Always provide a clear test message for each test.

As you write tests, it can be annoying to constantly update the test plan every time you add or
delete tests, so you can state no_plan as the plan. (Note that we’re adding parentheses to these test
functions just to remind you that you can use them if you prefer them.)

use strict;
use warnings;
use Test::More ‘no_plan’;

c14.indd 441c14.indd 441 09/08/12 9:27 AM09/08/12 9:27 AM

http://www.testanything.org/

442 ❘ CHAPTER 14 TESTING

ok(7, ‘7 should evaluate to a true value’);
is(5 - 2, 3, ‘... and 5 - 2 should equal three’);
ok(0, ‘This test is designed to fail’);

When you run this, you see the following:

ok 1 - 7 should evaluate to a true value
ok 2 - ... and 5 - 2 should equal three
not ok 3 - This test is designed to fail
Failed test ‘This test is designed to fail’
at /var/tmp/eval_3qMq.pl line 7.
1..3
Looks like you failed 1 test of 3.

The plan, 1..3, now appears at the end of the test output. If you like numeric plans, then you
should switch no_plan to tests => $number_of_tests when you fi nish writing your test code.

As a recommended alternative, if you use Test::More version 0.88 or better, you can do this:

use Test::More;
write a bunch of tests here
done_testing;

With done_testing() at the end of your test script, if the program exits prior to calling
done_testing(), you get an error, even if all tests pass. This lets you know whether your tests have
completed successfully. If you run the following script with a new enough version of Test::More:

use strict;
use warnings;
use Test::More;
ok(7, ‘7 should evaluate to a true value’);
is(5 - 2, 3, ‘... and 5 - 2 should equal three’);
exit; # oops!
ok(0, ‘This test is designed to fail’);
done_testing;

You should get the following output:

ok 1 - 7 should evaluate to a true value
ok 2 - ... and 5 - 2 should equal three
Tests were run but no plan was declared and done_testing() was not seen.

You are recommended to install the latest version of Test::More from the CPAN. It’s part of the
Test::Simple distribution.

Writing Your Tests

As you work your way through this chapter, you start with a simple package named TestMe. You
test it with a test script named testit.t. By convention, test scripts in Perl end with a .t extension.

c14.indd 442c14.indd 442 09/08/12 9:27 AM09/08/12 9:27 AM

Basic Tests ❘ 443

The TestMe package will, of course, be in lib/TestMe.pm. Test scripts, however, usually live in the
t/ directory. Your directory structure should look like this:

lib/
|--TestMe.pm
t/
|--testit.t

Start by creating lib/TestMe.pm like this (code fi le lib/Test.pm):

package TestMe;

use strict;
use warnings;

use Exporter::NoWork;

sub reciprocal { return 1 / shift }

1;

The Exporter::NoWork module is similar to Exporter, but it automatically allows exporting of
functions in your package that do not start with an underscore. (You need to install it from the
CPAN.) You don’t always want all functions exportable, but for these testing examples, it’s perfect
for your needs.

And code fi le t/testit.t should look like this:

use strict;
use warnings;
use Test::More;

use lib ‘lib’;
Exporter::NoWork used the :ALL tag to import all functions
use TestMe ‘:ALL’;

ok 1, ‘this is a test!’;

done_testing;

You add to both the TestMe package and the testit.t script as you work through the chapter.

Understanding the prove Utility

The Test::More distribution is used to test your modules. (Actually, it’s a convenient wrapper
around the Test::Builder module.) Test::More generates TAP output. However, something
called the Test::Harness can run the test programs, read the TAP output, and determine if the
tests pass or fail. Many large software systems can have tens of thousands of tests spread over
hundreds of fi les. You don’t want to run all those by hand, but you can use tools shipped with
Test::Harness to do this.

c14.indd 443c14.indd 443 09/08/12 9:27 AM09/08/12 9:27 AM

444 ❘ CHAPTER 14 TESTING

One of the most useful utilities included with Test::Harness is the prove utility. From now on, you
use this to run your test scripts:

$ prove -l -v t/testit.t
t/testit.t ..
ok 1 - this is a test!
1..1
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs
Result: PASS

The -l switch to prove says “our code is in the lib/ directory” (this is redundant in this case
because you have use lib ‘lib’ in your test script) and the -v tells prove to use verbose output.
Note that the bottom line says Result: PASS. If you have many tests, you can just glance at that
output at the bottom of the test to see if it passed or failed.

Without the -v switch, you would see this:

t/testit.t .. ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs
Result: PASS

For a single test script, you probably want to run it verbosely, but for multiple test scripts, leaving
the -v switch off of the prove command can make the output easier to read:

$ prove -l t
t/01get_tag.t ok
t/01get_token.t ok
t/02munge_html.t ... ok
t/03constructor.t .. ok
t/04internals.t ok
t/pod-coverage.t ... ok
t/pod.t ok
All tests successful.
Files=7, Tests=188, 0 wallclock secs
Result: PASS

UNDERSTANDING TEST::MORE TEST FUNCTIONS

Now that you covered some of the basics of how testing works, it’s time to write some tests. There
are many testing modules out there, but the section goes through some of the more popular testing
functions from the Test::More module.

NOTE Your author, in addition to writing the book, is also the author of the

Test::Harness module that ships with the Perl language. (It’s maintained by his

good friend Andy Armstrong.) There might be truth in the rumor that your author

is a testing bigot.

c14.indd 444c14.indd 444 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding Test::More Test Functions ❘ 445

Using ok

The ok() function is the most basic test function in Perl. The Test::More module automatically
exports ok() and its syntax looks like this:

ok $true_or_false_expression, $optional_message;

The ok() function takes a single argument or expression and tests it for “truth.” The test passes if
the fi rst argument is true:

ok 1;
ok “Hi there. I’m true!”, “This is a silly test”;

And it fails if the fi rst argument is false:

my $balrog;
ok $balrog, ‘You shall not pass!’;

In your t/testit.t script, add the following line, replacing the useless ok 1 test:

ok reciprocal(2), ‘The reciprocal of 2 should be true’;

If you run that script with prove -lv t/testit.t, you should see the following output:

t/testit.t ..
ok 1 - The reciprocal of 2 should be true
1..1
ok
All tests successful.
Files=1, Tests=1, 0 wallclock secs
Result: PASS

Congratulations! You’ve written your fi rst successful test.

Using is

Obviously, checking that reciprocal(2) returns a true value is not useful. You want to ensure that
it returns the correct value. You can do this with the is() function. Its syntax looks like this:

is $have, $want, $message;

The $have variable contains the value that you have, and $want is the value you expect to receive.
Instead of replacing your ok test, just add another test after it:

is reciprocal(2), .5, ‘The reciprocal of 2 should be correct’;

Using the prove utility should now generate the following output:

t/testit.t ..
ok 1 - The reciprocal of 2 should be true
ok 2 - The reciprocal of 2 should be correct

c14.indd 445c14.indd 445 09/08/12 9:27 AM09/08/12 9:27 AM

446 ❘ CHAPTER 14 TESTING

1..2
ok
All tests successful.
Files=1, Tests=2, 0 wallclock secs
Result: PASS

Now write another test, but this time force it to fail:

is reciprocal(3), .5, ‘The reciprocal of 3 should be correct’;

If you add that after your fi rst two tests, your test script should now look like this:

use strict;
use warnings;
use Test::More;
use lib ‘lib’;
use TestMe ‘:ALL’;
ok reciprocal(2), ‘The reciprocal of 2 should be true’;
is reciprocal(2), .5, ‘The reciprocal of 2 should be correct’;
is reciprocal(3), .5, ‘The reciprocal of 3 should be correct’;
done_testing;

And running that produces:

t/testit.t ..
ok 1 - The reciprocal of 2 should be true
ok 2 - The reciprocal of 2 should be correct
not ok 3 - The reciprocal of 3 should be correct
1..3
Failed test ‘The reciprocal of 3 should be correct’
at t/testit.t line 9.
got: ‘0.333333333333333’
expected: ‘0.5’
Looks like you failed 1 test of 3.
Dubious, test returned 1 (wstat 256, 0x100)
Failed 1/3 subtests
Test Summary Report

t/testit.t (Wstat: 256 Tests: 3 Failed: 1)
 Failed test: 3
 Non-zero exit status: 1
Files=1, Tests=3, 1 wallclock secs
Result: FAIL
shell returned 1

NOTE The diagnostics in the failure output may or may not appear immedi-

ately after the test failure. This is because the normal test output is sent to

the computer’s standard out (STDOUT), whereas your diagnostics are sent to

 standard error (STDERR). Because of how most operating systems work, those

are not guaranteed to be in synch.

c14.indd 446c14.indd 446 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding Test::More Test Functions ❘ 447

So you focus on the test failure:

Failed test ‘The reciprocal of 3 should be correct’
at t/testit.t line 9.
got: ‘0.333333333333333’
expected: ‘0.5’
Looks like you failed 1 test of 3.

The failure output tells you what you $have (the got: line) and what you $want (the expected:
line). This makes it easier to diagnose problems.

In this case, you might fi nd it annoying (not to mention error-prone) to type 0.333333333333333
for the $want variable. That’s when choosing an appropriate level of rounding and using the
sprintf function can help. You can use this to easily make the test pass:

use strict;
use warnings;
use Test::More;
use lib ‘lib’;
use TestMe ‘:ALL’;
ok reciprocal(2), ‘The reciprocal of 2 should be true’;
is reciprocal(2), .5, ‘The reciprocal of 2 should be correct’;
is sprintf(“%.4f”, reciprocal(3)), .3333,
 ‘The reciprocal of 3 should be correct’;
done_testing;

If you want those in synch, you can pass the --merge switch to prove:

prove -v --merge t/testit.t

That attempts to “merge” the STDOUT and STDERR output streams to make

everything come out at the same time. It should be considered an experimental

feature, and if something else in your software prints something to STDERR

(or STDOUT, for that matter), the test harness may have trouble interpreting

the output.

NOTE The sprintf() trick is also useful when you have fl oating point issues.

For example, the following code, using the printf analogue to sprintf prints

0.41999999999999998446 on my computer. (The answer might be diff erent on

yours.)

printf “%.20f”, .42;
continues

c14.indd 447c14.indd 447 09/08/12 9:27 AM09/08/12 9:27 AM

448 ❘ CHAPTER 14 TESTING

Using like

Sometimes you know roughly what your data looks like, but you can’t guarantee its exact output.
That’s where the like() test function comes into play. It looks like this:

like $data, qr/$regular_expression/, $message;

In your TestMe package, add use DateTime; to the top of the module, and add the following
function:

sub order_date {
 my $today = DateTime->now->subtract(days => rand(30));
 return join ‘/’ => map { $today->$_ } qw/month day year/;
}

Use this to simulate a random order date.

The idea is that you want to output dates like 08/04/2012 for April 4th, 2012. Write a like() test
for that, adding it to testit.t as usual.

we use the /x modifier on the regex to allow whitespace to be
ignored. This makes the regex easier to read
like today(), qr{^ \d\d/\d\d/\d\d\d\d $}x,
 ‘today() should return a DD/MM/YYYY format’;

Run your testit.t script a few times. Because you’re using a random value, sometimes it might
pass, but other times it will fail with something like this:

not ok 4 - today() should return a DD/MM/YYYY format
1..4
Failed test ‘today() should return a DD/MM/YYYY format’
at t/testit.t line 11.
‘3/4/2012’
doesn’t match ‘(?x-ism:^ \d\d/\d\d/\d\d\d\d $)’
Looks like you failed 1 test of 4.

The regular expression attempts to match two digits, followed by a slash, two more digits, a slash,
and four digits. The ^ and $ anchors force the regex to match from the start to the end of the string.

This is due to how computers handle numbers internally. Using sprintf()

to guarantee a certain level of precision can make it easier to test when one

 fl oating point number is equal to another.

printf “%.5f”, .42;

And that prints:

0.42000

continued

c14.indd 448c14.indd 448 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding Test::More Test Functions ❘ 449

At the end it fails because 3/4/2012 clearly does not match the regular expression. You have two
choices: If you decide your code is correct, then you fi x the test. In this case, you decide that your
test is correct and the code is in error. (This is usually the case for failing tests.) So fi x the code:

sub order_date {
 my $today = DateTime->now->subtract(days => rand(30));
 return sprintf “%02d/%02d/%04d” =>
 map { $today->$_ } qw/day month year/;
}

Now, no matter how many times you run your tests, the tests pass.

The other choice is to decide that your test is wrong and fi x the test. The answer is not always this
obvious, so pay careful attention to test failures.

Using is_deeply

Sometimes you want to compare data structures. Consider this:

is [3, 4], [3, 4], ‘Identical array refs should match’;

That may generate an error like this:

not ok 1 - Identical array refs should match
Failed test ‘Identical array refs should match’
at some_script.t line 2.
got: ‘ARRAY(0x7fc9eb0032a0)’
expected: ‘ARRAY(0x7fc9eb026048)’

What happened? The is() functions tests whether two values are equal and, in this case, those
 values are references, not their contents. That’s where the is_deeply() function comes in.

use Test::More;
is_deeply [3, 4], [3, 4], ‘Identical array refs should match’;

That test passes because the array reference contents are identical. However, if the contents are not
identical:

is_deeply [3, 4], [3, 4, 1], ‘Identical array refs should match’;

You get an array like this:

not ok 1 - Identical array refs should match
Failed test ‘Identical array refs should match’
at some_script.t line 2.
Structures begin differing at:
$got->[2] = Does not exist
$expected->[2] = ‘1’

The is_deeply() test function walks through each data structure, in parallel, keeping track
of where it is and reports an error at the fi rst item in each structure that is different. If there

c14.indd 449c14.indd 449 09/08/12 9:27 AM09/08/12 9:27 AM

450 ❘ CHAPTER 14 TESTING

are multiple differences, it can be annoying to track them all down, but later you look at the
Test::Differences module that will make this easier.

Using SKIP

Sometimes you need to test code that should not always be run. For example, maybe some features work
only if you have a particular module installed. You can use SKIP to skip them. SKIP looks like this:

SKIP: {
 skip $why, $how_many if $some_condition;
 # tests
}

And if $some_condition is true, skip()prints out several “successful” test lines (matching
$how_many) and the rest of the block will be skipped. Here’s a concrete example:

SKIP: {
 skip “Don’t have an internet connection”, 2
 unless have_internet_connection();
 my $website;
 ok $website = get_website($some_site),
 ‘We should be able to get the website’;
 is $website->title, ‘Some Title’,
 ‘... and the title should be correct’;
}

And assuming that have_internet_connection() returns false, you get output similar to the
following:

ok 1 # skip Don’t have an internet connection
ok 2 # skip Don’t have an internet connection

Using TODO

Maybe you have a feature that you haven’t completed writing, but you still want to write tests for
it without necessarily having the test suite fail. You can do this with a SKIP test, but that’s not quite
what you want. Instead, you want the tests to be run, but not have their failures make the entire
test suite fail. Use a TODO test for that. The structure looks like this:

TODO: {
 local $TODO = ‘These tests do not work yet’;
 # some tests
}

Let’s add the following function to TestMe.

sub unique {
 my @array = @_;
 my %hash = map { $_ => 1 } @array;
 return keys %hash;
}

c14.indd 450c14.indd 450 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding Test::More Test Functions ❘ 451

And then add this to your testit.t program:

TODO: {
 local $TODO = ‘Figure out how to avoid random order’;
 my @have = unique(2, 3, 5, 4, 3, 5, 7);
 my @want = (2, 3, 5, 4, 7);
 is_deeply \@have, \@want,
 ‘unique() should return unique() elements in order’;
}

When you run your tests, you probably get an error similar to this. (The not ok and the # TODO lines are
broken over two lines here only to fi t the formatting of the book. Ordinarily they are on a single line.)

not ok 5 - unique() should return unique() elements in order
TODO Figure out how to avoid random order
Failed (TODO) test ‘unique() should return unique() elements in order’
at t/testit.t line 19.
Structures begin differing at:
$got->[0] = ‘0’
$expected->[0] = ‘2’

Perl can recognize that everything in the TODO block should not be considered a failure, even if the
test fails. When the test does pass, you see output like this:

t/testit.t ..
ok 1 - The reciprocal of 2 should be true
ok 2 - The reciprocal of 2 should be correct
ok 3 - The reciprocal of 3 should be correct
ok 4 - today() should return a DD/MM/YYYY format
ok 5 - unique() should return unique() elements in order # TODO ...
1..5
ok
All tests successful.
Test Summary Report

t/testit.t (Wstat: 0 Tests: 5 Failed: 0)
 TODO passed: 5
Files=1, Tests=5, 0 wallclock secs
Result: PASS

There is a TODO passed: 5 note in the test output footer. That helps you track down a test that
unexpectedly succeeds when it’s in a TODO block.

Using eval {}

Sometimes you want to test failures that would ordinarily kill your test program, but you would
like to keep your tests running. Consider reciprocal():. What happens when you pass a zero?
You can use eval to trap the error:

eval { reciprocal(0) };
my $error = $@;
like $error, qr{Illegal division by zero at t/testit.t},
 ‘reciprocal(0) should report an error from the caller’;

c14.indd 451c14.indd 451 09/08/12 9:27 AM09/08/12 9:27 AM

452 ❘ CHAPTER 14 TESTING

In this case, you don’t want reciprocal() to report where the error occurred but to report the
calling code that caused the error. The eval ensures that your tests can keep running, but your
test fails:

not ok 6 - reciprocal(0) should report an error from the caller
Failed test ‘reciprocal(0) should report an error from the caller’
at t/testit.t line 25.
‘Illegal division by zero at t/testit.t line 23.
‘
doesn’t match ‘(?-xism:Illegal division by zero at testit.t)’

To make the test pass, make sure that you include use Carp ‘croak’ in lib/TestMe.pm and then
fi x the reciprocal() function:

sub reciprocal {
 my $number = shift;
 unless ($number) {
 croak(“Illegal division by zero”);
 }
 return 1 / $number;
}

Rerun your tests and now they should pass.

Using use_ok and require_ok

Sometimes you want to know if you can use a module you’ve written. You’ll often see people
do this:

use_ok ‘My::Module’, ‘My::Module should load’;
require_ok ‘My::Module’, ‘My::Module should load’;

You shouldn’t use either of these; just use use module or require module as necessary. If the
use or require fails, your script will die and you’ll get a test failure reported. Without going into
long, painful technical detail, suffi ce it to say that both these functions have several problems.
People have tried to correct some of the problems with use_ok by doing this:

BEGIN {
 use_ok ‘My::Module’, ‘My::Module should load’
 or die “Cannot load ‘My::Module’”;
}

But at this point, you may as well use My::Module; because the above construct doesn’t gain
you much.

NOTE If you don’t remember the eval/$@ syntax, see the eval section

in Chapter 7.

c14.indd 452c14.indd 452 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding Test::More Test Functions ❘ 453

Working with Miscellaneous Test Functions

The can_ok function tests whether the fi rst argument (an object or class name) can execute the
methods listed in @list_of_method_names.

can_ok $package_or_class, @list_of_method_names;

No description is required because can_ok() supplies one for you. It’s the same as:

ok $package_or_class->can($method), “Package can execute $method”;

But it works for multiple methods at once.

The isa_ok function is similar, but it takes only one class name to test against:

isa_ok $object, $class;

It’s identical to:

ok $object->isa($class), “object isa $class”;

However, you don’t have to worry about wrapping it an eval and it provides the descriptive test
name for you.

The diag() function lets you spit out diagnostic messages without worrying about them interfering
with test output:

diag(“Testing with Perl $], $^X”);

If that’s in your tests, it might output something like the following when you run your tests:

Testing with Perl 5.012004 ~perl5/perlbrew/perls/perl-5.12.4/bin/perl

With well-thought-out diag() messages, if someone reports a failure in one of your modules, you can
often have them send you the complete test failure output and better understand why your code failed.

NOTE In your sample diag() message, you included the $] and $^X spe-

cial variables. These represent the Perl version and the path to the currently

 executing Perl. See perldoc perlvar for more information.

TRY IT OUT Testing a Complex Function

So far you have seen a few trivial examples of testing, but let’s look at something a little bit more real world.
Generally when you write code, you want to reuse working code from the CPAN (or some other source)
rather than write all of it yourself, but in this case, you write a simple query string parser (those extra bits
on URLs that you see after a ? sign) and test that it behaves correctly. Though query strings are relatively
simple, there are plenty of examples of broken parsers on the web, and you don’t want a broken example.

c14.indd 453c14.indd 453 09/08/12 9:27 AM09/08/12 9:27 AM

454 ❘ CHAPTER 14 TESTING

You’re not actually going to do the work of decoding the characters from RFC 3986 encoding
(http://tools.ietf.org/html/rfc3986). Let URI::Escape do that. Instead, ensure that you can
translate a query string into a data structure you can easily test against.

All the code for this Try It Out is in the code fi le lib/TestQuery.pm and t/query.t.

1. Save the following as lib/TestQuery.pm:

package TestQuery;
use strict;
use warnings;
use URI::Escape ‘uri_unescape’;
use Encode ‘decode_utf8’;
use Exporter::NoWork;
sub parse_query_string {
 my $query_string = shift;
 my @pairs = split /[&;]/ => $query_string;
 my %values_for;
 foreach my $pair (@pairs) {
 my ($key, $value) = split(/=/, $pair);
 $_ = decode_utf8(uri_unescape($_)) for $key, $value;
 $values_for{$key} ||= [];
 push @{ $values_for{$key} } => $value;
 }
 return \%values_for;
}
1;

2. Save the following test script as t/query.t:

use strict;
use warnings;
use Test::More;
use lib ‘lib’;
use TestQuery ‘:ALL’;
my $query = parse_query_string(‘name=Ovid&color=black’);
is_deeply $query, { name => [‘Ovid’], color => [‘black’] },
 ‘A basic query string parsing should be correct’;
$query = parse_query_string(‘color=blue&color=white&color=red’);
is_deeply $query, { color => [qw/blue white red/] },
 ‘... and multi-valued params should also parse correctly’;
$query = parse_query_string(‘color=blue;color=white;color=red’);
is_deeply $query, { color => [qw/blue white red/] },
 ‘... even if we are using the alternate “;” delimiter’;
$query = parse_query_string(‘remark=%28parentheses%21%29’);
is_deeply $query, { remark => [‘(parentheses!)’] },
 ‘... or URI-encoded characters’;
my $omega = “\N{U+2126}”;
$query = parse_query_string(‘alpha=%E2%84%A6’);
is_deeply $query, { alpha => [$omega] },
 ‘... and Unicode should decode correctly’;
done_testing;

When you fi nish, your directory structure should look like this, assuming you also wrote the lib/
TestMe.pm and t/testit.t programs:

c14.indd 454c14.indd 454 09/08/12 9:27 AM09/08/12 9:27 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://tools.ietf.org/html/rfc3986

Understanding Test::More Test Functions ❘ 455

lib/
|--TestMe.pm
|--TestQuery.pm
t/
|--query.t
|--testit.t

3. Run the test program with prove -v t/query.t. You should see the following output, verifying
that you have correctly parsed the query strings:

t/query.t ..
ok 1 - A basic query string parsing should be correct
ok 2 - ... and multi-valued params should also parse correctly
ok 3 - ... even if we are using the alternate “;” delimiter
ok 4 - ... or URI-encoded characters
ok 5 - ... and Unicode should decode correctly
1..5
ok
All tests successful.
Files=1, Tests=5
Result: PASS

How It Works

When you have a query string like name=value&color=blue, you want that returned in a hash
reference, such as { name => ‘value’, color => ‘blue’ }. However, what many people get wrong
is that this is a perfectly valid query string:

name=value;color=red;color=blue

The separator in that query string is a semicolon, ;, and not an ampersand, &. You also have more than
one value for color. Because you can have multiple values for each parameter, use array references and
your resulting data structure should look like this:

{
 name => [‘value’],
 color => [‘red’, ‘blue’].
}

And that’s what your parse_query_string() function does:

sub parse_query_string {
 my $query_string = shift;
 my @pairs = split /[&;]/ => $query_string;
 my %values_for;
 foreach my $pair (@pairs) {
 my ($key, $value) = split(/=/, $pair);
 $_ = decode_utf8(uri_unescape($_)) for $key, $value;
 $values_for{$key} ||= [];
 push @{ $values_for{$key} } => $value;
 }
 return \%values_for;
}

c14.indd 455c14.indd 455 09/08/12 9:27 AM09/08/12 9:27 AM

456 ❘ CHAPTER 14 TESTING

This line:

my @pairs = split /[&;]/ => $query_string;

Splits the query string on ampersands and semicolons into key value pairs.

And the body of the loop

my ($key, $value) = split(/=/, $pair);
$_ = decode_utf8(uri_unescape($_)) for $key, $value;
$values_for{$key} ||= [];
push @{ $values_for{$key} } => $value;

That splits each key/value pair on the = sign and the following line calls uri_unescape and
decode_utf8 on each key and value. Then you create an array reference if you didn’t have one,
pushing the new value onto that array reference and storing it in the %values_for hash.

The reason you need to decode_utf8 on the unescaped value is because the uri_unescape function
can decode the characters into a byte string, but you need decode_utf8 to turn that byte string into a
proper UTF-8 string. See the Unicode section in Chapter 9 for more details. You may want to remove the
decode_utf8 and run the tests again. You can examine the test failure to see the difference in behavior.

Now look at the fi rst test:

my $query = parse_query_string(‘name=Ovid&color=black’);
is_deeply $query, { name => [‘Ovid’], color => [‘black’] },
 ‘A basic query string parsing should be correct’;

In this, you parse a query string and expect two name/value pairs to be returned in a hash reference.
The is_deeply() test function does a deep check to verify that the $query returned matches the
expected data structure you supply.

Run the test with a variety of different query strings:

 ➤ color=blue&color=white&color=red

 ➤ color=blue;color=white;color=red

 ➤ remark=%28parentheses%21%29

 ➤ alpha=%E2%84%A6

The last one is rather interesting. The Greek letter Omega (�) is the Unicode code point U+2126.
Its three-byte sequence is \xe2\x84\xa6 and that gets URI encoded as %E2%84%A6. Without the
decode_utf8, the uri_unescape function would return that three octets from the URI encoding. The
uri_unescape function does not actually know about Unicode, which is why you need to decode it
manually. Thus, you want a solid test here to verify that you are properly handling Unicode in query
strings.

my $omega = “\N{U+2126}”;
$query = parse_query_string(‘alpha=%E2%84%A6’);
is_deeply $query, { alpha => [$omega] },
 ‘... and Unicode should decode correctly’;

c14.indd 456c14.indd 456 09/08/12 9:27 AM09/08/12 9:27 AM

Using Other Testing Modules ❘ 457

Now that you have a test program, can you think of other use cases you might want to handle in query
strings? What do you do if you have no value for a parameter (for example: name=&color=red)? If you
write another function that validates that your query strings have particular keys and values matching
certain parameters, how would you test that? These are the sorts of questions you need to face when
writing tests and the answers can vary depending on your needs.

USING OTHER TESTING MODULES

In reality, you could write an entire test suite using only the ok() test function. However, that
would not provide you with good diagnostic information. Instead, there are a wide variety of other
 testing functions available from Test::More (not all of which are covered in this book). However,
Test::More, while being great, is often not enough. Instead, you might want to use other testing mod-
ules that can make testing your code even easier. Some of the more popular ones are covered next.

Using Test::Diff erences

Consider the following test:

use Test::More;
my %have = (
 numbers => [3, 4],
 fields => { this => ‘that’, big => ‘bad’ },
 extra => [3, 4],
);
my %want = (
 numbers => [3, 4],
 fields => { this => ‘taht’, big => ‘bad’ },
 extra => [4, 4,],
);
is_deeply \%have, \%want, ‘have and want should be the same’;
done_testing;

And that prints out:

not ok 1 - have and want should be the same
Failed test ‘have and want should be the same’
at /var/tmp/eval_q5aW.pl line 12.
Structures begin differing at:
$got->{fields}{this} = ‘that’
$expected->{fields}{this} = ‘taht’
1..1
Looks like you failed 1 test of 1.

That tells you the items don’t match, but it tells you only the fi rst item that it found that failed to
match. And if you data structure is extremely complicated, you might dig through something like:

$got->{fields}[0][3]{some_value} = ‘that’
$expected->{fields}[0][3]{some_value} = ‘taht’

c14.indd 457c14.indd 457 09/08/12 9:27 AM09/08/12 9:27 AM

458 ❘ CHAPTER 14 TESTING

And that’s not a lot of fun. Instead, you can use the Test::Differences modules. It exports several
test functions, the most common of which is eq_or_diff(). It looks like this:

use Test::More;
use Test::Differences;
my %have = (
 numbers => [3, 4],
 fields => { this => ‘that’, big => ‘bad’ },
 extra => [3, 4],
);
my %want = (
 numbers => [3, 4],
 fields => { this => ‘taht’, big => ‘bad’ },
 extra => [4, 4,],
);
eq_or_diff \%have, \%want, ‘have and want should be the same’;
done_testing;

When you run that, you get a full diff:

not ok 1 - have and want should be the same
Failed test ‘have and want should be the same’
at /var/tmp/eval_1h4l.pl line 13.
+----+--------------------+--------------------+
| Elt|Got |Expected |
+----+--------------------+--------------------+
| 0|{ |{ |
| 1| extra => [| extra => [|
* 2| 3, | 4, *
| 3| 4 | 4 |
| 4|], |], |
| 5| fields => { | fields => { |
| 6| big => ‘bad’, | big => ‘bad’, |
* 7| this => ‘that’ | this => ‘taht’ *
| 8| }, | }, |
| 9| numbers => [| numbers => [|
| 10| 3, | 3, |
| 11| 4 | 4 |
| 12|] |] |
| 13|} |} |
+----+--------------------+--------------------+
1..1
Looks like you failed 1 test of 1.

The Elt column is the line number of the diff. The Got column is what you have, and the Expected
column is what you want. Prior to each Elt number matching an incorrect line is an asterisk
 showing which lines are different.

For extremely large data structures, it show only a range of lines and also has functions to
 customize the output.

c14.indd 458c14.indd 458 09/08/12 9:27 AM09/08/12 9:27 AM

Using Other Testing Modules ❘ 459

Using Test::Exception

You may remember how you tested a function that might die:

eval { reciprocal(0) };
my $error = $@;
like $error, qr{Illegal division by zero at t/testit.t},
 ‘reciprocal(0) should report an error from the caller’;

The Test::Exception module makes this a little bit cleaner:

use Test::Exception;
throws_ok { reciprocal(0) }
 qr{Illegal division by zero at t/testit.t},
 ‘reciprocal(0) should report an error from the caller’;

The fi rst argument to throws_ok is a subroutine reference. Because the prototype to throws_ok
is (&$;$) (see the prototypes section in Chapter 7, “Subroutines”), the fi rst argument can be a
block, { ... }, without the sub keyword in front of it.

The second argument is a regular expression compiled with the qr// builtin. This is a common
mistake:

use Test::Exception;
throws_ok { some_code() }
 /some regular expression/,
 ‘I should get the correct error’;

When you see a bare regular expression in the form of /.../, that’s executed immediately against
$_. You must use the qr// compiled form of the regular expression.

NOTE When using Test::Exception::throws_ok function (or any function that

has a & prototype), you do not use a trailing comma if you provide a block:

throws_ok { some_code() } qr/.../, $message;

You do need the trailing comma if you provide the sub keyword:

throws_ok sub { some_code() }, qr/.../, $message;

Test::Exception exports other test functions, such as dies_ok and lives_ok,

so read the documentation for a full understanding of its capabilities.

c14.indd 459c14.indd 459 09/08/12 9:27 AM09/08/12 9:27 AM

460 ❘ CHAPTER 14 TESTING

Using Test::Warn

Sometimes your code throws warnings. There are two types:

 ➤ Those generated by perl (such as the common Use of uninitialized value).

 ➤ Warnings the programmer creates. Warnings issued by perl should be dealt with and
 eliminated because those are warnings to the developer writing some code, but warnings
created by the programmer should be tested because those are warnings to the user of the
code. This is where Test::Warn comes in.

Consider the following code snippet:

sub read_config {
 my $config = shift;
 unless (-f $config && -r _) {
 carp “Cannot read ‘$config’. using default config”;
 $config = $DEFAULT_CONFIG;
 }
 # read the config
}

You can test that with Test::Warn with code like the following:

use Test::More;
use Test::Warn;
warning_is { read_config($config) }
 “Cannot read ‘$config’. using default config”,
 ‘Reading a bad config should generate a warning’;

Code might throw no warnings or multiple warnings, or you may need to test the warnings against
a regular expression. Test::Warn handles all these cases.

Using Test::Most

Finally, here’s your author’s favorite Test:: module (disclaimer: he wrote it), Test::Most, a name
chosen to gently make fun of the Test::More module’s name. (The authors are actually good
friends, so this isn’t mean-spirited.)

When dealing with large test suites, it’s common to see something like this at the beginning of each
test module:

use strict;
use warnings;
use Test::Exception;
use Test::Differences;
use Test::Deep;
use Test::Warn;
use Test::More tests => 42;

c14.indd 460c14.indd 460 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 461

That’s a lot of typing and frankly, it gets annoying re-creating this boilerplate every time. As a
result, the Test::Most module was created. The above boilerplate (even the strict and warnings)
can be replaced with this:

use Test::Most tests => 42;

You’ve now eliminated six lines of code and can just start writing tests without retyping those six
lines every time (or forgetting one and going back and adding it). The test modules in question were
chosen by running a heuristic analysis over the entire CPAN and seeing which test modules were
most commonly used and including the appropriate ones in Test::Most.

NOTE If you like this idea but want a diff erent list of modules, you author has

also released Test::Kit. This allows you to assemble your own list of modules

to bundle together.

UNDERSTANDING XUNIT STYLE USING TESTING

If you’re familiar with testing in other languages, you may be familiar with xUnit style testing. This
is a type of testing that is particularly well suited to object-oriented code. Just as you have classes
that you want to test, with xUnit style testing, you can create corresponding test classes. These test
classes can inherit tests from one another, just as your classes can inherit from other classes.

The most popular xUnit style testing package in Perl is called Test::Class and that’s what you’ll use.

WARNING Sometimes you’ll fi nd people using Test::Unit for xUnit style

testing instead of Test::Class. Unfortunately, Test::Unit is not compatible

with Test::Builder, the module that most modern Perl testing tools are

built with, so you should not use it. It has not been updated since 2005 and

appears to be abandoned.

Using Test::Class

Start by creating a Person class. The Person has a given name, a family name (analogous to fi rst
name and last name), an optional read/write title, such as Dr., and a birth date. The class will look
like the following code (code fi le: lib/Person.pm):

package Person;
use Moose;
use Moose::Util::TypeConstraints;
use DateTime::Format::Strptime;
use namespace::autoclean;
Moose doesn’t know about non-Moose-based classes.

c14.indd 461c14.indd 461 09/08/12 9:27 AM09/08/12 9:27 AM

462 ❘ CHAPTER 14 TESTING

class_type ‘DateTime’;
my $datetime_formatter = DateTime::Format::Strptime->new(
 pattern => ‘%Y-%m-%d’,
 time_zone => ‘GMT’,
);
coerce ‘DateTime’
 => from ‘Str’
 => via { $datetime_formatter->parse_datetime($_) };
use DateTime;
has ‘given_name’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘family_name’ => (is => ‘ro’, isa => ‘Str’, required => 1);
has ‘title’ => (is => ‘rw’, isa => ‘Str’, required => 0);
has ‘birthdate’ =>
 (is => ‘ro’, isa => ‘DateTime’, required => 1, coerce => 1);
sub name {
 my $self = shift;
 my $name = ‘’;
 if (my $title = $self->title) {
 $name = “$title “;
 }
 $name .= join ‘ ‘, $self->given_name, $self->family_name;
 return $name;
}
sub age {
 my $self = shift;
 my $duration = DateTime->now - $self->birthdate;
 return $duration->years;
}
__PACKAGE__->meta->make_immutable;
1;

NOTE The DateTime::Format::Strptime module can help you convert date

strings like 1967-06-20 to a proper DateTime object. Then use special Moose

code to coerce strings to DateTime objects for the birthdate. That lets you

do this:

my $person = Person->new(
 title => ‘President’,
 given_name => ‘Dwight’,
 family_name => ‘Eisenhower’,
 birthdate => ‘1890-10-14’,
);

That’s much easier than creating the entire DateTime object every time.

Chapter 13 doesn’t cover coercions for Moose because they’re a bit more

advanced, so you won’t see them here, but you can read Moose::Cookbook::

Basics::Recipe5 to better understand how to use coercions in your own Moose

classes.

c14.indd 462c14.indd 462 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 463

You could write normal .t scripts for this, but I’ll show you how to take advantage of the power of
Test::Class to extend these classes.

To start writing your tests, you need a little bit of code to make it easy to run the tests. There are
a variety of ways to confi gure how to run Test::Class tests, but the following method is your
author’s preferred setup. It is extremely fl exible and makes running your classes a breeze.

First, make a “driver” test that can run all your test classes at once. Save the following (code fi le
t/test_classes.t).

use strict;
use warnings;
use Test::Class::Load ‘t/lib’;

That script can fi nd all Test::Class tests in the t/lib directory and run them. It can also add
t/lib to @INC to ensure that Perl can fi nd them, too. (@INC is the special Perl variable telling Perl
which paths to look for code in. For more information, see Chapter 11).

Next, create a t/lib directory and add the following code (code fi le t/lib/TestsFor.pm):

package TestsFor;
use Test::Most;
use base ‘Test::Class’;
INIT { Test::Class->runtests }
sub startup : Tests(startup) {}
sub setup : Tests(setup) {}
sub teardown : Tests(teardown) {}
sub shutdown : Tests(shutdown) {}
1;

Now use the TestsFor:: namespace to ensure that your test classes do not try to use a namespace
in use by another package. The INIT block tells Test::Class to run all the tests after they have
been compiled. I’ll explain the startup, setup, teardown, and shutdown methods in the “Using
Test Control Methods” section later in this chapter. The use base ‘Test::Class’, tells Perl that
TestsFor.pm will inherit from the Test::Class module. That’s what makes all this work.

A Basic Test Class

The code fi les t/test_classes.t script and t/lib/TestsFor.pm class are all the code you
need for your setup. Now you can begin to write tests for your Person class. You need to create a
t/lib/TestsFor/ directory and save the following code as t/lib/TestsFor/Person.pm:

package TestsFor::Person;
use Test::Most;
use base ‘TestsFor’;
use Person;
use DateTime;

sub class_to_test { ‘Person’ }

sub constructor : Tests(3) {

c14.indd 463c14.indd 463 09/08/12 9:27 AM09/08/12 9:27 AM

464 ❘ CHAPTER 14 TESTING

 my $test = shift;
 my $class = $test->class_to_test;
 can_ok $class, ‘new’;
 throws_ok { $class->new }
 qr/Attribute.*required/,
 “Creating a $class without proper attributes should fail”;
 my $person = $class->new(
 given_name => ‘Charles’,
 family_name => ‘Drew’,
 birthdate => ‘1904-06-03’,
);
 isa_ok $person, $class;
}
1;

You can now run prove -lv t/test_classes.t to should see the following output:

$ prove -lv t/test_classes.t
t/test_classes.t .. #
TestsFor::Person->constructor
1..3
ok 1 - Person->can(‘new’)
ok 2 - Creating a Person without proper attributes should fail
ok 3 - The object isa Person
ok
All tests successful.
Files=1, Tests=3, 2 wallclock secs
Result: PASS

Now break down what’s happening here. Here are the opening lines from the TestsFor::Person
class:

package TestsFor::Person;
use Test::Most;
use base ‘TestsFor’;
use Person;
use DateTime;

Use Test::Most to avoid repeatedly using many test modules, plus, it turns on strict and
 warnings. You inherit from your TestsFor module because when you create test classes, it’s a
good idea to have a common test class that you might have shared methods in, such as methods to
connect to a database.

You also have this curious bit:

sub class_to_test { ‘Person’ }

Why do you do that? Because you want to ensure that your subclasses can override this method to
assert which class they are testing. This becomes more clear when you learn how to inherit from
subclasses.

c14.indd 464c14.indd 464 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 465

Now take a close look at your test method.

The test method is defi ned as:

sub constructor : Tests(3) {
 ...
}

The : Tests(3) bit is called a subroutine attribute. These are not the same thing as class attributes
(data attached to a class). These are special extra bits of information you can attach to a subroutine
to provide a bit more information about them. The syntax looks like this:

sub NAME : ATTRIBUTES { ... }

By themselves they don’t do anything, but some authors use the Attribute::Handlers module to
defi ne custom attributes and describe their meaning. I won’t cover them more except to say that
Test::Class has attributes for test methods to mark them as something that Test::Class knows
how to deal with. So this:

sub customer : Tests(3) { ... }

Tells Test::Class that you will run three tests in this test method. If you run more, you have a test
failure. If you run fewer, Test::Class assumes you meant to skip the tests and issues “skipped test”
lines in your test output.

WARNING You used the name constructor() for the new() method because

Test::Class has its own new() method, and overriding that method can cause

strange bugs in your test classes. Never override new() unless you know exactly

what you’re doing.

If you’re not sure how many tests you will run in a test method, you can omit the number of tests:

sub some_test_method : Tests { ... }

The next line is this:

my $test = shift;

Ordinarily the invocant to a method is called $self and most developers who use Test::Class
write my $self = shift. Your author prefers to use the $test variable to help keep you in the
frame of mind of “writing tests.” It’s silly, but there you go.

The rest of the test method is composed of standard testing code that you already understand.

When you run a test class, the Test::Class module can fi nd all methods in all test class with a :Tests
attribute and execute them sequentially as tests, grouping test results per test class, per test method.

c14.indd 465c14.indd 465 09/08/12 9:27 AM09/08/12 9:27 AM

466 ❘ CHAPTER 14 TESTING

Now add test methods for the name and age methods. First, because you’ll be instantiating the
Person class several times, pull that out into its own method default_person() method:

sub constructor : Tests(3) {
 my $test = shift;
 my $class = $test->class_to_test;
 can_ok $class, ‘new’;
 throws_ok { $class->new }
 qr/Attribute.*required/,
 “Creating a $class without proper attributes should fail”;
 isa_ok $test->default_person, ‘Person’;
}
sub default_person {
 my $test = shift;
 return $test->class_to_test->new(
 given_name => ‘Charles’,
 family_name => ‘Drew’,
 birthdate => ‘1904-06-03’,
);
}

As you can see in the constructor() test method, you can write $test->default_person to get
the Person object. If you rerun the tests, you see no change of behavior because default_person()
does not have a :Tests attribute and Test::Class will not attempt to run it directly.

Now add the following test methods to the TestsFor::Person class:

sub name : Tests(2) {
 my $test = shift;
 my $person = $test->default_person;
 is $person->name, ‘Charles Drew’, ‘name() should return the full name’;
 $person->title(‘Dr.’);
 is $person->name, ‘Dr. Charles Drew’,
 ‘... and it should be correct if we have a title’;
}
sub age : Tests(2) {
 my $test = shift;
 my $person = $test->default_person;
 can_ok $person, ‘age’;
 cmp_ok $person->age, ‘>’, 100,
 ‘Our default person is more than one hundred years old’;
}

Notice that in name() you take advantage that you made title() a read-write object attribute.
In both of these, you used your default_person() method to avoid rewriting code.

After you’ve added these methods, you can rerun your tests and get this output:

t/test_classes.t .. #
1..8
TestsFor::Person->age
ok 1 - Person->can(‘age’)
ok 2 - Our default person is more than one hundred years old

c14.indd 466c14.indd 466 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 467

#
TestsFor::Person->constructor
ok 3 - Person->can(‘new’)
ok 4 - Creating a Person without proper attributes should fail
ok 5 - The object isa Person
#
TestsFor::Person->name
ok 6 - Person->can(‘name’)
ok 7 - name() should return the full name
ok 8 - ... and it should be correct if we have a title
ok
All tests successful.
Files=1, Tests=8, 0 wallclock secs
Result: PASS

You can see diagnostic comments indicating which test methods have run, along with their
 corresponding tests.

Extending a Test Class

If your classes have subclasses, it’s natural that your test classes have subclasses, too. Look at a
Customer subclass of Person. It’s identical to Person, but it’s required to have a minimum age
of 18. First, write the Customer class (code fi le lib/Customer.pm):

package Customer;
use Moose;
extends ‘Person’;
use Carp ‘croak’;
use namespace::autoclean;
sub BUILD {
 my $self = shift;
 if ($self->age < 18) {
 my $age = $self->age;
 croak(“Customers must be 18 years old or older, not $age”);
 }
}
__PACKAGE__->meta->make_immutable;
1;

As you can see, this is a simple, straightforward subclass with no complications. Now look at its test
class (code fi le t/lib/TestsFor/Customer.pm):

package TestsFor::Customer;
use Test::Most;
use base ‘TestsFor::Person’;
use Customer;
use DateTime;

sub class_to_test { ‘Customer’ }

sub mininum_age : Tests(2) {
 my $test = shift;

c14.indd 467c14.indd 467 09/08/12 9:27 AM09/08/12 9:27 AM

468 ❘ CHAPTER 14 TESTING

 my $year = DateTime->now->year;
 $year -= 16;
 throws_ok {
 $test->class_to_test->new(
 given_name => ‘Sally’,
 family_name => ‘Forth’,
 birthdate => “$year-06-05”,
);
 }
 qr/^Customers must be 18 years old or older, not \d+/,
 ‘Trying to create a customer younger than 18 should fail’;
 $year -= 10; # take another ten years off
 lives_ok {
 $test->class_to_test->new(
 given_name => ‘Sally’,
 family_name => ‘Forth’,
 birthdate => “$year-06-05”,
);
 }
 ‘Trying to create a customer older than 18 should succeed’;
}
1;

Just as the Customer class inherited from the Person class, the TestsFor::Customer class inherited
from TestsFor::Person (using slightly different syntax because the classes are written with Moose
and the test classes are not).

There are two interesting things here:

 ➤ You compute the year rather than hard-code it with something like my $year = 1999;.
You do that to ensure that these tests don’t start to break in the future.

 ➤ You again fetch the name of the class to test from your class_to_test() method. You’ll
see why right now.

So run this test class, but only this test class. Remember this line from in the t/lib/TestsFor.pm
package?

INIT { Test::Class->runtests }

Because you have that, loading your tests automatically runs them, but you need to tell the prove
utility where to fi nd the test classes. You do this by passing -It/lib to prove.

$ prove -lv -It/lib t/lib/TestsFor/Customer.pm
t/lib/TestsFor/Customer.pm .. #
TestsFor::Person->age
1..18
ok 1 - Person->can(‘age’)
ok 2 - Our default person is more than one hundred years old
#
TestsFor::Person->constructor
ok 3 - Person->can(‘new’)
ok 4 - Creating a Person without proper attributes should fail

c14.indd 468c14.indd 468 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 469

ok 5 - The object isa Person
#
TestsFor::Person->name
ok 6 - Person->can(‘name’)
ok 7 - name() should return the full name
ok 8 - ... and it should be correct if we have a title
#
TestsFor::Customer->age
ok 9 - Customer->can(‘age’)
ok 10 - Our default person is more than one hundred years old
#
TestsFor::Customer->constructor
ok 11 - Customer->can(‘new’)
ok 12 - Creating a Customer without proper attributes should fail
ok 13 - The object isa Customer
#
TestsFor::Customer->mininum_age
ok 14 - Trying to create a customer younger than 18 should fail
ok 15 - Trying to create a customer older than 18 should succeed
#
TestsFor::Customer->name
ok 16 - Customer->can(‘name’)
ok 17 - name() should return the full name
ok 18 - ... and it should be correct if we have a title
ok
All tests successful.
Files=1, Tests=18, 1 wallclock secs
Result: PASS

WARNING Sometimes when you run Test::Class tests, you get a warning like

the following:

t/lib/TestsFor/Customer.pm .. Invalid CODE attribute:
 Tests(startup) at
t/lib/TestsFor/Customer.pm line 12.
BEGIN failed--compilation aborted at t/lib/TestsFor/Customer.pm
 line 12.
t/lib/TestsFor/Customer.pm .. Dubious, test returned 255
No subtests run

This usually means that you have forgotten to tell Perl (or prove) where to

fi nd the test classes. Make sure that you have supplied the appropriate

-It/lib switch to prove. If you run prove t/test_class.t and it uses

Test::Class::Load, this issue will probably not happen.

Whoa! What just happened here? Your Person class had only eight tests, and you added only two
tests! That means ten tests, right?

Nope.

c14.indd 469c14.indd 469 09/08/12 9:27 AM09/08/12 9:27 AM

470 ❘ CHAPTER 14 TESTING

Test::Class knows that TestsFor::Customer inherited TestsFor::Person. Because of the
Liskov Substitution Principle (mentioned in Chapter 12), you know that you should use a subclass
in any place you can use a parent class. Thus, when you run the tests for TestsFor::Customer,
Test::Class also runs all the tests you inherit from TestsFor::Person, but because of your INIT
block in the TestsFor base class, it also ran the tests for TestsFor::Person.

This means that TestsFor::Person ran its eight tests, and TestsFor::Customer ran its two tests,
plus the eight tests it inherited from TestsFor::Person. That makes 18 tests in total, even though
you’ve only written 10 tests.

That is why I provided this method:

sub class_to_test { ‘Person’ }

Look at the constructor() test method again to understand why TestsFor::Customer overrode
the TestsFor::Person::class_to_test method:

sub constructor : Tests(3) {
 my $test = shift;
 my $class = $test->class_to_test;
 can_ok $class, ‘new’;
 throws_ok { $class->new }
 qr/Attribute.*required/,
 “Creating a $class without proper attributes should fail”;
 my $person = $class->new(
 given_name => ‘Charles’,
 family_name => ‘Drew’,
 birthdate => ‘1904-06-03’,
);
 isa_ok $person, $class;
}

Because you now fetch the class to test from a method you can override, that test method outputs
the following:

TestsFor::Customer->constructor
ok 11 - Customer->can(‘new’)
ok 12 - Creating a Customer without proper attributes should fail
ok 13 - The object isa Customer

If you did not override the class name, you would have had this test out:

TestsFor::Customer->constructor
ok 11 - Person->can(‘new’)
ok 12 - Creating a Person without proper attributes should fail
ok 13 - The object isa Person

Clearly that would not be the test you would want. By allowing the code to override the name of the
class, you allow your subclasses to use the parent class tests and ensure that your behavior did not
change in the subclass.

c14.indd 470c14.indd 470 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 471

At this point, you might wonder why your author showed you this:

$ prove -lv -It/lib t/lib/TestsFor/Customer.pm

Because of the INIT block in your subclass, that causes all tests to run for all loaded classes, not just
TestsFor::Customer. However, you can do this with the Person class. (Leave off the -v so that the
test output is not so verbose.)

$ prove -lv -It/lib t/lib/TestsFor/Person.pm
t/lib/TestsFor/Person.pm .. ok
All tests successful.
Files=1, Tests=8, 1 wallclock secs
Result: PASS

This shows that you have run only eight tests, and not the full 18. That’s because you loaded
TestsFor::Person and not TestsFor::Customer. If you have a large set of test classes, running
different test classes like this can make it easier to run subsets of your tests and verify they work.
Later, when you fi nish coding, you can rerun the full test suite with prove -l t/.

Using Test Control Methods

So far you might be getting an inkling of the power of Test::Class, but you’re going to start feed-
ing it steroids now and not only see you powerful it can be, but also how powerful object-oriented
programming can be (two chapters for the price of one).

Remember the original TestsFor base class:

package TestsFor;
use Test::Most;
use base ‘Test::Class’;
INIT { Test::Class->runtests }
sub startup : Tests(startup) {}
sub setup : Tests(setup) {}
sub teardown : Tests(teardown) {}
sub shutdown : Tests(shutdown) {}
1;

You have startup, setup, teardown, and shutdown methods. Each of them has a corresponding
:Tests(methodname) attribute. These are test control methods. These are run at the beginning and
end of every class, or at the beginning and end of every test method, as shown in Table 14-1.

TABLE 14-1: Test Control Methods

METHOD WHEN IT’S RUN

startup Before every test class starts

setup Before every test method start

teardown After every test method ends

shutdown After every test class ends

c14.indd 471c14.indd 471 09/08/12 9:27 AM09/08/12 9:27 AM

472 ❘ CHAPTER 14 TESTING

Now rewrite your TestsFor class. Use the startup method to load the class you want to test
before each test class runs. Also set the class name in class_to_test(). Use multiple inheritance to
provide class data here, but see Test::Class::Most to see a better way to do this:

package TestsFor;
use Test::Most;
use base qw(Test::Class Class::Data::Inheritable);
INIT {
 __PACKAGE__->mk_classdata(‘class_to_test’);
 Test::Class->runtests;
}
sub startup : Tests(startup) {
 my $test = shift;
 my $class = ref $test;
 $class =~ s/^TestsFor:://;
 eval “use $class”;
 die $@ if $@;
 $test->class_to_test($class);
}
sub setup : Tests(setup) {}
sub teardown : Tests(teardown) {}
sub shutdown : Tests(shutdown) {}
1;

You inherited from both Test::Class and Class::Data::Inheritable. The INIT block now
 creates a class data method before running the tests. Use the startup method to do some magic!
First, the $test invocant passed to the startup method is a reference, so use the ref function
to determine the class name. Then use a substitution to strip off the TestsFor:: prefi x:

$class =~ s/^TestsFor:://;

That’s when it gets interesting. Use eval to load the class and, if it succeeds, use $test->
class_to_test($class) to set the class name on a per class basis!

eval “use $class”;
die $@ if $@;
$test->class_to_test($class);

You can now edit TestsFor::Person and TestsFor::Customer and delete the use Person or use
Customer lines, along with the class_to_test() methods. This is now automatically done for you!

Later, when you write TestsFor::Order::Item, the Order::Item class automatically loads
 without asking, and class_to_test()returns Order::Item, as you would expect. This little trick
makes it much easier to build test classes on-the-fl y.

You might also remember this method:

sub default_person {
 my $test = shift;
 return $test->class_to_test->new(
 given_name => ‘Charles’,

c14.indd 472c14.indd 472 09/08/12 9:27 AM09/08/12 9:27 AM

Understanding xUnit Style Using Testing ❘ 473

 family_name => ‘Drew’,
 birthdate => ‘1904-06-03’,
);
}

Every time you call that method, the default person is re-created. If you want, you could set this in
the setup method prior to every test. Make sure to do this in your TestsFor::Person class and
not your TestsFor class because other test classes are likely to inherit from TestsFor and won’t
necessarily need a default Person object.

By doing this, your TestsFor::Person class now looks like this:

package TestsFor::Person;
use Test::Most;
use base ‘TestsFor’;
sub startup : Tests(startup) {
 my $test = shift;
 $test->SUPER::startup;
 my $class = ref $test;
 $class->mk_classdata(‘default_person’);
}
sub setup : Tests(setup) {
 my $test = shift;
 $test->SUPER::setup;
 $test->default_person(
 $test->class_to_test->new(
 given_name => ‘Charles’,
 family_name => ‘Drew’,
 birthdate => ‘1904-06-03’,
)
);
}
sub constructor : Tests(3) {
 # constructor tests
}
sub name : Tests(3) {
 # name tests
}
sub age : Tests(2) {
 # age tests
}
1;

You didn’t use Person (because you no longer need to) and the class_to_test() method returns
the correct class.

Calling Parent Test Control Methods

Now look at that startup method you created for TestsFor::Person:

sub startup : Tests(startup) {
 my $test = shift;
 $test->SUPER::startup;

c14.indd 473c14.indd 473 09/08/12 9:27 AM09/08/12 9:27 AM

474 ❘ CHAPTER 14 TESTING

 my $class = ref $test;
 $class->mk_classdata(‘default_person’);
}

After you shift off the invocant ($test) but before you create the default_person() class
data method, call $test->SUPER::startup. Why? Because you want to ensure that your
TestsFor::startup method has been called and loaded your test class and set the class_to_test()
method. Generally, when you call setup and startup methods, there may be a parent method
 available, and you should call them fi rst to ensure that your test class has everything it needs to run.

In fact, The setup() method calls $self->SUPER::setup even though you have an empty setup
method in your base class. Later, you may fi nd that you need your parent classes to have some code
in the setup method and you want to ensure that your subclasses do not mysteriously break by
 forgetting to call this important code.

The teardown and shutdown test control methods are not called as often, but they’re used for things
like cleaning up temp fi les or perhaps closing a database connection. When you use them, make
sure to call the SUPER:: method after you have done your cleanup (unless you have a good rea-
son not to). The reason for this is because if you call the parent teardown or shutdown method
before you’re cleaning up in the subclass method, it’s entirely possible that the database handle you
needed has been destroyed, or some other critical bit of your test class state is gone. By running
your teardown or shutdown code fi rst and then calling the parent method, you can make sure you
haven’t destroyed anything you need until nothing else needs it.

Given what I’ve explained, for each test control method you think you need, the methods should
look like this:

startup and setup call parent methods before their code
sub startup : Tests(startup) {
 my $test = shift;
 $test->SUPER::startup;
 # startup up code here
}
sub setup : Tests(setup) {
 my $test = shift;
 $test->SUPER::setup;
 # setup up code here
}
teardown and shutdown call parent methods after their code
sub teardown : Tests(teardown) {
 my $test = shift;
 # teardown up code here
 $test->SUPER::teardown;
}
sub shutdown : Tests(shutdown) {
 # shutdown up code here
 $test->SUPER::shutdown;
}

This introduction to Test::Class only skims the surface of what you can do. The author
 recommends his fi ve-part online tutorial on Test::Class at http://www.modernperlbooks
.com/mt/2009/03/organizing-test-suites-with-testclass.html.

c14.indd 474c14.indd 474 09/08/12 9:27 AM09/08/12 9:27 AM

http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html
http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html

Understanding xUnit Style Using Testing ❘ 475

TRY IT OUT Write Tests for the TV::Episode Class

You may recall the TV::Episode class from Chapter 13. This Try It Out shows you how to write some
tests for it using Test::Classand assumes that you are already using your TestsFor class. All the code
for this Try It Out is in code fi le lib/TV/Episode.pm.

1. Type in the following program and save it as lib/TV/Episode.pm (assuming you didn’t do that
for Chapter 13):

package TV::Episode;
use Moose;
use MooseX::StrictConstructor;
use Moose::Util::TypeConstraints;
use namespace::autoclean;
use Carp ‘croak’;
our $VERSION = ‘0.01’;
subtype ‘IntPositive’,
 as ‘Int’,
 where { $_ > 0 };
has ‘series’ => (is => ‘ro’, isa => ‘Str’,
 required => 1);
has ‘director’ => (is => ‘ro’, isa => ‘Str’,
 required => 1);
has ‘title’ => (is => ‘ro’, isa => ‘Str’,
 required => 1);
has ‘season’ => (is => ‘ro’, isa => ‘IntPositive’,
 required => 1);
has ‘episode_number’ => (is => ‘ro’, isa => ‘IntPositive’,
 required => 1);
has ‘genre’ => (
 is => ‘ro’,
 isa => enum(qw(comedy drama documentary awesome)),
 required => 1
);
sub as_string {
 my $self = shift;
 my @attributes = map { $_->name }
 $self->meta->get_all_attributes;
 my $as_string = ‘’;
 foreach my $attribute (@attributes) {
 $as_string .= sprintf “%-14s - %s\n”, ucfi rst($attribute),
 $self->$attribute;
 }
 return $as_string;
}
__PACKAGE__->meta->make_immutable;
1;

2. Type in the following program, and save it as t/lib/TestsFor/TV/Episode.pm. (Create the
t/lib/TestsFor/TV directory fi rst.)

package TestsFor::TV::Episode;
use Test::Most;
use base ‘TestsFor’;
sub attributes : Tests(14) {

c14.indd 475c14.indd 475 09/08/12 9:27 AM09/08/12 9:27 AM

476 ❘ CHAPTER 14 TESTING

 my $test = shift;
 my %default_attributes = (
 series => ‘Firefl y’,
 director => ‘Marita Grabiak’,
 title => ‘Jaynestown’,
 genre => ‘awesome’,
 season => 1,
 episode_number => 7,
);
 my $class = $test->class_to_test;
 my $episode = $class->new(%default_attributes);
 while (my ($attribute, $value) = each %default_attributes) {
 can_ok $episode, $attribute;
 is $episode->$attribute, $value,
 “The value for ‘$attribute’ should be correct”;
 }
 my %attributes = %default_attributes; # copy ‘em
 foreach my $attribute (qw/season episode_number/) {
 $attributes{$attribute} = 0;
 throws_ok { $class->new(%attributes) }
 qr/\Q($attribute) does not pass the type constraint/,
 “Setting $attribute to less than zero should fail”;
 }
}
1;

3. Run the program with prove -lv t/lib t/lib/TestsFor/TV/Episode.pm. You should see the
following output:

$ prove -lv -It/lib t/lib/TestsFor/TV/Episode.pm
t/lib/TestsFor/TV/Episode.pm .. #
TestsFor::TV::Episode->attributes
1..14
ok 1 - TV::Episode->can(‘episode_number’)
ok 2 - The value for ‘episode_number’ should be correct
ok 3 - TV::Episode->can(‘title’)
ok 4 - The value for ‘title’ should be correct
ok 5 - TV::Episode->can(‘season’)
ok 6 - The value for ‘season’ should be correct
ok 7 - TV::Episode->can(‘genre’)
ok 8 - The value for ‘genre’ should be correct
ok 9 - TV::Episode->can(‘director’)
ok 10 - The value for ‘director’ should be correct
ok 11 - TV::Episode->can(‘series’)
ok 12 - The value for ‘series’ should be correct
ok 13 - Setting the season to a value less than zero should fail
ok 14 - Setting episode_number to less than zero should fail
ok
All tests successful.
Files=1, Tests=14, 1 wallclock secs
Result: PASS

c14.indd 476c14.indd 476 09/08/12 9:27 AM09/08/12 9:27 AM

Summary ❘ 477

4. Run the full test suite in nonverbose mode (leaving off the -v switch to prove) with prove t/.
If you’ve worked through all the examples in this chapter, it should run tests for t/testit.t,
t/query.t, and t/test_classes.t. The output should resemble the following:

$ prove t
t/query.t ok
t/test_classes.t .. ok
t/testit.t ok
All tests successful.
Files=3, Tests=43, 1 wallclock secs
Result: PASS

How It Works

At this point you’ve gone from the point of writing a few individual tests to having a full test suite
(admittedly for a grab bag of unrelated modules).

You already know what TV::Episode does from Chapter 13, and t/lib/TestsFor/TV/Episode.pm
are straightforward — there’s nothing new there. Because you used the TestsFor base class you created
earlier in this chapter, you didn’t even need to have an explicit use TV::Episode line. The base class
does that for you and sets the $test->class_to_test value.

This command is interesting:

$ prove -lv t/lib t/lib/TestsFor/TV/Episode.pm

Use the -It/lib switch to tell prove where the test classes are loaded; the -l tells it where the ordinary
classes are loaded (-l is the same thing is -Ilib/); and then you pass t/lib/TestsFor/TV/Episode.pm
as the argument to prove.

When you do that, you run only the 14 tests in that class. You could have run this:

$ prove -l t/test_classes.t
t/test_classes.t .. ok
All tests successful.
Files=1, Tests=32, 3 wallclock secs
Result: PASS

And that would have run all your test classes without the other t/*.t tests. Instead, you ran prove -l t/
to run the full test suite. Each test program is run, in alphabetical order, until a total of all 43 tests are run.
The prove utility makes it easy to run and manage tests.

SUMMARY

In this chapter, you learned the basics of writing tests in Perl. You learned about the
 standard Test::More module and how to use other testing modules such as Test::Differences,
Test::Exception, and Test::Most. You learned how to catch exceptions in testing with eval and
throws_ok and how to test for warnings with Test::Warn.

c14.indd 477c14.indd 477 09/08/12 9:27 AM09/08/12 9:27 AM

478 ❘ CHAPTER 14 TESTING

You also learned quite a bit about advanced usage of Test::Class, an excellent module that is sadly
underused in Perl testing. Many of the techniques demonstrated in this chapter are fairly new to
many Perl developers (particularly the tricks about auto-loading classes in your startup method)
and after you master them, you’ll have fairly advanced testing skills.

EXERCISES

 1. Earlier you had a unique() function:

sub unique {
 my @array = @_;
 my %hash = map { $_ => 1 } @array;
 return keys %hash;
}

 Unfortunately, you wrapped the test in a TODO: block because it doesn’t do exactly what you

want it to do:

TODO: {
 local $TODO = ‘Figure out how to avoid random order’;
 my @have = unique(2, 3, 5, 4, 3, 5, 7);
 my @want = (2, 3, 5, 4, 7);
 is_deeply \@have, \@want,
 ‘unique() should return unique() elements in order’;
}

 Study the test and rewrite the unique() function to make the test pass. Remove the TODO: block

around the test.

 2. Usually when you have a failing test, the code is wrong and not the test. Take the example from

the fi rst exercise and assume that the code is correct and the test is wrong. How might you fi x it?

 3. The following test fails. Make it pass.

use Test::Most;
use Carp ‘croak’;
sub reciprocal {
 my $number = shift;
 unless ($number) {
 croak(“Illegal division by zero”);
 }
 return 1 / $number;
}
throws_ok { reciprocal([]) }
 qr/Argument to reciprocal\(\) must be a number/,
 ‘Passing non-numbers to reciprocal() should fail’;
diag reciprocal([]);
done_testing;

c14.indd 478c14.indd 478 09/08/12 9:27 AM09/08/12 9:27 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Summary ❘ 479

 4. Extra credit: In the second Try It Out for this chapter, you created a test class for the

TV::Episode class from Chapter 13. Create a test class for TV::Episode::Broadcast. Make

sure it inherits from TestsFor::TV::Episode.

package TV::Episode::Broadcast;
use Moose;
use namespace::autoclean;
extends ‘TV::Episode’;
has broadcast_date => (is => ‘ro’, isa => ‘DateTime’, required => 1);
__PACKAGE__->meta->make_immutable;
1;

 You won’t actually need to write any tests for this class if you inherit properly. Because your

attributes test method will have two extra tests (one for whether $ broadcast->can

(‘broadcast_date’) and another for whether it returns the correct value), you can use the

following special syntax to make that work:

sub attributes : Tests(+2) {
 my $test = shift;
 $test->SUPER::attributes;
}

 That allows you to override the original test method and declare that there are two extra tests

(Tests(+2)).

 Hint: To do this properly, you need to make a small change to TestsFor::TV::Episode.

c14.indd 479c14.indd 479 09/08/12 9:27 AM09/08/12 9:27 AM

480 ❘ CHAPTER 14 TESTING

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

Testing The way you ensure your code does what you want it to do.

Test::More The most popular test module for Perl.

ok() Tests if a value is true.

is() Tests if one scalar matches another scalar.

like() Tests if a scalar matches a regular expression.

is_deeply() Tests if one reference contains the same value as another reference.

SKIP Skips tests that cannot be run.

TODO Marks tests as expected failures.

Test::Differences Produces a diff of data structures that don’t match.

Test::Exception Easily tests exceptions.

Test::Warn Tests for warnings in your code.

Test::Most Bundles the most common testing functions into one module.

Test::Class Used to write object-oriented tests.

c14.indd 480c14.indd 480 09/08/12 9:27 AM09/08/12 9:27 AM

The Interwebs

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the basics of the HTTP, including web servers, web

forms, cookies and security issues

 ➤ Understanding a web client’s role

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ app.psgi and anne_frank_stamp.jpg

 ➤ character.psgi

 ➤ example_15_1_google_directions.pl

 ➤ listing_15_1_get_links.pl

 ➤ listing_15_2_get_comments.pl

 ➤ listing_15_3_post_character.pl

 ➤ params.psgi

 ➤ templates/character.tt

 ➤ templates/character_display.tt

Ah, Perl, the duct tape of the Internet. Duct tape has a reputation for being an amazing, ad
hoc supertool for fi xing things in a hurry, even as a combat dressing. Perl is the same way.
Need something done on the web quickly? Reach for Perl!

15

c15.indd 481c15.indd 481 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://WROX.COM
http://wrox.com

482 ❘ CHAPTER 15 THE INTERWEBS

This chapter pays particular attention to the HyperText Transfer Protocol (HTTP). When you
view a web page in your browser, it was probably sent to you via HTTP (or HTTPS, the encrypted
version of HTTP). HTTP is nothing more than text, and Perl excels at text manipulation. Your
author believes you need a foundation of how HTTP fl ows between systems to effectively program
at a higher level.

The fi rst part of this chapter is about responding as a server. It will not be “Here’s how to write
a web application”; though you create some simple ones, but rather, “Here are some concepts
you need to know.” Chapter 19 briefl y looks at Dancer, (http://perldancer.org/) one of Perl’s
easiest-to-use frameworks for quickly building web applications.

The next part of the chapter is writing client software: accessing websites, fi nding links on web
pages, using web APIs, and so on. Again, it’s not going to be a full “Here’s all you wanted to know
about web clients,” but it can get you off to a great web automation beginning.

NOTE This chapter assumes that you know a little bit about creating a web

page with HTML (the HyperText Markup Language). If you don’t, check out

http://www.w3schools.com/html/ to learn the basics of HTML. However, while

they’re easy to use, you should also read http://w3fools.com/ to understand

some of the issues with w3schools.

A BRIEF INTRODUCTION TO HTTP

HTTP is a client-server protocol. That means that a client, such as a web browser or some software
you write, makes a request to a server via HTTP and the server responds with, well, something. It
might be a static web page, a page generated on-the-fl y, or HTTP responses telling you 404 Page
Not Found, the dreaded 500 Server Error, or a 301 Moved Permanently (a redirect).

To understand how the web works, you can use a simple telnet client, a standard tool available on
all major operating systems (http://en.wikipedia.org/wiki/Telnet). A simple telnet session
might look like this:

% telnet example.com 80
Trying 192.0.43.10...
Connected to example.com.
Escape character is ‘^]’.
HEAD /
HTTP/1.0 302 Found
Location: http://www.iana.org/domains/example/
Server: BigIP
Connection: close
Content-Length: 0
Connection closed by foreign host.

c15.indd 482c15.indd 482 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.w3schools.com/html/
http://www.iana.org/domains/example
http://en.wikipedia.org/wiki/Telnet
http://perldancer.org/
http://w3fools.com/
http://example.com
http://example.com

A Brief Introduction to HTTP ❘ 483

When you telnet to a server, you specify the host (example.com in this case) and the port (80, the
standard HTTP port):

% telnet example.com 80
And then you’ll see a response similar to:
Trying 192.0.43.10...
Connected to example.com.
Escape character is ‘^]’.

The escape character, in this case, is CTRL-] (typing the control and right square bracket at the same
time). That causes you to enter a command mode that you can CTRL-C out of.

Then issue a HEAD request against the root of the server:

HEAD /

When you “surf” to a web page in your browser by clicking a link such as http://www.example
.com/some/page/, behind the scenes your browser is probably issuing a GET request to that server:

GET /some/page

That returns a set of headers giving information about the resource you have connected to, separated
by two newlines, and the body of the request (also known as the entity-body), often a web page
written in HTML.

When you issue a HEAD request, you’re saying “I only want the headers for this resource, not the
body.” In this case, that’s great because there is no body available for this request (the Content-
Length is 0):

HTTP/1.0 302 Found
Location: http://www.iana.org/domains/example/
Server: BigIP
Connection: close
Content-Length: 0

The fi rst line is the HTTP protocol version, followed by the HTTP numeric status code, followed by
a human readable description.

Next is a list of HTTP header fi elds. Each consists of a fi eld name, followed by a colon, followed by
the value of that fi eld name. In this case, you see that / at www.example.com can actually be found

NOTE You can use telnet to try to connect to any server on the Internet, but it

often fails. Historically, there have been a number of security issues surrounding

the telnet protocol and, as a result, many servers disable telnet access.

However, you can use telnet and impersonate web, mail, and other clients if

you know the rules of the protocol. You can do a bit of that to learn how web

clients and servers communicate.

c15.indd 483c15.indd 483 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.example.com/some/page
http://www.example.com/some/page
http://www.iana.org
http://www.example.com
http://example.com
http://example.com
http://example.com

484 ❘ CHAPTER 15 THE INTERWEBS

at http://www.iana.org/domains/example/. If you go to www.example.com in your browser,
when it sees the 302 Found, it redirects you to http://www.iana.org/domains/example/.

That’s the basics of the HTTP protocol. When you understand it, it’s quite simple — plus, because
it’s plain text, it’s easy to view for debugging.

Plack

To start with web development and Perl, you can use Plack (http://plackperl.org/). You won’t
be doing anything too complicated, but you can see the basics of how it works. You can install Plack
with your favorite CPAN client:

$ cpan PSGI Plack

NOTE When installing Plack, you don’t actually need to install PSGI because it

is only the specifi cation of the PSGI interface. However, perldoc PSGI can often

help you better understand how Plack works.

Also, if you do serious web development with Plack, it’s recommended that you

install Task::Plack. That installs many modules that are very helpful when

developing Plack applications.

The Plack examples given in this chapter are bare-bones without full support of

features you fi nd in most applications. For example, the telnet and HEAD shown

earlier won’t work with your Plack app.

Plack and PSGI were created by Tatsuhiko Miyagawa, an extremely talented and prolifi c
programmer. PSGI is a specifi cation of how a web server can talk to a web application. It is modeled
after WSGI, a web server/application interface originally developed for the Python language and
Ruby’s Rack implementation. Plack is an implementation of the PSGI specifi cation.

Prior to PSGI, many companies had to choose between different web servers that accept HTTP
requests and web applications that might process those requests. When the server receives a request
that should be handled by an application, it needed to know how to talk to that application, and the
application needed to know how to respond.

PSGI changes the game tremendously. It sits between the web server and the web application,
guaranteeing a standard web interface. As long as both your web server and web application
“speak” PSGI (today, most popular options all understand PSGI), you can switch to different servers
or applications without needing to reconfi gure how they talk to one another. This is one of many
examples of why Perl is duct tape in the web world.

Hello, World!

Be aware that Plack is actually a set of building blocks for web applications and is not intended to be
used by application developers directly. However, it’s easy to use and a great compromise between
showing how web applications work and how HTTP operates.

c15.indd 484c15.indd 484 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.iana.org/domains/example/
http://www.example.com
http://www.iana.org/domains/example/
http://plackperl.org/

A Brief Introduction to HTTP ❘ 485

Create a chapter15/ directory, change into it, and save the following as app.psgi:

my $app = sub {
 return [
 200,
 [‘Content-Type’ => ‘text/plain’],
 [‘Hello World’],
];
};

A Plack application is a code reference. It’s expected to return an array reference with three values:

 ➤ HTTP status code

 ➤ Array reference of HTTP headers

 ➤ “Body” of the HTTP request

After you save the app.psgi, run plackup (which is installed when you install Plack):

$ plackup
HTTP::Server::PSGI: Accepting connections at http://0:5000/

NOTE By default, plackup looks for an app.psgi fi le. However, you can name

this anything you want. To use a fi le with a name that makes more sense to you,

pass that as an argument to plackup:

$ plackup hello.psgi

See perldoc plackup for more information.

Congratulations! You now have a web server running on your computer.

When you run plackup, it starts a web server for you. You can confi gure it to use different web
servers, but use the default HTTP::Server::PSGI web server installed with Plack.

The plackup command appears to hang, but that’s because it is waiting for requests. Open your
favorite browser and go to http://localhost:5000/. You should see the text Hello World
displayed. After you see the page, look at your terminal window that plackup runs in. You see
something like this (reformatted for the book, this is all on two lines):

HTTP::Server::PSGI: Accepting connections at http://0:5000/
127.0.0.1 - - [11/Apr/2012:11:42:13 +0200] “GET / HTTP/1.1” 200 11 “-”
“Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.19
(KHTML,like Gecko) Chrome/18.0.1025.151 Safari/535.19”

The fi rst line tells you that HTTP::Server::PSGI is listening on port 5000.

c15.indd 485c15.indd 485 10/08/12 8:27 PM10/08/12 8:27 PM

http://0:5000/
http://localhost:5000/
http://0:5000/

486 ❘ CHAPTER 15 THE INTERWEBS

The second line shows a request from IP address 127.0.0.1 (your browser) came in at a particular
time and issued an HTTP GET / request. It also contains information about the response code (200
OK in this case) and the type of client that attempted to connect.

With this simple web application, connecting to any path, such as http://localhost:5000/asdf/
asdf, displays Hello World because that’s all you’ve programmed it to do. Now quickly expand this
to take a look at your environment. Stop plackup (CTRL-C) and edit your app.psgi to look like this:

use strict;
use warnings;

use Data::Dumper;

$Data::Dumper::Indent = 1;
$Data::Dumper::Sortkeys = 1;
$Data::Dumper::Terse = 1;

my $app = sub {
 my $environment = Dumper(\%ENV);
 return [
 200,
 [‘Content-Type’ => ‘text/plain’],
 [“Hello World\n”, $environment],
];
};

Restart plackup and refresh your browser page with http://localhost:5000/. You should now
see Hello World, followed by a hash listing all your environment variables. Here is an edited
version of what your author’s browser shows:

Hello World
{
 ‘EDITOR’ => ‘/usr/bin/vim’,
 ‘GIT_USER’ => ‘ovid’,
 ‘HISTFILESIZE’ => ‘1000000000’,
 ‘HISTSIZE’ => ‘1000000’,
 ‘LC_CTYPE’ => ‘UTF-8’,
 ‘LOGNAME’ => ‘ovid’,
 ‘PLACK_ENV’ => ‘development’,
 ‘PWD’ => ‘/Users/ovid/beginning_perl/book/chapter15’,
 ‘SHELL’ => ‘/bin/bash’,
 ‘TERM’ => ‘xterm-256color’,
 ‘TERM_PROGRAM’ => ‘iTerm.app’,
}

NOTE When talking about software, a port is merely a software or process-

specifi c way to wave its little virtual hands and say “Yoo hoo! I’m over here!”

Any software or process communicating with that port needs to understand the

protocol that port listens on. For the default 5000 port for plackup, that protocol

is HTTP.

c15.indd 486c15.indd 486 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/asdf/asdf
http://localhost:5000/asdf/asdf
http://localhost:5000/

A Brief Introduction to HTTP ❘ 487

Now rewrite your app.psgi again to get a little closer to a real-world example using code fi les app
.psgi. This time add an image (anne_frank_stamp.jpg). Save the following in your app.psgi fi le:

use strict;
use warnings;

my $app = sub {
 my $env = shift;
 if ($env->{PATH_INFO} eq ‘/anne_frank_stamp.jpg’) {
 open my $fh, “<:raw”, “anne_frank_stamp.jpg” or die $!;
 return [200, [‘Content-Type’ => ‘image/jpeg’], $fh];
 }
 elsif ($env->{PATH_INFO} eq ‘/’) {
 return [
 200,
 [‘Content-Type’ => ‘text/html’],
 [get_index()]
];
 }
 else {
 return [
 404,
 [‘Content-Type’ => ‘text/html’],
 [‘404 Not Found’]
];
 }
};

sub get_index {
 return <<’END’;
<html>
 <head><title>Sample page</title></head>
 <body>
 <p>Anne Frank was a young lady living in Amsterdam, hiding
 from the Nazis.</p>
 <p>Everyone should read her diaries.</p>

 </body>
</html>
END
}

This program loads an image of the German Anne Frank stamp. It is in the public domain and is
available at http://commons.wikimedia.org/wiki/File:Anne_Frank_stamp.jpg. Download this
image, save as anne_frank_stamp.jpg, and save it in the same directory as your app.psgi fi le.

NOTE While you’re debugging, be aware that you may see more requests in

the plackup terminal output than you expect. For example, many browsers

automatically request something called a /favicon.ico. If found, it’s rendered

as the website icon, usually in the URL bar and often on bookmarks.

c15.indd 487c15.indd 487 10/08/12 8:27 PM10/08/12 8:27 PM

http://commons.wikimedia.org/wiki/File:Anne_Frank_stamp.jpg

488 ❘ CHAPTER 15 THE INTERWEBS

Restart plackup and go to http://localhost:5000/. You should see a web page similar to
Figure 15-1.

FIGURE 15-1

This is all normal, but look at the opening lines of the $app subroutine reference:

my $env = shift;
if ($env->{PATH_INFO} eq ‘/anne_frank_stamp.jpg’) {
 open my $fh, “<:raw”, “anne_frank_stamp.jpg” or die $!;
 return [200, [‘Content-Type’ => ‘image/jpeg’], $fh];
}

The Plack subroutine reference is passed a single $env hashref argument, documented in perldoc
PSGI. The PATH_INFO key points to the currently requested path. In this case, because you ask for
the Anne Frank image, you use the open builtin to create a fi lehandle, return image/jpeg as the
content type, and the fi lehandle is returned as the content of the request. Plack knows how to send
that image back to your client.

When you navigate to http://localhost:5000/ in your browser, the following line of code
executes:

return [200, [‘Content-Type’ => ‘text/html’], [get_index()]];

c15.indd 488c15.indd 488 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/
http://localhost:5000/

A Brief Introduction to HTTP ❘ 489

And that returns the HTML from the get_index() function:

sub get_index {
 return <<’END’;
<html>
 <head><title>Sample page</title></head>
 <body>
 <p>Anne Frank was a young lady living in Amsterdam, hiding
 from the Nazis.</p>
 <p>Everyone should read her diaries.</p>

 </body>
</html>
END

In that HTML is an img tag:

That tag causes the browser to issue GET /anne_frank_stamp.jpg to your Plack server. The
app.psgi sees that path and returns the image.

In other words, you went to the http://localhost:5000/ URL in your browser, but your browser
actually makes two requests to the server. For most web pages on the Internet, a single page can
generate many more requests to get everything the page needs to render properly, including the
HTML, JavaScript, CSS, multiple images, Flash, and many other potential requests. It actually can
seem quite complicated, as you can see from the previous example — much of this is handled for
you and it’s not as hard as it seems.

Now rewrite app.psgi one more time before moving to the next section:

use strict;
use warnings;
use Plack::Builder;
builder {

 mount ‘/anne_frank_stamp.jpg’ => sub {
 open my $fh, “<:raw”, “anne_frank_stamp.jpg” or die $!;
 return [200, [‘Content-Type’ => ‘image/jpeg’], $fh];
 };

 mount ‘/’ => sub {
 my $env = shift;
 return $env->{PATH_INFO} eq ‘/’
 ? [200,[‘Content-Type’ => ‘text/html’],[get_index()]]
 : [404,[‘Content-Type’ => ‘text/html’],[‘404 Not Found’]];
 };
};
sub get_index {
 return <<’END’;
<html>
 <head><title>Sample page</title></head>
 <body>

c15.indd 489c15.indd 489 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/

490 ❘ CHAPTER 15 THE INTERWEBS

 <p>Anne Frank was a young lady living in Amsterdam, hiding
 from the Nazis.</p>
 <p>Everyone should read her diaries.</p>

 </body>
</html>
END
}

Plack::Builder is a module that provides a domain-specifi c language (DSL) to make writing Plack
applications a little bit easier. This app.psgi does the same thing as your last app.psgi, but it does
so with the builder and mount commands. The builder function says, “I’m going to take the
following code reference and use this to build the app.”

The mount function allows you to map a particular path to a particular section of code. This is
much easier than managing long if/else/elsif blocks. You do have a ?: ternary operator in the /
path, but that’s to show only that you can still use this if needed.

The mount command is implemented with Plack::App::URLMap and t does not allow “dynamic”
mappings. Thus, there’s no way to say “Everything that is not mapped is a 404.” Web frameworks
such as Dancer, Catalyst, and Mojolicious give you much more fl exibility here, but this is enough to
do what you need.

Handling Parameters

Many times you see a URL like this:

http://www.example.com/?name=john&color=blue&color=red

The question mark in a URL indicates the beginning of a query string. A query string is defi ned in
RFC 3986 (http://www.ietf.org/rfc/rfc3986.txt). It’s a collection of name/value pairs. Each
name and value is separated by an equals (=) sign, and each pair is separated by an ampersand (&)
or a semicolon (;).The preceding example has two parameters, name and color. The name has one
value, john, and color has two values, blue and red. You can use Plack::Request to handle
query strings.

Save the following code fi le as params.psgi:

use strict;
use warnings;

use Plack::Builder;
use Plack::Request;

builder {

 mount ‘/’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my @params = sort $request->param;
 my $body = ‘’;

c15.indd 490c15.indd 490 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.example.com/?name=john&color=blue&color=red
http://www.ietf.org/rfc/rfc3986.txt

A Brief Introduction to HTTP ❘ 491

 foreach my $param (@params) {
 my $values = join ‘,’ => $request->param($param);
 $body .= “$param=$values\n”;
 }
 $body ||= “No params found”;
 return [200, [‘Content-Type’ => ‘text/plain’], [$body]];
 };

};

Open a separate terminal window and run the following command:

plackup -r params.psgi

NOTE Use -r this time because this can make the web server restart every time

you change params.psgi. You’ll change it a few times, so this makes it easier to

use when developing code. If you get an error similar to Could Not Connect, that

probably means you have a syntax error in your code. Go back to your plackup

terminal window and look for the error message.

By using -r with plackup, you can have plackup running in one terminal window while you
continue to develop in another terminal window.

When you request http://localhost:5000/ in your browser, it should display:

No params found

However, request http://localhost:5000/?name=john;color=red;color=blue and you should
see this in your browser window:

color=red,blue
name=john

By now, you may be tired of returning a three-element array reference because it can be a bit harder
to read:

return [200, [‘Content-Type’ => ‘text/plain’], [$body]];

You can replace that return statement with a response object, which is much easier to read:

my $response = $request->new_response(200);
$response->content_type(‘text/plain’);
$response->content($body);
return $response->finalize;

The $response->finalize handles building and returning that fi nal array reference for you.

c15.indd 491c15.indd 491 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/
http://localhost:5000/?name=john;color=red;color=blue

492 ❘ CHAPTER 15 THE INTERWEBS

Templates

Until now, you included your HTML in your code. Although that might be fi ne for small application,
it can be hard to maintain for larger applications, particularly as your code becomes a mess of Perl,
HTML, plain text, and SQL (see Chapter 16).

As a general rule, you want the different logical sections of your programs separated. One common
way to do this is to use the Model-View-Controller pattern, more commonly referred to as MVC.
There are a few variants of MVC, but we’ll cover a popular one for the web.

A full-blown MVC system isn’t shown here, but Table 15-1 describes the basic components.

TABLE 15-1: MVC System Basic Components

COMPONENT ROLE

Model Oversees the management of the business logic and data

View The part the client sees (a web page, in this case)

Controller Receives data from a view, passes it to the model, and returns the results to a view

(possibly the same one)

So if someone visits your web page, the view, enters a number on a form, and that data gets sent to
a controller (the mount points, in your PSGI example). The controller receives the data and passes it
to the correct model (the subreferences in your examples) and returns the results to a view.

In Plack, there’s not a clean separation of these concepts, but you can fake it well enough to get an
idea of what’s going on, so create small templates with Template::Tiny.

Template::Tiny is a small templating engine written by Adam Kennedy, which is designed to be
minimal, fast, and appropriate for small applications. In short, it’s what you need. Later, you’ll want
to use the Template Toolkit module (the package name of the module is Template), Text::Xslate,
or other, more robust, templating modules than Template::Tiny.

First, in the same directory as your app.psgi and your params.psgi fi les, create a templates
directory. In that directory, create a fi le named params.tt that contains the following:

<html>
 <head><title>Parameters</title></head>
 <body>
[% IF have_params %]
 <p>Our list of params:</p>
 <table rules=”all”>
 <tr><th>Name</th><th>Value</th></tr>
 [% FOREACH param IN params %]
 <tr><td>[% param.name %]</td><td>[% param.value %]</td></tr>
 [% END %]
 </table>
[% ELSE %]

c15.indd 492c15.indd 492 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 493

 <p>No params supplied!</p>
[% END %]
 </body>
</html>

At this point, your directory structure (assuming you’ve been typing in all the examples), should
look like this:

./
|--anne_frank_stamp.jpg
|--app.psgi
|--params.psgi
| templates/
| |--params.tt

This HTML code with the strange syntax is Template::Tiny syntax, which actually doesn’t
know anything about HTML. It does nothing except handle loops, if/else/unless statements, and
variable interpolation. All Template::Tiny commands are wrapped in [% %] brackets.

Consider the following hash reference:

{
 have_params => 1,
 params => [
 { name => ‘name’, value => ‘john’ },
 { name => ‘color’, value => ‘red,blue’ },
],
}

If you process this Template::Tiny template with this hash reference, this tag:

[% IF have_params %]

Can evaluate to true, passing control to the block with the <table> HTML tag. In that, you can see this:

[% FOREACH param IN params %]
 <tr><td>[% param.name %]</td><td>[% param.value %]</td></tr>
[% END %]

The [% FOREACH param IN params %] iterates over the params array reference, setting param to
each contained hash reference, in turn. Then when you call [% param.name %] and [% param
.value %], it’s identical to calling $param->{name} and $param->{value}. In Perl code, the entire
template would look like this (omitting the HTML for clarity):

my $hashref = { ... };
if ($hashref->{have_params}) {
 foreach my $param (@{ $hashref->{params} }) {
 print $param->{name},$param->{value};
 }
}
else {
 print “No params supplied!”;
}

c15.indd 493c15.indd 493 10/08/12 8:27 PM10/08/12 8:27 PM

494 ❘ CHAPTER 15 THE INTERWEBS

And that’s the entire Template::Tiny syntax, and here’s how you can use it in your new params
.psgi. Use File::Slurp to make reading the template code a bit easier:

use strict;
use warnings;

use Plack::Builder;
use Plack::Request;
use Template::Tiny;
use File::Slurp ‘read_file’;

builder {
 mount ‘/’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my @params;
 foreach my $param (sort $request->param) {
 my $values = join ‘,’ => $request->param($param);
 push @params => { name => $param, value => $values };
 }
 my $content = get_content(
 ‘templates/params.tt’,
 {
 params => \@params,
 have_params => scalar @params,
 }
);
 my $response = $request->new_response(200);
 $response->content_type(‘text/html’);
 $response->content($content);
 return $response->finalize;
 };
};

sub get_content {
 my ($file, $vars) = @_;
 my $template_code = read_file($file);
 my $output;
 my $template = Template::Tiny->new;
 $template->process(\$template_code, $vars, \$output);
 return $output;
}

You can build up an array reference of parameters and pass that, along with the template name,
to the get_content subroutine. Use read_file from File::Slurp to read the contents of
the template. Then pass the contents of the fi le as a scalar reference as the fi rst argument to the
instantiated Template::Tiny object. The hash referee of variables is passed as the second argument,
and a reference to the scalar containing your output is the third argument. (The syntax is a bit odd to
maintain forward compatibility with the Template Toolkit module.)

my $output;
my $template = Template::Tiny->new;
$template->process(\$template_code, $vars, \$output);
return $output;

c15.indd 494c15.indd 494 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 495

After the template is processed, return the output variable and set that as your $response->content.

Now, when you visit http://localhost:5000/, you should see this on your web page:

No params supplied!

When you visit http://localhost:5000/?name=john;color=red;color=blue;job=janitor, you
should see a page that looks vaguely like this:

Our list of params:
Name Value
color red,blue
job janitor
name john

It’s not a pretty web page, but now you can see how to separate the view (sometimes called the
presentation layer) from the main logic of your code.

At this point you could even take some code from your anonymous subroutine and put that into a
module in lib/ to start making the params.cgi a tiny controller, with your model in lib/ and your
view in templates/. As mentioned previously, though, if you try to do too much in Plack, it’s time
to look at a real web framework.

One last caveat: What do you think happens if you visit this URL?

http://localhost/?job=%3Chr/%3E%3Cstrong%3Ehi%20there!%3C/strong%3E

That’s the URL encoded form of this:

http://localhost/?job=<hr/>hi there!

The exact appearance depends on your browser, but basically, in the Value column, you should see
hi there! in bold print with a line above it. Why? Because this is the line in the template after the
value is added:

<tr><td>job</td><td><hr/>hi there!</td></tr>

This is sadly a common problem on the web. People write web applications and forget to encode
user-supplied data before sending it to a web page. To fi x this, add the following line to your code:

use HTML::Entities ‘encode_entities’;

And when you push the parameters onto the array:

push @params => { name => $param, value => $values };

Change it to this:

push @params => {
 name => encode_entities($param),
 value => encode_entities($values)
};

c15.indd 495c15.indd 495 10/08/12 8:27 PM10/08/12 8:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://localhost:5000/
http://localhost:5000/?name=john;color=red;color=blue;job=janitor
http://localhost/?job=%3Chr/%3E%3Cstrong%3Ehi%20there!%3C/strong%3E

496 ❘ CHAPTER 15 THE INTERWEBS

Now when you visit that URL, you should see something like this:

Name Value
job <hr/>hi there!

WARNING A common mistake when working with user data submitted from the

web is to encode HTML data as soon as you receive it. That ensures that no one

can forget to encode the data before it is sent out to a web page. Unfortunately,

someone invariably forgets and re-encodes the data, causing strange things like

&amp; and other weirdness to show up on the web page.

A stronger reason, however, is that you might want to use the data for something

else that is not web-related. If you export the data to a spreadsheet, your users

may not be impressed to see HTML entities there.

As a general rule, encode the HTML data right before it’s to be rendered in

HTML and not before.

And if you look at the source code, you can see this (formatted to fi t the page):

<tr>
 <td>job</td>
 <td><hr/>hi there!</td>
</tr>

The encode_entities function from HTML::Entities encodes strings into their corresponding
HTML entities. For example, < becomes < and > becomes >.

There are hundreds of predefi ned character entities for HTML that are beyond the scope of what
you’re doing here, but see http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_
entity_references for a complete list. For the brave, you can also read the W3C specifi cation
at http://www.w3.org/TR/REC-html40/sgml/entities.html. Be warned, though: W3C
specifi cations are not designed to be easy to read. They’re designed to be complete.

Handling POST Requests

So far, you’ve been handling GET requests. If you want to pass extra data to the page, you do so
via the query string in the URL. However, if you have data that should not be in a URL, such as
a username and password, people will be upset when they share that URL with someone before
noticing that they’re sharing their private data. This is not to recommend POST as a security tool
because clever hackers can still get at POST data if they know what they’re doing, but at least
sharing a link won’t expose the contents of your e-mail.

This is where POST comes in. In HTTP, your client would send a POST request that looks similar to this:

POST /login HTTP/1.1
Content-Length: 31
Content-Type: application/x-www-form-urlencoded

c15.indd 496c15.indd 496 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.w3.org/TR/REC-html40/sgml/entities.html
http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references

A Brief Introduction to HTTP ❘ 497

Host: localhost:5000
Origin: http://localhost:5000
Referer: http://localhost:5000/login

username=ovid&password=youwish

In this example, the POST tells the server that the data is in the entity body. The entity body begins
after two consecutive newlines (after the Referer: header in this example). Because the POST
content is sent in the entity body, it does not show up in the URL.

WARNING Many developers believe that because a POST puts the data in the

entity body, it’s more secure than a GET. Aside from people copying and pasting

sensitive data in a URL, it is not more secure. If you want more security, there are

many things you can do, including switching to HTTPS.

Now create a login page. This page doesn’t actually “work” in the sense to allow you to log in (hey,
this is an intro!), but it shows how a POST request works and also lets you see a bit more refactoring
of the params.psgi application.

First, create templates/login.tt with the following:

<html>
 <head><title>Login</title></head>
 <body>
 <fieldset>
 <legend>Pretend to Login, please</legend>
 <form action=”/login” method=”POST”>
 <table>
 <tr><td>Username</td><td><input type=”text”
 name=”username” /></td></tr>
 <tr><td>Password</td><td><input type=”password”
 name=”password” /></td></tr>
 </table>
 <div align=”center”><input type=”submit” value=”Submit” /></div>
 </form>
 </body>
</html>

This doesn’t actually have any template parameters in it, and there are better ways to handle it than
putting it in templates/, but this is fi ne for your purposes. Note that the form’s action sends you
back to /login because that path is what handles the “login” request.

NOTE A couple of things about your HTTP POST example: First, your author

knows that Referer: is misspelled. Sadly, this happened a long time ago and

became formalized in RFC 1945, released in 1996. Pedants lament; the rest of us

deal with it.

Also, your Content-Type: is application/x-www-form-urlencoded. There are

plenty of others available but aren’t covered here.

c15.indd 497c15.indd 497 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000
http://localhost:5000/login

498 ❘ CHAPTER 15 THE INTERWEBS

When you render that HTML, it should
resemble Figure 15-2.

Now to see how to render it, modify your
params.psgi to contain the following code:

use strict;
use warnings;

use Plack::Builder;
use Plack::Request;
use Template::Tiny;
use File::Slurp ‘read_file’;
use HTML::Entities ‘encode_entities’;

builder {

 mount ‘/’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my @params = get_params_array($request);
 my $content = get_content(
 ‘templates/params.tt’,
 {
 params => \@params,
 have_params => scalar @params,
 }
);
 return response($request, $content);
 };

 mount ‘/login’ => sub {
 my $request = Plack::Request->new(shift);
 my $content;
 if ($request->param(‘username’) && $request->param(‘password’)) {
 my @params = get_params_array($request);
 $content = get_content(
 ‘templates/params.tt’,
 {
 params => \@params,
 have_params => scalar @params,
 }
);
 }
 else {
 $content = get_content(‘templates/login.tt’);
 }
 return response($request, $content);
 };
};

sub get_params_array {
 my $request = shift;
 my @params;

FIGURE 15-2

c15.indd 498c15.indd 498 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 499

 foreach my $param (sort $request->param) {
 my $values = join ‘,’ => $request->param($param);
 push @params => {
 name => encode_entities($param),
 value => encode_entities($values)
 };
 }
 return @params;
}

sub response {
 my ($request, $content) = @_;
 my $response = $request->new_response(200);
 $response->content_type(‘text/html’);
 $response->content($content);
 return $response->finalize;
}

sub get_content {
 my ($file, $vars) = @_;
 $vars ||= {};
 my $template_code = read_file($file);
 my $template = Template::Tiny->new;
 my $output;
 $template->process(\$template_code, $vars, \$output);
 return $output;
}

You factored out your response() generation into its own subroutine. The code to get the content
for the parameters has also been factored into get_params_array(). It takes the request as an
argument and returns the array of parameter key/value pairs. That leaves you with your builder
section,

You can still recognize the / path when you understand the get_params_array() and response()
code. It does the same thing it did before. The “login” code merely checks to see that you have
POSTed both a username and a password (any will do). If you haven’t, it renders the login form. If
you have, it renders the templates/params.tt page that you saw from your previous example.

Try it now by going to http://localhost:5000/login. Any username and password combination
should return the template that shows the values you entered. For example, if you entered ovid and
youwish for your username and password, you should see this:

Our list of params:
Name Value
password youwish
username ovid

The URL, however, remains http://localhost:5000/login. As far as Plack::Request (and
many other request handlers) is concerned, it makes no difference if it reads your params from a
POST or a GET. Thus, even if you switch this to a GET request, you’ll still see the table listing params:

http://localhost:5000/login?username=ovid;password=youwish

c15.indd 499c15.indd 499 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/login
http://localhost:5000/login
http://localhost:5000/login?username=ovid;password=youwish

500 ❘ CHAPTER 15 THE INTERWEBS

You can protect against this, if you want, by allowing only processing of the username and
password with a POST request method:

if (‘post’ eq lc $request->method
 && $request->param(‘username’)
 && $request->param(‘password’))
{
 return response($request, get_params_content($request));
}

WARNING I can’t issue enough warnings in this chapter that say the code

presented here is not secure. Internet security is a serious problem and we are

presenting this information as examples only. The management regrets harping

on this, but it’s important.

Sessions

Your author would ask, at this point, for all serious web professionals to turn to the next section
and ignore the horrible, horrible abuse of sessions that happen here.

HTTP is, by design, a stateless protocol. This means that each request is independent of every other
request. In the early days of the web, every time you visited a web page, the server had no idea you
had been there before. Then a Netscape employee named Lou Montulli had the brilliant idea to
take “magic cookies” (no, not the type you buy in Amsterdam), which were already in use in other
software, and implement them in Netscape Navigator, a browser popular back in the mid-to-late
1990s. This was one of the most important events in the history of the web. Now, if a browser
returns a cookie to a host, the host can know that the user had previously visited.

In the code that follows, Plack::Session uses cookies to pass a session key back and forth
between the Plack software and the client. The Plack software uses the value of the cookie to look
up its in-memory session data. Because this data is not persistent, it cannot survive between server
restarts. In serious Comp applications, session data is generally saved in a persistent state, such as in
a database or memcached.

TRY IT OUT Using Cookies to Pass a Session Key

Now let the abuse begin!

 1. Install Plack::Middleware::Session from the CPAN.

 2. At the top of your params.psgi, after the modules you use, add the following two lines:

use Plack::Session;
use constant SESSION_TIME => 30;

The session time is in seconds. You only use 30-second sessions because your author is sadistic.
Feel free to adjust that to taste.

c15.indd 500c15.indd 500 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 501

 3. Add the following two subroutines:

sub time_remaining {
 my $session = shift;
 my $remaining = SESSION_TIME - (time - $session->get(‘time’));
 $remaining = 0 if $remaining < 0;
 return $remaining;
}

sub session_expired {
 my ($request, $session) = @_;
 return if time_remaining($session);
 $session->expire;
 my $response = $request->new_response;
 $response->redirect(‘/login’);
 return $response->finalize;
}

 ➤ The time_remaining() subroutine returns the number of seconds left in your session.

 ➤ The session_expired() subroutine returns false if you have time remaining in your
session.

 4. Change your templates/params.tt fi le to this:

<html>
 <head><title>Parameters</title></head>
 <body>
 <p>Hello [% username %]. You have [% time %] seconds left.</p>
[% IF have_params %]
 <p>Our list of params:</p>
 <table rules=”all”>
 <tr><th>Name</th><th>Value</th></tr>
 [% FOREACH param IN params %]
 <tr><td>[% param.name %]</td><td>[% param.value %]</td></tr>
 [% END %]
 </table>
[% ELSE %]
 <p>No params supplied!</p>
[% END %]
 </body>
</html>

The only change is immediately after the body tag where you display the session username and
the time remaining.

 5. Rewrite your builder, again, to match the following:

builder {
 enable ‘Session’;

 mount ‘/’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);

c15.indd 501c15.indd 501 10/08/12 8:27 PM10/08/12 8:27 PM

502 ❘ CHAPTER 15 THE INTERWEBS

 my $session = Plack::Session->new($env);
 if (my $redirect = session_expired($request, $session)) {
 return $redirect;
 }
 my @params = get_params_array($request);
 if ($session->get(‘from_login’)) {
 push @params => {
 name => ‘username’,
 value => $session->get(‘username’),
 };
 $session->remove(‘from_login’);
 }
 my %template_vars = (
 params => \@params,
 have_params => scalar(@params),
 username => $session->get(‘username’),
 time => remaining_time($session),
);
 my $content = get_content(‘templates/params.tt’, \%template_vars,);
 return response($request, $content);
 };

 mount ‘/login’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my $session = Plack::Session->new($env);
 my $content;
 if ($request->param(‘username’) && $request->param(‘password’)) {
 $session->set(‘username’, $request->param(‘username’));
 $session->set(‘time’, time);
 $session->set(‘from_login’, 1);
 my $response = $request->new_response;
 $response->redirect(‘/’);
 return $response->fi nalize;
 }
 else {
 $content = get_content(‘templates/login.tt’);
 }
 return response($request, $content);
 };
};

When you fi rst restart the app, you’re presented with the login screen. If you log in with a username of
Bob and a password of Dobbs. You’ll see a screen like this:

Hello Bob. You have 30 seconds left.
Our list of params:
Name Value
username Bob

You can refresh this screen as often as you like, and as soon as you have zero seconds left, you’re
redirected to the /login screen. Your “username” and the time left on your session are stored in the
session.

c15.indd 502c15.indd 502 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 503

How It Works

When you create a new session:

my $session = Plack::Session->new($env);

How does it know that it’s the session that belongs to you? More important, when you come back to
the site, why is the session still there? How does that extra data (such as the time) magically persist?

There are two components:

 ➤ The session store

 ➤ The key to open your bit of the store. That key is stored in a cookie in your browser.

When you fi rst create a session object, the session key is stored in Plack’s internal $env hash, and the
value is the session data. You don’t need to set this manually (though you can) because in the examples
used in this chapter, it happens automatically.

When you fi ll in a username and password with your example code, the server responds with
something like the following:

HTTP/1.1 302 Found
Content-Length: 0
Date: Thu, 12 Apr 2012 08:58:04 GMT
Location: /
Server: HTTP::Server::PSGI
Set-Cookie: plack_session=9f7539872c9b15d1ac30b8557742f3; path=/

The 302 Found, combined with the Location: / header tells the browser to redirect to /. In this case,
you’ll likely be redirecting to http://localhost:5000/. However, the Set-Cookie line says, “Set
a Cookie with the Name plack_session and the Value 9f7539872c . . .” Every browser generally
receives a different cookie value.

When your browser requests the new location, it returns the following Cookie: header:

Cookie: plack_session=9f7539872c9b15d1ac30b8557742f3

The software sees the session key and now knows the key to “unlock” your session data.

This has been only a brief discussion of this topic and glosses over many technical issues.

When you have entered a username and password, the following code executes:

if ($request->param(‘username’) && $request->param(‘password’)) {
 $session->set(‘username’, $request->param(‘username’));
 $session->set(‘time’, time);
 $session->set(‘from_login’, 1);
 my $response = $request->new_response;
 $response->redirect(‘/’);
 return $response->finalize;
}

This sets the username, time, and from_login values in your session. In your toy example, this session
is held in memory.

c15.indd 503c15.indd 503 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/

504 ❘ CHAPTER 15 THE INTERWEBS

When the browser is redirected to /, the following is the relevant bit of code related to the session:

if (my $redirect = session_expired($request, $session)) {
 return $redirect;
}
my @params = get_params_array($request);
if ($session->get(‘from_login’)) {
 push @params => {
 name => ‘username’,
 value => $session->get(‘username’),
 };
 $session->remove(‘from_login’);
}

The session_expired() function returns a redirect to /login if the session is greater than SESSION_
TIME seconds ago or if there is no username in the session.

NOTE You could have accessed the session cookie directly and set the

expiration time on that. However, savvy end users can edit their cookies and

change the time manually, artifi cially extending their session life. That’s why it’s

a good idea to not rely on the cookie expiration time for session length.

The $session->get(‘from_login’) checks to see if the from_login value was set in the session (you
can’t rely on the Referer: value because the end user can change that, too) and, if it were, the from_
login value is cleared, and the username is added to the list of params for rendering.

TRY IT OUT Create a Simple Character Generator for Role-playing Games

Now that you have some of the basics of web application under your belt, put it all together to create
a character generator for a game. You can choose your name, place of birth, and profession. You
can have statistics for strength, intelligence, and health randomly generated, but they adjust for your
profession and birthplace. This example is longer than your author would like because there is a lot of
data that should be stored in a confi guration fi le or database, which hasn’t been covered yet.

This Try It Out also requires one .psgi fi le and two templates. All the code for this Try It Out is code
fi le character.psgi, templates/character.tt, and templates/character_display.tt.

 1. Type in the following program, and save it as character.psgi:

use strict;
 use warnings;

 use Plack::Builder;
 use Plack::Request;
 use Template::Tiny;
 use File::Slurp ‘read_fi le’;

c15.indd 504c15.indd 504 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 505

 use HTML::Entities ‘encode_entities’;

 builder {

 mount ‘/’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my $template = ‘templates/character_display.tt’;
 my $content;
 if ($request->param) {
 my ($character, $errors)
 = generate_character($request);
 $template = ‘templates/character.tt’ if @$errors;
 $content = get_content(
 $template,
 {
 character => $character,
 errors => $errors,
 }
);
 }
 else {
 $content = get_content(
 $template,
 { no_character_found => 1 }
);
 }
 return response($request, $content);
 };

 mount ‘/character’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my $content = get_content(‘templates/character.tt’);
 return response($request, $content);
 };
 };

 sub generate_character {
 my $request = shift;
 my %adjustments_for = (
 profession => {
 programmer => {
 strength => -3,
 intelligence => 8,
 health => -2,
 },
 pilot => { intelligence => 3 },
 redshirt => { strength => 5 }
 },
 birthplace => {
 earth => {
 strength => 2,
 intelligence => 0,
 health => -2,
 },
 mars => { strength => -5, health => 2 },

c15.indd 505c15.indd 505 10/08/12 8:27 PM10/08/12 8:27 PM

506 ❘ CHAPTER 15 THE INTERWEBS

 vat => { intelligence => 2, health => -2 }
 },
);

 my @errors;
 my %label_for = (
 profession => {
 pilot => “Starship Pilot”,
 programmer => “Programmer”,
 redshirt => “Doomed”,
 },
 birthplace => {
 earth => “Earth”,
 mars => “Mars”,
 vat => “Vat 3-5LX”,
 },
);
 my %value_for = map { $_ => roll_dice() }
 qw/strength intelligence health/;

 foreach my $attribute (qw/name profession birthplace/) {
 if (my $value = $request->param($attribute)) {
 if (my $adj=$adjustments_for{$attribute}{$value}) {
 while (my ($stat, $adjustment) = each %$adj) {
 $value_for{$stat} += $adjustment;
 }
 }
 $value_for{$attribute} =
 encode_entities(
 $label_for{$attribute}{$value} || $value
);
 }
 else {
 push @errors => “\U$attribute is required”;
 }
 }
 if (‘redshirt’ eq $request->param(‘profession’)) {
 $value_for{health} = 1;
 }
 return \%value_for, \@errors;
 }

 sub roll_dice {
 my $total = 0;
 for (1 .. 3) {
 $total += 1 + int(rand(10));
 }
 return $total;
 }

 sub response {
 my ($request, $content) = @_;
 my $response = $request->new_response(200);
 $response->content_type(‘text/html’);
 $response->content($content);
 return $response->fi nalize;

c15.indd 506c15.indd 506 10/08/12 8:27 PM10/08/12 8:27 PM

A Brief Introduction to HTTP ❘ 507

 }

 sub get_content {
 my ($fi le, $vars) = @_;
 $vars ||= {};
 my $template_code = read_fi le($fi le);
 my $template = Template::Tiny->new;
 my $output;
 $template->process(\$template_code, $vars, \$output);
 return $output;
 }

 2. You need a form to let the users make choices about their character. Save the following as
templates/character.tt.

<html>
 <head><title>Character Generation</title></head>
 <body>
 <fi eldset>
 <legend>Create your character</legend>
[% FOREACH error IN errors %]
 <p style=”color:red; font-weight:bold”>[% error %]</p>
[% END %]
 <form action=”/” method=”POST” name=”awesome”>
 <table>
 <tr><td>Name</td>
 <td>
 <input type=”text” name=”name”
 value=”[% character.name %]” />
 </td>
 </tr>
 <tr>
 <td>Profession</td>
 <td>
 <select name=”profession”>
 <option value=”programmer”>Programmer</option>
 <option value=”pilot”>Starship Pilot</option>
 <option value=”redshirt”>Security Offi cer
 </option>
 </select>
 </td>
 </tr>
 <tr>
 <td>Birth place</td>
 <td>
 Earth <input type=”radio” name=”birthplace”
 value=”earth” /> |
 Mars <input type=”radio” name=”birthplace”
 value=”mars” /> |
 Vat 3-5LX <input type=”radio” name=”birthplace”
 value=”vat” />
 </td>
 </tr>
 </table>
 <div align=”center”>

c15.indd 507c15.indd 507 10/08/12 8:27 PM10/08/12 8:27 PM

508 ❘ CHAPTER 15 THE INTERWEBS

 <input type=”submit” value=”Submit” />
 </div>
 </form>
 </fi eldset>
 </body>
</html>

 3. Next, you need a form to display the generated character. Save the following as templates/
character_display.tt.

<html>
 <head>
 <title>The Awesome “This does nothing!” Game</title>
 </head>
 <body>
 <fi eldset>
[% IF no_character_found %]
 <legend>Create your character</legend>
 <p>
 Click here to create a character
 </p>
[% ELSE %]
 <legend>Character Stats</legend>
 <table style=”border-spacing:5px;”>
 <tr><td>Name</td>
 <td>[% character.name %]</td></tr>
 <tr><td>Profession</td>
 <td>[% character.profession %]</td></tr>
 <tr><td>Birth place</td>
 <td>[% character.birthplace %]</td></tr>
 <tr><td>Strength</td>
 <td>[% character.strength %]</td></tr>
 <tr><td>Intelligence</td>
 <td>[% character.intelligence %]</td></tr>
 <tr><td>Health</td>
 <td>[% character.health %]</td></tr>
 </table>
 <p>

 Click here to generate another character.

 </p>
[% END %]
 </fi eldset>

 </body>
</html>

 4. Run the program with plackup character.psgi. In your favorite web browser, go to http://
localhost:5000/. You should see a link reading Click here to create a character.

When you click that link, you’re taken to a form with a fi eld for entering the character name, a drop-down
for selecting the character profession, and three radio buttons for choosing Earth, Mars, or Vat 3-5LX as
your birthplace. If you fi ll out the form completely and click Submit, a character is randomly generated for
you and displayed. If you forget to fi ll out one of the options, you’ll return to the form to see a list of errors.
(Due to limitations in how Template::Tiny works, when errors occur, only your name will be fi lled in.)

c15.indd 508c15.indd 508 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/
http://localhost:5000/

A Brief Introduction to HTTP ❘ 509

How It Works

Each of the templates is simple, and just glancing at them should explain what they do. However, the
.psgi fi le is a little more complex.

The get_content() and response() subroutines were used and explained earlier in the chapter. The
roll_dice() subroutine simulates the rolling of three ten-sided dice and sums them for a character
stat. Thus, each stat of Strength, Intelligence, and Health can have a base score of 3 to 30 (rolling
three ones and rolling three tens, respectively).

The generate_character() code is the same procedural code you’ve been writing throughout the
entire book. It has too much data hard-coded into it, but for illustration purposes, it’s fi ne. It’s worth
reading to see how well-chosen variable names can make the code clear, so take a moment and do that.

 1: my %value_for = map { $_ => roll_dice() }
 qw/strength intelligence health/;
 2: foreach my $attribute (qw/name profession birthplace/) {
 3: if (my $value = $request->param($attribute)) {
 4: if (my $adj = $adjustments_for{$attribute}{$value}) {
 5: while (my ($stat, $adjustment) = each %$adj) {
 6: $value_for{$stat} += $adjustment;
 7: }
 8: }
 9: $value_for{$attribute} =
10: encode_entities(
 $label_for{$attribute}{$value} || $value);
11: }
12: else {
13: push @errors => “\U$attribute is required”;
14: }
15: }

For this code, consider the following:

 ➤ Line 1 sets random, default values for strength, intelligence, and health. Starting with line
2, you iterate over the values the user entered, and that’s when things are interesting.

 ➤ On line 3, if you don’t have a value for an attribute (actually, because you’re testing for truth, this
means that the number 0 cannot be a character name), control jumps to line 13 where you push
an error onto your errors array.

 ➤ On line 4, you see if you have $adjustments_for{$attribute}{$value}. That’s easy to read, and
when you substitute the values for the variables, if someone chose Mars for their birthplace, that line
evaluates to $adjustments_for{birthplace}{mars}. That points to the following hash reference:

{ strength => -5, health => 2 }

You then iterate over the keys and values and adjust the character’s base strength and health
accordingly.

 ➤ Lines 9 and 10 assign the label for the attribute. This is the value you display on the resulting
templates/character_display.tt page. The || $value is there because you don’t have default
display values for the character name.

c15.indd 509c15.indd 509 10/08/12 8:27 PM10/08/12 8:27 PM

510 ❘ CHAPTER 15 THE INTERWEBS

It’s the builder that you want to focus on because this contains the web application control fl ow logic
you’re concerned with. You have two paths mounted, / and /character. The latter is used to generate
the form and you look at that fi rst.

mount ‘/character’ => sub {
 my $env = shift;
 my $request = Plack::Request->new($env);
 my $content = get_content(‘templates/character.tt’);
 return response($request, $content);
};

As you can see, all you do here is get the contents of their form submission and display the templates/
character.tt page, which displays the form the users will use to fi ll out their character information.
When you work through the logic of the program, you can see that for /character, you never have any
parameters submitted here.

The / path is where the interesting bit is:

 1: mount ‘/’ => sub {
 2: my $env = shift;
 3: my $request = Plack::Request->new($env);
 4:
 5: my $template = ‘templates/character_display.tt’;
 6: my $content;
 7: if ($request->param) {
 8: my ($character, $errors)
 = generate_character($request);
 9: $template = ‘templates/character.tt’ if @$errors;
10: $content = get_content(
11: $template,
12: {
13: character => $character,
14: errors => $errors,
15: }
16:);
17: }
18: else {
19: $content = get_content(
 $template,
 {no_character_found=>1}
);
20: }
21: return response($request, $content);
22: };

The fi rst time you visit http://localhost:5000/, the $template name is set to templates/
character_display.tt on line 5. However, line 7 shows that you have not submitted parameters and
thus control will fall to line 19, where you get the content of the template and pass it a hashref with
no_character_found having a true value. In the template, that causes this path to be executed:

[% IF no_character_found %]
 <legend>Create your character</legend>
 <p>

c15.indd 510c15.indd 510 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/

Web Clients ❘ 511

 Click here to create a character
 </p>
[% ELSE %]

So click the link to create your character, fi ll out the form,
and click Submit. That will POST your data to /. At this
point, the test in line 7 shows that you did have parameters
submitted and you attempted to generate the character. If
there are errors, such as no name found, the template is set
back to templates/character.tt and the list of errors
displays. Figure 15-3 shows an example of what the web page
might look like if you have not fi lled it in correctly.

If you did complete the form, the generated character
information is sent to templates/character_display.tt
and you see your new character in all its glory.

WEB CLIENTS

Whew! You covered a huge amount about the concepts behind writing web applications, but what
about writing web clients? The client most people are familiar with is the web browser, but that’s
for, well, browsing the web.

Many times you have specifi c tasks you want a client to accomplish, but a web browser might be a
poor choice. So instead, you write your own client to do the task for you. For example, you might
want to get all the images from a particular web page. If there are hundreds of images, it might be
easier to write a client to get those images for you.

FIGURE 15-3

WARNING Before going any further, you must remember this: Web clients are

fun and web clients are easy to write. They can save you a lot of trouble but can

also get you in a lot of trouble. Many websites have extremely clear terms of

service (TOS) that state that you may not use software to “spider” or “automate”

their website. Others require you to go through offi cial channels to get an API

key before you write a client.

They’re not doing this to be mean. They’re doing this for a variety of reasons.

They might have limited resources and your web client might spider them so

fast that they have trouble responding to requests. Or they might have time-

sensitive content that should not be stored, or it might be copyrighted, and so

on. Before you write a client to automate some work with a website, be sure to

read their TOS to understand what your rights and responsibilities are.

There are ways to work around websites blocking your clients, but we’re not

going to discuss them here, and I encourage you to think carefully before you

do. If you must run a client you wrote against the website of someone trying to

block you, ask permission, and if you don’t get it, don’t do it.

c15.indd 511c15.indd 511 10/08/12 8:27 PM10/08/12 8:27 PM

512 ❘ CHAPTER 15 THE INTERWEBS

As a general pattern for writing a web client, you go through three steps:

 1. Navigate to where you’re trying to go.

 2. Fetch the content.

 3. Parse the content.

Now check out some examples.

NOTE When you write a web client, you need to understand the various

HTTP response codes that you may receive. For example, a 200 means the

request succeeded, and a 404 is a File Not Found. There are many possible

response codes that can be hard to remember. Check out http://www.w3

.org/Protocols/rfc2616/rfc2616-sec10.html to understand a bit more

about them.

NOTE The libwww-perl module includes many modules that make life easier

while writing web clients. However, they do not support HTTPS (encrypted)

URLs. You need to install LWP::Protocol::https separately. Otherwise, you

may get strange errors when writing clients.

Extracting Links from Web Pages

Sometimes you want to fetch the links on a web page. You can use LWP::Simple from the
libwww-perl distribution to get the HTML for a web page and HTML::SimpleLinkExtor to extract
the links.

You need to download both of these modules from the CPAN:

$ cpan libwww-perl HTML::SimpleLinkExtor

So the following (code fi le listing_15_1_get_links.pl) is a little script to get you started:

use strict;
use warnings;

use HTML::SimpleLinkExtor;
use LWP::Simple ‘get’;

my $url = shift @ARGV or die “Hey, gimme a URL!”;
my $html = get($url) or die “Could not get ‘$url’”;
my $extractor = HTML::SimpleLinkExtor->new;

c15.indd 512c15.indd 512 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Web Clients ❘ 513

$extractor->parse($html);

my @links = $extractor->links;

unless (@links) {
 print “No links founds for $url\n”;
 exit;
}

for my $link (sort @links) {
 print “$link\n”;
}

You can run this against, say, a popular search engine like this:

http://searchenginename/

It prints out a sorted list of all links found on that page. The get() function exported from
LWP::Simple accepts a URL and returns the contents. The HTML::SimpleLinkExtor is used for
extracting the links. You can play with this for a few web pages and you’ll be amazed at how many
links they have. But after a while, you may get tired of the No links found error, particularly if you
visit the web page and you know that there are links there. So you can update the program using
LWP::UserAgent instead of LWP::Simple:

use strict;
use warnings;

use HTML::SimpleLinkExtor;
use LWP::UserAgent;

my $url = shift @ARGV or die “Hey, gimme a URL!”;
my $ua = LWP::UserAgent->new;
$ua->timeout(10);

my $response = $ua->get($url) or die “Could not get ‘$url’”;

unless ($response->is_success) {
 die $response->status_line;
}

my $html = $response->decoded_content;
my $extractor = HTML::SimpleLinkExtor->new;
$extractor->parse($html);

my @links = $extractor->links;

unless (@links) {
 print “No links founds for $url\n”;
 exit;
}

for my $link (sort @links) {
 print “$link\n”;
}

c15.indd 513c15.indd 513 10/08/12 8:27 PM10/08/12 8:27 PM

http://searchenginename/

514 ❘ CHAPTER 15 THE INTERWEBS

Now try running this with perl listing_15_1_get_links.pl whitehouse.gov. (Note the lack
of http://.) You should get an error similar to the following:

400 URL must be absolute at listing_15_1_get_links.pl line 14.

Ah! That’s better. Now at least you have some idea of what your errors are.

Extracting Comments from Web Pages

Your author has a friend, whom we shall presume wishes to be nameless, who has a habit of
responding in online forums in a friendly, informative manner. One of the forums she participates in
allows a subset of HTML to be used, including HTML comments. So she embeds HTML comments
in her replies. In HTML, they look like this:

<!-- this is a comment -->

The comments can span multiple lines. Her HTML comments span multiple jurisdictions of vitriol
spewed at the person she is responding to. So let’s write a small program that prints the HTML
comments in a web page (code fi le listing_15_2_get_comments.pl). Sadly, I cannot point you to
her comments as this is a family-friendly book, but you’ll enjoy the end result nonetheless.

use strict;
use warnings;

use HTML::SimpleLinkExtor;
use HTML::TokeParser::Simple;

my $url = shift @ARGV or die “Hey, gimme a URL!”;
my $ua = LWP::UserAgent->new;
$ua->timeout(10);

my $response = $ua->get($url) or die “Could not get ‘$url’”;

unless ($response->is_success) {
 die $response->status_line;
}

my $html = $response->decoded_content;
my $parser = HTML::TokeParser::Simple->new(\$html);

while (my $token = $parser->get_token) {
 print $token->as_is, “\n” if $token->is_comment;
}

This program uses HTML::TokeParser::Simple to parse the HTML returned by LWP::UserAgent.
There are a wide variety of parsers available, some more suited to extracting information than
others, but this is an easy one to start with. (Disclaimer: Your author wrote it.)

The key portion of this code is here:

1: my $parser = HTML::TokeParser::Simple->new(\$html);
2: while (my $token = $parser->get_token) {

c15.indd 514c15.indd 514 10/08/12 8:27 PM10/08/12 8:27 PM

Web Clients ❘ 515

3: print $token->as_is, “\n” if $token->is_comment;
4: }

If you have the text of a web page, you must pass it as a reference to the constructor. Then, you can
keep calling $parser->get_token to get the next “bit” of the web page. Tokens are things such as
HTML tags, HTML comments, text, and so on. I’ll walk through all the tokens and only print the
ones that are comments. Easy, eh?

One major web comic has an ASCII pterodactyl embedded in his comments. Another site has
<!--IE6sux--> 54 times. You can have a lot of fun fi nding unexpected comments on websites.
(Remember to obey their terms of service.)

Filling Out Forms Programmatically

OK, so you wrote two simple examples so far. Boooooring. Now do something a little more involved;
write some software to fi ll out a form on a website to see what happens when you submit it!

Er, except that’s hard to do in a book for a couple of reasons: Websites often change their content or
TOS and your author would not like to be sued down to his skivvies for encouraging people to do
this. Fortunately, you have a workaround.

The last Try It Out section had a web form that you can fi ll in and submit. Perfect! So go back
and run plackup characters.psgi for this example, and leave that running in another terminal
window. That’s going to be the web server you’ll run this example against. You need to install
WWW::Mechanize and HTML::TableExtract to make this work.

Type in the following example, and save it as listing_15_3_post_character.pl (a code fi le is
available for this on the website):

use strict;
use warnings;

use WWW::Mechanize;
use HTML::TableExtract;

my $url = ‘http://localhost:5000/’;
my $mech = WWW::Mechanize->new;
$mech->get($url);
$mech->follow_link(text_regex => qr/click here/i);
$mech->submit_form(
 form_number => 1,
 fields => {
 name => ‘Bob’,
 profession => ‘redshirt’,
 birthplace => ‘mars’,
 },
);

my $extractor = HTML::TableExtract->new;
$extractor->parse($mech->content);

foreach my $table ($extractor->tables) {

c15.indd 515c15.indd 515 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:5000/

516 ❘ CHAPTER 15 THE INTERWEBS

 foreach my $row ($table->rows) {
 printf “%-20s - %s\n” => @$row;
 }
}

Assuming that you didn’t do something silly like change the HTML in the character.psgi
example, you should get output similar to the following (obviously the numeric values will be
different):

Name - Bob
Profession - Doomed
Birth place - Mars
Strength - 24
Intelligence - 22
Health - 1

It looks like your poor red shirt is going to die. On the plus side, at least he’s smart enough to know it.

WWW::Mechanize has a lovely interface. The code looks remarkably similar to what you might do as
a human:

my $mech = WWW::Mechanize->new;
$mech->get($url);
$mech->follow_link(text_regex => qr/click here/i);

As you will recall, when you go the main page, it has a link telling you to Please click here to
create a new character.

There is only one form on the page, so submit your values to form number 1.

$mech->submit_form(
 form_number => 1,
 fields => {
 name => ‘Bob’,
 profession => ‘redshirt’,
 birthplace => ‘mars’,
 },
);

NOTE HTML forms can also have a name attribute. This can make maintaining

them much easier if you use WWW::Mechanize and don’t want to renumber forms

if you add a new one to a page.

$mech->submit_form(

 form_name => ‘character’,

 fields => {

 name => ‘Bob’,

 profession => ‘redshirt’,

 birthplace => ‘mars’,

 },

);

c15.indd 516c15.indd 516 10/08/12 8:27 PM10/08/12 8:27 PM

Web Clients ❘ 517

Obviously, you’d have to read the HTML of the page to know the names and appropriate values for
a given form, but it’s pretty darned easy to do. Just make sure your fi eld refer to the value=”…” data
and not the human-visible names.

Then use HTML::TableExtract to get the values from the table printed on the next page:

my $extractor = HTML::TableExtract->new;
$extractor->parse($mech->content);
foreach my $table ($extractor->tables) {
 foreach my $row ($table->rows) {
 printf “%-20s - %s\n” => @$row;
 }
}

To be fair, this was a simple example. If you need to do this with more complicated websites, you
need to read the documentation carefully.

NOTE If you had submitted a web form to generate a character's stats, imagine

if you hadn't had access to the back-end code. By repeatedly submitting the

form and collecting the data, you could eventually get an idea of what’s going

on behind the scenes, such as calculating the average value and standard

deviation of stats based on profession and birth place.

This is one of the many reasons why websites have annoying CAPTCHAs: It’s

hard to stop people from automating things that you don’t want automated.

Be aware that many web developers put all their form validation in JavaScript and not on the back
end. Thus, if you use these techniques, you may submit data and generate errors that are hard to
reproduce using a browser (sometimes even if you have JavaScript disabled). Be careful with them
and don’t use them irresponsibly.

TRY IT OUT Using Google’s JSON API to Get Directions

So far, you’ve been writing a few simple clients that read data from HTML. This is often called
scraping websites, and it’s an unfortunate practice because HTML is not designed to be machine-
readable in the sense of “extracting useful information.” However, many websites offer APIs for
precisely that purpose. You can use the Google Directions API to fi nd driving directions between two
points. I won’t cover the API in detail, but Google offers excellent documentation at:

https://developers.google.com/maps/documentation/directions/

You can use its JSON API because JSON is easy to parse. Essentially, the JSON::Any class enables you
to convert Google Maps API into a hash reference that you can read directly. Use this API to fi nd the
driving directions between the lovely Portland, Oregon, and the somewhat less lovely Boring, Oregon
(code fi le example_15_1_google_directions.pl).

c15.indd 517c15.indd 517 10/08/12 8:27 PM10/08/12 8:27 PM

https://developers.google.com/maps/documentation/directions/

518 ❘ CHAPTER 15 THE INTERWEBS

 1. Type in the following program, and save it as example_15_1_google_directions.pl:

use strict;
use warnings;

use WWW::Mechanize;
use HTML::Strip;
use JSON::Any;
use URI::Encode ‘uri_encode’;
use utf8::all;

my $origin = uri_encode(‘Boring, OR’);
my $destination = uri_encode(‘Portland, OR’);

my $url=”http://maps.googleapis.com/maps/api/directions/json”;
my $query=”origin=$origin&destination=$destination&sensor=false”;
my $mech = WWW::Mechanize->new;
$mech->get(“$url?$query”);

my $object = JSON::Any->new->decode($mech->content);

unless (‘OK’ eq $object->{status}) {
 die $object->{status};
}

my $route = $object->{routes}[0];
my $copyrights = $route->{copyrights};
my $warnings = $route->{warnings};
my $legs = $route->{legs}[0]; # only take the fi rst
my $distance = $legs->{distance}{text};
my $duration = $legs->{duration}{text};

print
“$copyrights\nThe trip is $distance long and lasts $duration\n”;
print join “\n” => @$warnings;
print “\n”;

my $strip = HTML::Strip->new;

foreach my $step (@{ $legs->{steps} }) {
 my $distance = $step->{distance}{text};
 my $duration = $step->{duration}{text};
 my $instructions = $strip->parse($step->{html_instructions});
 $strip->eof;
 print “$instructions for $distance ($duration)\n”;
}

 2. Run the program with perl example_15_1_google_directions.pl. You should see output
similar to the following (formatted to fi t the page):

Map data ©2012 Google, Sanborn
The trip is 23.3 mi long and lasts 37 mins
Head east on OR-212 E/Clackamas-Boring Hwy No 174 toward
 Meadow Creek Ln for 0.6 mi (2 mins)

c15.indd 518c15.indd 518 10/08/12 8:27 PM10/08/12 8:27 PM

http://maps.googleapis.com/maps/api/directions/json

Web Clients ❘ 519

Turn left to merge onto US-26 W toward Gresham/Portland
 for 13.6 mi (23 mins)
Turn right onto the I-205 N ramp for 0.1 mi (1 min)
Keep left at the fork and merge onto I-205 N for 1.7 mi
 (2 mins)
Take exit 21B to merge onto I-84 W/U.S. 30 W toward Portland
 for 5.7 mi (6 mins)
Take the I-5 S exit on the left toward
 City Center/Beaverton/Salem for 0.4 mi (1 min)
Keep right at the fork, follow signs for City Center and merge
 onto SE Morrison Bridge for 0.7 mi (1 min)
Continue onto SW Washington St for 0.2 mi (1 min)
Turn right onto SW 6th Ave Destination will be on the right
 for 0.2 mi (1 min)

How It Works

In a nutshell, you:

 ➤ Construct an appropriate URL.

 ➤ GET the URL from Google.

 ➤ Parse the JSON response.

 ➤ Profi t!

OK; that last bullet point should have read print.

First, load a bunch of modules you’re mostly familiar with:

use WWW::Mechanize;
use HTML::Strip;
use JSON::Any;
use URI::Encode ‘uri_encode’;
use utf8::all;

The JSON::Any module is a front end to other JSON modules that you may have installed. You
probably want to install the JSON module, but it requires a C compiler. If you can’t install that, the
JSON::PP (Pure Perl) module is a decent, but slow, substitute. The JSON::Any module tries to load
whatever JSON back end it can fi nd.

The HTML::Strip module is used to strip some HTML data from your results. The rest of the modules
you should already be familiar with.

Then construct the URL:

my $origin = uri_encode(‘Boring, OR’);
my $destination = uri_encode(‘Portland, OR’);
my $url=”http://maps.googleapis.com/maps/api/directions/json”;
my $query=”origin=$origin&destination=$destination&sensor=false”;

Naturally, you uri_encode() your $origin and $destination because you don’t want them breaking
your URL if you use data that must be encoded.

c15.indd 519c15.indd 519 10/08/12 8:27 PM10/08/12 8:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://maps.googleapis.com/maps/api/directions/json

520 ❘ CHAPTER 15 THE INTERWEBS

And you fetch the JSON and convert it into a hash reference (called $object because that’s what JSON
calls hashes):

my $mech = WWW::Mechanize->new;
$mech->get(“$url?$query”);
my $object = JSON::Any->new->decode($mech->content);

At this point, you could use Data:Dumper and print the hash reference:

use Data::Dumper;
print Dumper($object);

But you want something a bit easier to read. By reading the Google Maps API documentation, you can
fi gure out how to extract the correct data and print out each part of your route from Boring, Oregon
to the lovely Portland, Oregon.

This example shows you how APIs work, but there is a Google::Directions module on the CPAN,
along with many other Google:: modules. Google is awesome and using its APIs can help you solve
problems that would otherwise be diffi cult to solve. Thanks, Google!

SUMMARY

In this chapter, you learned some of the basics to write web applications. You used Plack extensively
to learn a bit about HTTP and how to read query parameters sent to your application via GET
and POST requests. You created simple templates to keep your HTML or other presentation code
separated from your application’s main logic. You also learned about how sessions and cookies work.

You have fi nally started learning to use your powers for evil (that’s the web clients), but we’d
appreciate it if you didn’t do that. You learned how to write software to read the HTML on a
website and print out interesting information about it. You also used WWW::Mechanize to automate
the process to fi ll out forms on web pages. Finally, you learned a bit about using Web APIs to get
access web services.

EXERCISES

 1. Update the character.psgi and related templates to include Education. A character can

study Combat, Medicine, or Engineering. These should give +2 to strength, health, and

intelligence, respectively.

 2. Using the updated characters.psgi from Exercise 1, update the WWW::Mechanize example

to generate 100 Programmer characters, born on Earth, with an Engineering education. Print

out the average stats for Strength, Intelligence, and Health, with the high and low values.

(Actually, the standard deviation would be better, but this is not a statistics book.)

c15.indd 520c15.indd 520 10/08/12 8:27 PM10/08/12 8:27 PM

Summary ❘ 521

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPT

HTTP A plain-text protocol to communicate between clients and servers.

PSGI A specifi cation of how web servers and applications can

communicate.

Plack A Perl implementation of PSGI.

Query string An encoded way of passing additional information to a web

application.

GET A way to fetch HTTP resources, with an embedded query string.

POST A way to modify HTTP resources.

Cookies Small bits of text data stored by your browser and returned to a

server.

Sessions A way to maintain information about a particular web client.

HTML::SimpleLinkExtor Extract links from HTML documents.

HTML::TokeParser::Simple Parse HTML documents.

WWW::Mechanize Automate the navigation of web pages.

c15.indd 521c15.indd 521 10/08/12 8:27 PM10/08/12 8:27 PM

c15.indd 522c15.indd 522 10/08/12 8:27 PM10/08/12 8:27 PM

Databases

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding Perl’s DBI module

 ➤ Connecting to databases

 ➤ Selecting data from databases

 ➤ Using binding parameters

 ➤ Changing your data

 ➤ Using transactions

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ example_16_1_fetch.pl

 ➤ lib/MyDatabase.pm

 ➤ listing_16_1_make_database.pl

 ➤ listing_16_2_populate_database.pl

 ➤ listing_16_3_select.pl

16

c16.indd 523c16.indd 523 09/08/12 9:13 AM09/08/12 9:13 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://WROX.COM
http://wrox.com

524 ❘ CHAPTER 16 DATABASES

A database is a place to store your data. It can be a regular fi le, a sheet of paper, or a hierarchical
database such as IMS (no longer widely used). Today, when most people say “database,” they’re
referring to what most people call relational databases. If you have a background in programming,
you’ve probably heard of several of them, such as MySQL, PostgreSQL, Oracle, Sybase, and many
others. Each of these offers a variety of different features, some favoring data integrity, others
focused on performance, and some striving for both.

In this chapter you acquire a minimum knowledge of using databases in Perl. You will use the
SQLite database and Perl’s DBI module. I chose SQLite because it’s easy to install and Perl’s DBI
module because it is the standard for connecting to databases. There are other tools, such as
object-relational mappers (ORMs) that try to hide some of the complexity of databases, but under
the hood, most of them use Perl’s DBI module.

Understanding how to use databases generally involves understanding Structured Query Language
(SQL). If you’re not familiar with it, many short tutorials on the web are available. This chapter
does not use complicated SQL, so a beginner’s knowledge is enough.

As with most of the chapters, this is an introduction to the topic, not a complete tutorial.

USING THE DBI

The DBI module’s name stands for DataBase Interface. It was invented by Tim Bunce and solved a
thorny problem; at one time, special code was available to connect with a handful of databases. You
had Oraperl, a version of Perl compiled with code that let you talk directly to the Oracle database.
You could also use Sybperl, a set of modules that let you talk to Sybase, but of course, the syntax
was different from Oraperl. This was fi ne if you wanted to talk to only one database and knew
that was never going to change. However, this approach had a couple problems:

 ➤ Switching databases, if needed, was hard.

 ➤ New developers had to learn a new interface.

Tim Bunce’s DBI module provided a standard interface to a wide variety of databases. All you had
to do was implement a DBI compatible database driver (called a DBD), and everyone could use DBI
with your database.

Connecting to a Database

To use the code in this chapter, you need to install both DBI and DBD::SQLite. If you prefer another
database, you can search the CPAN for a driver for your database. Only DBD::SQLite is covered in
this section because it requires no confi guration, but if you’re savvy enough to confi gure your own,
Table 16-1 lists a few of the more popular database drivers. Most of them require that you can
compile C code, but your CPAN client will try to handle this for you. Consult the README for each
of these modules on the CPAN.

c16.indd 524c16.indd 524 09/08/12 9:13 AM09/08/12 9:13 AM

Using the DBI ❘ 525

TABLE 16-1: Popular Database Drivers

DATABASE DRIVER DATABASE

DBD::DB2 IBM’s DB2 Universal Database

DBD::mysql MySQL driver

DBD::ODBC ODBC driver

DBD::Oracle Oracle driver

DBD::Pg PostgreSQL driver

DBD::PgPP PostgreSQL driver written in pure Perl (slow)

DBD::Sybase Sybase driver

You generally connect to a database with DBI’s connect method. It returns a database handle, tra-
ditionally named $dbh. The syntax looks like this:

my $dbh = DBI->connect($data_source, $username, $password, \%attributes);

The $username and $password are straightforward, but the $data_source and %attributes
require some explaining. The $datasource is a colon-delimited string with three values: the string
dbi, the driver you want to connect with and the name of the database you want to connect to.

my $data_source = “dbi:mysql:database=customers”;
my $data_source = “dbi:SQLite:dbname=wrox.db”;

The %attributes hash is passed as an optional reference as the fourth parameters to the connect()
method. It contains key/value pairs to alter the default settings of various parameters. For example,
if you want errors to automatically be fatal (a good idea), you could pass { RaiseError => 1 } as
the fourth argument. Table 16-2 shows a few of the common attributes passed to database handles.

TABLE 16-2: Common Attributes Passed to the Database Handles

ATTRIBUTE MEANING DEFAULT

AutoCommit Enables transactions True

PrintError Makes errors generate warnings True

RaiseError Makes all errors fatal False

ReadOnly Makes database read-only False

c16.indd 525c16.indd 525 09/08/12 9:13 AM09/08/12 9:13 AM

526 ❘ CHAPTER 16 DATABASES

For example, for MySQL, to connect to the orders database and make errors automatically fatal and
disable AutoCommit, you could connect like this:

use DBI;
my $dbh = DBI->connect(
 ‘dbi:mysql:database=orders’,
 $username,
 $password,
 { RaiseError => 1, PrintError => 0, AutoCommit => 0 },
);

That returns a database handle to the orders database, or croaks if it fails to connect. You set
PrintError to false because there’s generally no need to print the error and then croak(). If you do
not have RaiseError set to a true value, the connect() method returns false if it fails to connect,
and you need to check this manually:

use DBI;
my $dbh = DBI->connect(
 ‘dbi:mysql:orders’,
 $username,
 $password,
 { RaiseError => 0, AutoCommit => 0 },
) or die $DBI::errstr;

Because you use DBD::SQLite, the syntax is:

use DBI;
my $dbh = DBI->connect(
 “dbi:SQLite:dbname=$dbfile”,
 “”,
 “”,
 { RaiseError => 1, PrintError => 0, AutoCommit => 1 },
);

You do not need to load the DBD:: module. DBI attempts to do this for you. (It’s a fatal error
if it can’t.)

When you no longer need to connect to the database, you can call $dbh->disconnect, but because
this generally happens when you exit the program, many programmers don’t bother. When the data-
base handle goes out of scope (such as at program exit), the handle disconnects for you.

NOTE Not all databases drivers support all attributes. Some, such as

DBD::mysql, have custom attributes available. In particular, the AutoCommit

attribute is problematic. Some databases do not support transactions. Others

do not support disabling transactions. It is strongly recommended that you

always provide an explicit AutoCommit value in your %attributes hash. Failure

to do so may become fatal in future versions of DBI.

See the “Creating Transactions” section later in this chapter.

c16.indd 526c16.indd 526 09/08/12 9:13 AM09/08/12 9:13 AM

Using the DBI ❘ 527

Also be aware that if RaiseError is set to a true value and your code throws an exception, any
uncommitted changes to your database will be rolled back.

Using SQLite

The SQLite database is a powerful standalone database used in many applications. If you have a
smartphone, such as an Android or an iPhone, many of the applications on it use SQLite to store
their data. The SQLite home page (http://www.sqlite.org/) has this to say about the software:

SQLite is a software library that implements a self-contained,
serverless, zero-confi guration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine in the world.
The source code for SQLite is in the public domain.

SQLite allows multiple users to read from it at the same time, but only one user can write to it at a
time. This is a limitation that is fi ne for many applications, but if you need to frequently write to the
database, a proper client/server database, such as PostgreSQL, MySQL, or Oracle is recommended.
For your purposes, though, SQLite is perfect.

If you prefer, you can download a precompiled binary for SQLite from http://www.sqlite.org/
download.html, or you can download the source code from the same link and try to compile
it yourself (not recommended unless you have experience compiling software). After you install
SQLite, you can use it via a command line with:

sqlite3 databasename

Where databasename is the name of the database fi le you want to access.

Using DBD::SQLite

The DBD::SQLite module is the database driver for SQLite. Because SQLite does not require con-
fi guration, it is embedded directly in the DBD::SQLite distribution, allowing you, the user, to install
the driver, and you can start working with databases.

For these examples in this chapter, assume that you’re a multimedia artist and you want to incorpo-
rate video, audio, and images from other sources into your work. To protect against DMCA take-
down notices, you create a database tracking the media fi les you use, their media types, and license,
plus the source of your media.

Under the hood, SQLite actually has a fairly primitive set of data types. In contrast to other data-
base implementations, you can generally stick any type of data into any column, regardless of how
the type is defi ned. You can stick the string “round peg” into a column defi ned as an INTEGER
(unless the column is a primary key). The data types SQLite supports are listed in Table 16-3 and
are described at http://www.sqlite.org/datatype3.html. Those types, however, are how SQLite
manages the types internally and have little bearing on how you declare types.

Throughout this chapter, you see columns defi ned as VARCHAR(255). SQLite parses that but does
not enforce it. However, it makes it easier to migrate to a different database at a later time.

c16.indd 527c16.indd 527 09/08/12 9:13 AM09/08/12 9:13 AM

http://www.sqlite.org/
http://www.sqlite.org/download.html
http://www.sqlite.org/download.html
http://www.sqlite.org/datatype3.html

528 ❘ CHAPTER 16 DATABASES

TABLE 16-3: Data Types that SQLite Supports

TYPE DESCRIPTION

NULL The value is a NULL value.

INTEGER The value is a signed integer.

REAL The value is a fl oating point value.

TEXT The value is a text string.

BLOB The value is a blob of data, stored exactly as it was input.

NOTE SQLite can actually parse the type information that other data types

provide. For example, you can defi ne a license_name column as this:

license_name VARCHAR(255) NOT NULL

However, SQLite uses its own internal types, and you can actually store any kind

of data you want in the license_name column.

For more information about SQLite data types, see http://www.sqlite.org/

datatype3.html.

To get started, let’s create a tiny module named MyDatabase (code fi le lib/MyDatabase.pm). This
can export a single function, db_handle(), which you can use to get a database handle to your
SQLite database. This saves you the hassle of retyping the database connection code over and over.

package MyDatabase;

use strict;
use warnings;

use DBI;
use Carp ‘croak’;
use Exporter::NoWork;

sub db_handle {
 my $db_file = shift
 or croak “db_handle() requires a database name”;
 no warnings ‘once’;
 return DBI->connect(
 “dbi:SQLite:dbname=$db_file”,
 “”, # no username required
 “”, # no password required
 { RaiseError => 1, PrintError => 0, AutoCommit => 1 },
) or die $DBH::errstr;
}

1;

c16.indd 528c16.indd 528 09/08/12 9:13 AM09/08/12 9:13 AM

http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html

Using the DBI ❘ 529

All the db_handle function does is return a handle to whatever database you like. It should
probably be more confi gurable, but use the following code (code fi le listing_16_1_make_
database.pl) to write the code that creates the actual database:

use strict;
use warnings;

use lib ‘lib’;
use MyDatabase ‘db_handle’;

my $dbh = db_handle(‘rights.db’);
my $sql_media_type = <<”SQL”;
CREATE TABLE IF NOT EXISTS media_types (
 id INTEGER PRIMARY KEY,
 media_type VARCHAR(10) NOT NULL
);
SQL

$dbh->do($sql_media_type);

my $sql_license = <<”SQL”;
CREATE TABLE IF NOT EXISTS licenses (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 allows_commercial BOOLEAN NOT NULL
);
SQL
$dbh->do($sql_license);

my $sql_media = <<”SQL”;
CREATE TABLE IF NOT EXISTS media (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 location VARCHAR(255) NOT NULL,
 source VARCHAR(511) NOT NULL,
 attribution VARCHAR(255) NOT NULL,
 media_type_id INTEGER NOT NULL,
 license_id INTEGER NOT NULL,
 FOREIGN KEY (media_type_id) REFERENCES media_types(id),
 FOREIGN KEY (license_id) REFERENCES licenses(id)
);
SQL
$dbh->do($sql_media);

NOTE If you type in the listing_16_1_make_database.pl code directly rather

than downloading it from http://www.wrox.com, it’s normal to make mistakes.

That’s OK. You can just delete the rights.db fi le and run the listing_16_1_make_

database.pl program as many times as you need until you get it right —

a SQLite benefi t!

c16.indd 529c16.indd 529 09/08/12 9:13 AM09/08/12 9:13 AM

http://www.wrox.com

530 ❘ CHAPTER 16 DATABASES

In the listing_16_1_make_database.pl program, you have three tables:

 ➤ One defi nes your three media types, video, audio, and image.

 ➤ One defi nes your licenses, such as public domain or the various Creative Commons licenses
(http://creativecommons.org/licenses/). You defi ne only a subset of them needed for
your examples.

 ➤ One defi nes our media, or the data that you, as the artist formerly known as a Perl pro-
grammer, will be creating.

Unlike other databases, SQLite creates the database for you when you fi rst reference it.
Thus, even if you didn’t have a fi le named rights.db when you started, you will after you
run this code.

After you have your database handle, $dbh, you defi ne our three tables and call the do() method
on $dbh. Use the do() method if you want to execute a command but don’t care about the return
values. In the previous examples, because your database handle is defi ned with RaiseError => 1,
you don’t have to check the return value of do() because it automatically dies if the SQL fails to exe-
cute. If you did not set RaiseError to true, you’d need to wrap every method in something like this:

if (! $dbh->do($some_sql)) {
 die $dbh->errstr;
}

That gets tedious and it’s easy to forget, so RaiseError => 1 is safer.

NOTE Use the $DBH::errstr package variable when you test for a failure

with connect() because if it fails, you don’t have a $dbh to call the errstr()

method with.

Now that you created the database, if you installed an sqlite3 client, you can check from the
command line that it worked:

$ sqlite3 rights.db
SQLite version 3.7.7 2011-06-25 16:35:41
Enter “.help” for instructions
Enter SQL statements terminated with a “;”
sqlite> .schema
CREATE TABLE licenses (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 allows_commercial BOOLEAN NOT NULL
);
CREATE TABLE media (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 location VARCHAR(255) NOT NULL,

c16.indd 530c16.indd 530 09/08/12 9:13 AM09/08/12 9:13 AM

http://creativecommons.org/licenses/

Using the DBI ❘ 531

 source VARCHAR(511) NOT NULL,
 attribution VARCHAR(255) NOT NULL,
 media_type_id INTEGER NOT NULL,
 license_id INTEGER NOT NULL,
 FOREIGN KEY (media_type_id) REFERENCES media_types(id),
 FOREIGN KEY (license_id) REFERENCES licenses(id)
);
CREATE TABLE media_types (
 id INTEGER PRIMARY KEY,
 media_type VARCHAR(10) NOT NULL
);
sqlite> .quit

Now that you have your database, it’s time to add some data (code fi le listing_16_2_populate_
database.pl).

use strict;
use warnings;

use lib ‘lib’;
use MyDatabase ‘db_handle’;

my $dbh = db_handle(‘rights.db’);
my $sql_media_type = “INSERT INTO media_types (media_type) VALUES (?)”;
my $sth = $dbh->prepare($sql_media_type);
my %media_type_id_for;

foreach my $type (qw/video audio image/) {
 $sth->execute($type);
 $media_type_id_for{$type} = $dbh->last_insert_id(“”,””,””,””);
}

my $sql_license = <<”SQL”;
INSERT INTO licenses (name, allows_commercial)
VALUES (?, ?)
SQL
$sth = $dbh->prepare($sql_license);

my @licenses = (
 [‘Public Domain’, 1],
 [‘Attribution CC BY’, 1],
 [‘Attribution CC BY-SA’, 1],
 [‘Attribution-NonCommercial CC BY-NC’, 0],
);

WARNING You declared foreign key constraints in your media table. This should

guarantee that you cannot insert an unknown value into the columns with

foreign key constraints. Depending on the version of SQLite you have installed,

it may or may not enforce foreign key constraints.

c16.indd 531c16.indd 531 09/08/12 9:13 AM09/08/12 9:13 AM

532 ❘ CHAPTER 16 DATABASES

my %license_id_for;
foreach my $license (@licenses) {
 my ($name, $allows_commercial) = @$license;
 $sth->execute($name, $allows_commercial);
 $license_id_for{$name} = $dbh->last_insert_id(“”,””,””,””);
}

my @media = (
 [
 ‘Anne Frank Stamp’,
 ‘/data/images/anne_fronk_stamp.jpg’,
 ‘http://commons.wikimedia.org/wiki/File:Anne_Frank_stamp.jpg’,
 ‘Deutsche Post’,
 $media_type_id_for{‘image’},
 $license_id_for{‘Public Domain’},
],
 [
 ‘Clair de Lune’,
 ‘/data/audio/claire_de_lune.ogg’,
 ‘http://commons.wikimedia.org/wiki/File:Sonate_Clair_de_lune.ogg’,
 ‘Schwarzer Stern’,
 $media_type_id_for{‘audio’},
 $license_id_for{‘Public Domain’},
],
);

my $sql_media = <<’SQL’;
INSERT INTO media (
 name, location, source, attribution,
 media_type_id, license_id
)
VALUES (?, ?, ?, ?, ?, ?)
SQL

$sth = $dbh->prepare($sql_media);
foreach my $media (@media) {
 $sth->execute(@$media);
}

The previous code is conceptually similar to your listing_16_1_make_database.pl program, but
instead of calling do(), you call the prepare() and execute() methods. For now, you can run this
program to populate your database. You take a closer look at how these work when you get to the
“Inserting and Updating Data” section.

After you write and run the code, you can use the command-line client to make sure that you
populated your database correctly:

$ sqlite3 rights.db
SQLite version 3.7.7 2011-06-25 16:35:41
Enter “.help” for instructions
Enter SQL statements terminated with a “;”
sqlite> select * from media_types;
1|video

c16.indd 532c16.indd 532 09/08/12 9:13 AM09/08/12 9:13 AM

http://commons.wikimedia.org/wiki/File:Anne_Frank_stamp.jpg
http://commons.wikimedia.org/wiki/File:Sonate_Clair_de_lune.ogg

Selecting Basic Data ❘ 533

2|audio
3|image
sqlite> select * from licenses;
1|Public Domain|1
2|Attribution CC BY|1
3|Attribution CC BY-SA|1
4|Attribution-NonCommercial CC BY-NC|0
sqlite> select * from media;
sqlite> .quit

After you create your database and insert some data, it’s time to get it back out.

SELECTING BASIC DATA

The great thing about databases is that the data is persistent. If you stop your application and later
restart it, the data is still there. But it’s useless until you know how to select that data. This section
shows you various ways to do that. You can select data in many ways and need to fi nd one that suits
your needs.

Using SELECT Statements

You’ve seen that if you want to execute an SQL statement once and don’t care about the return
value, you can do the following:

$dbh->do($sql);

If you want to execute an SQL statement many times and don’t care about the return value, you can
do this:

my $sth = $dbh->prepare($insert_sql);
foreach my $value (@values) {
 $sth->execute($value);
}

For retrieving data, however, you have several options. One of the most common is to prepare the
SQL, execute it, and then repeatedly fetch the results. There are many ways to fetch the results,
depending on your needs. The following code (code fi le listing_16_3_select.pl) is one way to
fetch your media types:

use strict;
use warnings;

use lib ‘lib’;
use MyDatabase ‘db_handle’;

my $dbh = db_handle(‘rights.db’);
my $sth = $dbh->prepare(<<”SQL”);
 SELECT id, media_type
 FROM media_types

c16.indd 533c16.indd 533 09/08/12 9:13 AM09/08/12 9:13 AM

534 ❘ CHAPTER 16 DATABASES

ORDER BY id ASC
SQL
$sth->execute;

while (my @row = $sth->fetchrow_array) {
 print “$row[0] - $row[1]\n”;
}

Running the program should print:

1 - video
2 - audio
3 - image

A WORD ABOUT ROW ORDER

If you do not specify an ORDER BY clause in your SQL, the order in which the rows
are retrieved are not guaranteed. You should not rely on the default order in which
the database returns the rows, which is why your author put an ORDER BY in his
fi rst SELECT statement in this chapter. If you need something to be in a specifi c
order, be explicit. Do not assume that a given database will cooperate.

On a related note, if you specify SELECT *, you should not rely on the order in
which your columns are presented, or if they even exist! Your DBA (database
administrator), another developer, and even you, may have altered the database.
This means that the code makes a fragile assumption — that the desired columns
are present and in the correct order. The order of rows, the order or existence of
columns should not be assumed. Developers must be explicit in their intent.

Now break down what’s happening here.

 1. You prepare a SQL statement, taking care to be explicit about the columns you want and
the order in which the rows should appear. A statement handle, $sth, is returned:

my $sth = $dbh->prepare(<<”SQL”);
 SELECT id, media_type
 FROM media_types
ORDER BY id ASC
SQL

 2. You execute the statement handle. No arguments to execute() are required because you
did not have any bind parameters in your SQL. (Bind parameters are explained in the next
section.)

$sth->execute;

 3. You iterate over the results:

while (my @row = $sth->fetchrow_array) {
 print “$row[0] - $row[1]\n”;
}

c16.indd 534c16.indd 534 09/08/12 9:13 AM09/08/12 9:13 AM

Selecting Basic Data ❘ 535

The fetchrow_array() method returns an array of the next row’s values each time it is called.
When there are no more rows, it returns nothing, terminating the loop.

If you consult the DBI documentation (perldoc DBI), you can fi nd that there are many such
iterators, each custom tailored to a slightly different need. For example, some people prefer hash
references to be returned. You can add these lines to your program:

$sth->execute;
while (my $row = $sth->fetchrow_hashref) {
 print “$row->{id} - $row->{media_type}\n”;
}

Calling execute() on the statement handle executes the SQL again, allowing you to iterate over the
rows again. The result is fairly straightforward. The keys in the hash are the column names and
the values are, well, the values of each column.

WARNING One problem you sometimes fi nd with SQL is that it allows duplicate

column names. This means that the following is quite legal:

my $sql = <<’SQL’;
SELECT first_name as ‘name’, last_name as ‘name’
 FROM customers
SQL

my $sth = $dbh->prepare($sql);
$sth->execute;

while (my $row = $dbh->fetchrow_hashref) {
 print $row->{name}; # ???
}

You can’t tell which name is which! If you use table aliases:

my $sql = <<’SQL’;
SELECT c.name, p.name
 FROM people c
 JOIN projects p ON p.manager_id = c.id
SQL

The names now look diff erent, but after you call fetchrow_hashref(), the

table alias is stripped, and you still have two columns named name! Of course,

because you put them into a hash reference, there can be only one key named

name, and you’ll lose one of the values. If you can’t avoid this SQL, consider

returning results as arrays or array references instead of hash references. The

two columns with identical names will be fi ne.

c16.indd 535c16.indd 535 09/08/12 9:13 AM09/08/12 9:13 AM

536 ❘ CHAPTER 16 DATABASES

Many people prefer to return an array reference instead of an array, so you can do that, too:

$sth->execute;
while (my $row = $sth->fetchrow_arrayref) {
 print “$row->[0] - $row->[1]\n”;
}

Methods are available that allow you to skip the iterator and return all your data at one time. These
methods are generally called directly against the database handle and prepare, execute, and fetch
your data all in one go:

use Data::Dumper;
my $media_types = $dbh->selectall_arrayref($sql);
print Dumper($media_types);

selectall_* methods are good for selecting small amounts of data. If your SQL statement returns
a huge amount of data, it may not be a good idea to use them if you’re worried about how much
memory your program is using. They are, however, convenient for datasets you know will be small.

There are many other ways to select data from your database handle. Browse perldoc DBI to
become acquainted with them.

Using Bind Parameters

Selecting all the data from a table is useful, but usually you want to select some data that matches a
particular condition. However, a common beginner mistake is to do something like this:

my $sql_city_ids = “SELECT id FROM cities WHERE name = ‘$city_name’”;
my $city_ids = $dbh->selectcol_arrayref($sql_city_ids);

If the $city_name is R’lyeh, you have a serious nightmare on your hands. After the variable
$city_name is interpolated, your resulting SQL will look like this:

“SELECT id FROM cities WHERE name = ‘R’lyeh’”;

That’s not valid SQL. If you’re lucky, it will die. If you’re unlucky, you may fall victim to something
known as a SQL injection attack. This is one of the most common ways to attack software.

Thus, you should always use placeholders. Instead of embedding the variable in the SQL, embed a
question mark:

my $sql = “SELECT id FROM media_types WHERE media_type = ?”;
my $sth = $dbh->prepare($sql);

NOTE When you fi nish using the statement handle, you can call $sth->finish,

but there is generally no reason to call it. After you fetch all of your data, or after

the statement handle has fallen out of scope, finish() is called for you. See the

DBI documentation for more information.

c16.indd 536c16.indd 536 09/08/12 9:13 AM09/08/12 9:13 AM

Selecting Basic Data ❘ 537

Then supply your variable (or variables, if you have multiple bind parameters) as the argument(s) to
execute():

$sth->execute($media_of_interest);
while (my @row = $sth->fetchrow_array) {
 print “Id is ‘$row[0]\n”;
}

When you do this, you supply the values of the bind parameters as arguments to the execute()
method. Internally, the database takes the prepared SQL and replaces the bind parameters with the
variable or variables you supplied to execute(). Even if the variable has quotes or other characters
that may be otherwise dangerous in SQL, the database should properly quote the values for you,
and you can safely run the SQL. As an added bonus, this is often much faster than repeatedly
preparing SQL statements with different variables.

WARNING Sometimes it’s hard to avoid embedding variables in your SQL

because placeholders are allowed only for column data, for example:

SELECT name, percentage FROM $table WHERE $column = ...

You can’t use placeholders to replace table or column names, only column val-

ues. Thus, you must take extra care if build your SQL dynamically because SQL

injection attacks have destroyed more than one company. If you must use a

variable for an identifi er such as the table name or column name, you can use

the quote_identifi er() method:

Make sure a table name we want to use is safe:
$table_name = $dbh->quote_identifier($table_name);

Assume @cols contains a list of column names you need to fetch:
my $cols = join ‘,’, map { $dbh->quote_identifier($_) } @cols;
my $sth = $dbh->prepare(“SELECT $cols FROM $table_name ...”);

For more information about SQL injection attacks, see http://www.bobby-tables

.com/, a website created by Andy Lester. It’s a gentle introduction to the prob-

lem, along with examples of how to avoid the problem in many programming

languages.

You can use more than one placeholder in a SQL statement. Just be sure to pass the same number
arguments to execute() as you have placeholders.

Also, many DBI methods have the following form:

$dbh->$method($sql, \%attributes, @bind_params);

The %attributes hashref in the middle is optional (in the sense that you can pass undef
for that argument) and rarely used (see the DBI docs for more information). What the rest

c16.indd 537c16.indd 537 09/08/12 9:13 AM09/08/12 9:13 AM

http://www.bobby-tables.com/
http://www.bobby-tables.com/

538 ❘ CHAPTER 16 DATABASES

of that statement does is allow you execute a method, passing the SQL and bind parameters
at the same time:

foreach my $id (@ids) {
 my $name = $new_name_for{$id};
 $dbh->do(
 ‘UPDATE customers SET name = ? WHERE id = ?’,
 undef,
 $name, $id
);
}

The methods that allow this syntax are documented in the SYNOPSIS of the DBI documentation.

TRY IT OUT Fetching Records from a Table

You’ve collected vast amounts of media that you want to sift through for your multimedia project,
and you are looking for images in the public domain that you can include. You can write a small
program to do this. All the code in this Try It Out is in the code fi le example_16_1_fetch.pl.

1. Type in the following program, and save it as example_16_1_fetch.pl:

use strict;
use warnings;

use lib ‘lib’;
use Data::Dumper;
use MyDatabase ‘db_handle’;

my $dbh = db_handle(‘rights.db’);
my $sql = <<’SQL’;
 SELECT m.name, location, attribution
 FROM media m
 JOIN media_types mt ON m.media_type_id = mt.id
 JOIN licenses l ON m.license_id = l.id
 WHERE mt.media_type = ?
 AND l.name = ?
ORDER BY m.name ASC
SQL

my $sth = $dbh->prepare($sql);
$sth->execute(‘image’,’Public Domain’);

while (my $media = $sth->fetchrow_hashref) {
 print <<”END_MEDIA”;
Name: $media->{name}
Location: $media->{location}
Attribution: $media->{attribution}
END_MEDIA
}

2. Run the program with perl example_16_1_fetch.pl. You should see the following output:

c16.indd 538c16.indd 538 09/08/12 9:13 AM09/08/12 9:13 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Selecting Basic Data ❘ 539

Name: Anne Frank Stamp
Location: /data/anne_fronk_stamp.jpg
Attribution: Deutsche Post

How It Works

In this example, you have only one record that satisfi es your criteria (the Anne Frank Stamp), so only
one record is printed out. The bulk of the logic is in the SQL:

 SELECT m.name, location, attribution
 FROM media m
 JOIN media_types mt ON m.media_type_id = mt.id
 JOIN licenses l ON m.license_id = l.id
 WHERE mt.media_type = ?
 AND l.name = ?
ORDER BY m.name ASC

This SQL selects the media name, location, and attribution from the media table, but the WHERE clause
limits you to a given media type and license name. The JOIN conditions tell the SQL how to match the
media type and license to the media record. You have two bind parameters in the SQL.

Next, you prepare the SQL and execute the resulting statement handle, passing in the wanted media
type and license name:

my $sth = $dbh->prepare($sql);
$sth->execute(‘image’,’Public Domain’);

Then it’s printing out each record:

while (my $media = $sth->fetchrow_hashref) {
 print <<”END_MEDIA”;
Name: $media->{name}
Location: $media->{location}
Attribution: $media->{attribution}
END_MEDIA
}

The m.name column in the SQL is accessed as $media->{name} in the hash reference. That’s
because the column alias is stripped from the key name when it is put into the hash. However, you had
to use m.name in the SQL, or SQLite would not know if you need the media name or the license name.

Inserting and Updating Data

Naturally, you need to add and update data to your database. In this case, you’ll be happy to know
that your Perl code is almost identical.

Here’s the code that inserted your media types:

my $sql_media_type = “INSERT INTO media_types (media_type) VALUES (?)”;
my $sth = $dbh->prepare($sql_media_type);

c16.indd 539c16.indd 539 09/08/12 9:13 AM09/08/12 9:13 AM

540 ❘ CHAPTER 16 DATABASES

foreach my $type (qw/video audio image/) {
 $sth->execute($type);
}

If you know SQL, this is fairly straightforward. Updating, however, might be tricky, depending on
your needs. The execute method actually has a return value you’ve been ignoring. Specifi cally, it
returns the number of rows you inserted or updated. So if you want to change the name of the Anne
Frank Stamp to The Anne Frank Stamp, run the following code:

my $sql = ‘UPDATE media SET name = ? WHERE name = ?’;
my $sth = $dbh->prepare($sql);
my $rows_updated = $sth->execute(‘The Anne Frank Stamp’,’Anne Frank Stmap’);
print $rows_updated;

This code prints (the exact result may vary depending on the database):

0E0

Which means you’ve not updated any rows. In this case, it’s because you misspelled Stamp as
Stmap. When you correct this error in the previous code:

my $sql = ‘UPDATE media SET name = ? WHERE name = ?’;
my $sth = $dbh->prepare($sql);
my $rows_updated = $sth->execute(‘The Anne Frank Stamp’,’Anne Frank Stamp’);
print $rows_updated;

you now get 1 printed because you updated 1 row. Naturally, it’s easy to update more than one row
at a time (for example, if you were to delete several records at one time). Whenever you change your
data, you should consider checking the number of rows that you’ve affected and make sure that
you have a reasonable response.

Creating Transactions

One of the most powerful features of databases, if used correctly, is the capability to minimize data
corruption. One way to manage this is with the correct use of transactions. Sometimes you need
to execute several SQL statements, and if one of them fails, all of them should fail, and the system
should be left in the state it started in. The classic example follows:

sub transfer_money {
 my ($self, $from, $to, $amount) = @_;
 $self->adjust_account($from, -$amount);
 $self->adjust_account($to, $amount);
}

What would happen if the fi rst adjust_account() succeeded but the second failed? In the
preceding code, presumably the fi rst account would have the amount deducted, and the second
account would have no money added, resulting in money being misplaced. This tends to make
people unhappy.

c16.indd 540c16.indd 540 09/08/12 9:13 AM09/08/12 9:13 AM

Selecting Basic Data ❘ 541

In a database, this is handled with transactions. A transaction is a group of SQL statements that
must all succeed or fail. After you start the transaction, if all SQL statements succeed, you commit
the transaction and the changes take effect. If any of the statements fail, you roll back the
results and none of the changes take effect, even for those statements that succeeded after the
transaction started.

In your transfer_money() example, a transaction would look like the following code (using
Try::Tiny to catch any exceptions):

sub transfer_money {
 my ($self, $from, $to, $amount) = @_;

 try {
 $self->begin_work; # start transaction
 $self->adjust_account($from, -$amount);
 $self->adjust_account($to, $amount);
 $self->dbh->commit; # commit the changes
 }
 catch {
 my $error = $_;
 $self->dbh->rollback;
 croak “Could not transfer $amount from $from to $to”;
 };
}

In this simple example, you have an object where the database handle is available as an accessor.
You can call $dbh->begin_work() to start the transaction and $dbh->commit() at the end of the
work. However, if an exception is thrown before you call commit, the control passes to the catch
block and $dbh->rollback is called.

The previous code had AutoCommit => 1 passed as database options to connect(). This means
that every SQL statement’s changes affect the database the moment they are executed. For many
simple statements, this is fi ne, but if you have multiple statements related to one another, you
probably want a transaction. You need to read your databases documentation to understand how
transactions are handled. You can group databases in roughly three categories:

 ➤ Databases that do not support transactions

 ➤ Databases that do not support disabling transactions

 ➤ Databases where transactions must be explicitly started with begin_work()

If your database does not support transactions, setting AutoCommit to 0 is a fatal error. If your
database requires transactions and you set AutoCommit to 1, commit() is called for you after every
statement either by the database or, if the database does not support this, by DBI.

Handling Errors

It is recommended that you set RaiseError => 1 in your connect() options (and PrintError to 0
unless you want the error printed twice). However, if you’re a glutton for punishment, you can check
for errors.

c16.indd 541c16.indd 541 09/08/12 9:13 AM09/08/12 9:13 AM

542 ❘ CHAPTER 16 DATABASES

Generally, the connect() method dies only if it cannot load the requested database driver.
Otherwise, if it cannot connect to the database, it returns undef. You can then use $DBH::errstr
to check for the error:

my $dbh = DBI->connect($dsn, $user, $pass, $options)
 or die $DBH::errstr;

Many other statements also return false upon failure, such as begin_work(), commit(),
rollback(), bind_col(), and other methods not covered here. If you do not set RaiseError
to a true value, you must manually check the return value of these methods:

$dbh->begin_work or die $dbh->errstr;

Some methods, such as execute(), return a value that may be false but doesn’t indicate an error.
Either spend time memorizing the differences of all these or just set RaiseError => 1 to save
yourself the trouble (not to mention the inevitable bugs when you forget to check success or
failure of that critical method call).

Of course, you can always trap the error with eval or Try::Tiny. Typically, you use RaiseError
with eval { ... } to catch the exception that’s been thrown and you follow this with an if ($@)
{ ... } block to handle the caught exception, for example:

eval {
 ...
 $sth->execute();
 ...
};
if (my $error = $@) {
 # $sth->err and $DBI::err will be true if error was from DBI
 warn $error; # print the error
 ... # do whatever you need to deal with the error
}

If you do this, make sure you can handle the error properly. Otherwise, it may be better to let the
program die rather than risk hiding important errors.

SUMMARY

In this chapter you learned the basics to work with databases. You learned a little about SQLite and
how to select data from the database, how to safely insert and update data, and how to manage
transactions. You also learned about error handling (and why you should let DBI do it for you).

c16.indd 542c16.indd 542 09/08/12 9:13 AM09/08/12 9:13 AM

Summary ❘ 543

EXERCISES

 1. The following code is broken. Explain how to fi x it.

use strict;
use warnings;

use DBI;

my $dbh = DBI->connect(
 ‘dbi:SQLite:dbname=customers’,
 ‘’,
 ‘’,
 { RaiseError => 1, AutoCommit => 1 },
);

my $sth = $dbh->prepare(“SELECT id, name FROM customers”);

while (my @row = $sth->fetchrow_array) {
 print “ID: $row[0] Name: $row[1]\n”;
}

 2. You realize that all media you put under the Public Domain license should be under the

Attribution CC BY license and everything under the Attribution CC BY license should

be under the Public Domain license. Because other code uses the Public Domain and

Attribution CC BY licenses, you can’t switch the license names. Switch the media to their cor-

rect licenses, but do so in such a way that if you make an error in one step, you don’t wind up

with bad data.

c16.indd 543c16.indd 543 09/08/12 9:13 AM09/08/12 9:13 AM

544 ❘ CHAPTER 16 DATABASES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

Databases A persistent data storage solution.

DBI The standard database interface for Perl.

DBD A database driver for connecting to your particular database.

SQLite A free, public domain database; great for standalone applications.

DBD::SQLite The database driver for SQLite.

Bind parameters A safe way to use variable data in SQL queries.

Transactions Used when you have multiple, related SQL statements that must succeed

or fail as a group.

Error handling Various ways to deal with real and potential database errors.

c16.indd 544c16.indd 544 09/08/12 9:13 AM09/08/12 9:13 AM

17
Plays Well with Others

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Reading user input from STDIN and handling command-line

arguments

 ➤ Reading and writing from/to other programs and understanding

STDOUT and STDERR

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ listing_17_1_directions.pl

 ➤ example_17_1_poets.pl

 ➤ example_17_2_capture.pl

 ➤ listing_17_2_wc.pl

Up to this point, you’ve learned quite a bit about how Perl programs work, but they’ve
largely been standalone programs. You haven’t done much work reading information from
the command line or reading from or writing to other programs and you haven’t deeply
 investigated how output is handled. This chapter, although not the last, “wraps up” your
beginning Perl knowledge and puts you on the path to becoming a well-rounded Perl
developer.

c17.indd 545c17.indd 545 09/08/12 9:16 AM09/08/12 9:16 AM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://wrox.com
http://WROX.COM

546 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

THE COMMAND LINE

If your previous experience with computers has been limited to graphical user interfaces (GUIs),
you may have trouble understanding the full power of the command line. Although a pretty graphic
interface can make it easy to see how things are organized, it can make some things harder. For
example, moving a fi le to a different directory and renaming it are two steps requiring a few clicks.
From the command line, to move foo.txt to backups/mydata.txt, you can do this in with
command:

mv foo.txt backups/mydata.txt

Or in Microsoft Windows, use cmd shell:

move foo.txt backups\mydata.txt

Or imagine that you have a fi le named events containing many lines of data like this:

ovid:2009-03-12:created:admin
bob:2012-03-12:updated:user

That’s a colon-delimited list of data. Say that you want to extract all the dates from that fi le and
count the number of times each date occurred, and write that out to a fi le. You might think that you
should write a program to do this, but you can do this from a standard UNIX-style command line:

cut -d: -f2 < events | sort | uniq -c > events.txt

I’m not going to explain what all that means, but suffi ce it to say, working with the command line,
although not as “pretty” as working with graphic interfaces, can put a huge amount of power at
your fi ngertips. Most of this book is geared toward giving you the basic skills required to write
 programs, but you may need to run many of those programs from the command line, so I’ll start
showing you some of the basic techniques you need to understand.

Reading User Input

Perhaps the most basic thing you might want to do from a program is to read what a user types in:

use strict;
use warnings;

print “Enter your name: “;
my $name = <STDIN>;
chomp($name);

print “Hello, $name!\n”;

If you run this program, it prints Enter your name: and waits for you to enter something and press
Enter. Then it prints that “something.” So if you enter Ovid for your name, you would see this:

Enter your name: Ovid
Hello, Ovid!

c17.indd 546c17.indd 546 09/08/12 9:16 AM09/08/12 9:16 AM

The Command Line ❘ 547

The <STDIN> syntax looks a bit odd. You already know the angle brackets are generally wrapped
around a fi lehandle to read from that fi lehandle, but what’s STDIN? I’ll need to give a bit of a long
explanation for you to understand how this work.

For Perl, and for many modern programming languages, you have one input stream of data
(STDIN) and two output streams of data, one for normal output (STDOUT) and one for error
output (STDERR). STDIN, STDOUT, and STDERR are all special fi lehandles, and a stream is the sequence
of data made available over time. So when you type your name in the previous program, you can
take your time typing each character until you fi nally press Enter. When you press Enter, Perl
reads the data from the STDIN and returns it, in this case by assigning it to the $name variable. The
STDIN fi lehandle returns exactly what you typed, the string plus the newline, so you call chomp() to
remove that newline.

When you print something in Perl, by default it prints to STDOUT. You may recall that you can print
something to a fi lehandle like this:

open my $fh, ‘>’, $filename
or die “Cannot open $filename for writing: $!”;
print $fh “Here is a line of text\n”;

What happens when you omit the fi lehandle? By default, Perl uses STDOUT. Thus, the following two
lines mean the same thing:

print “Hello, $name!’n”;
print STDOUT “Hello, $name!’n”;

When you warn or die, the message is instead printed to STDERR. The following two lines are
almost the same thing:

print STDERR “This is a warning!\n”;
warn “This is a warning!\n”;

NOTE I’ve said that the following two are almost the same thing:

print STDERR “This is a warning!\n”;
warn “This is a warning!\n”;

They’re not quite the same because you can trap warnings with signal handlers,

but you cannot use a signal handler to trap data printing directly to STDERR.

Signal handlers are tricky (and a frequent source of obscure bugs), but you can

read perldoc perlipc to learn more about them.

When data sent to STDOUT and STDERR shows up on your terminal, it looks the same, but because
it is sent to different streams, it doesn’t show up in the same order your program output them.
Normally this is not a problem, but it’s something you should be aware of.

c17.indd 547c17.indd 547 09/08/12 9:16 AM09/08/12 9:16 AM

548 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

The reason STDOUT and STDERR are sent to separate streams is because you can get more control
over them. From the command line, you could redirect STDERR to a log fi le and have STDOUT
show up in the terminal, and vice versa. I won’t cover much more of that, but it’s part of what’s
tricky about understanding data streams when you program. Just remember that when you print
 something, it usually does what you want it to do.

Because STDIN is a stream, you can read from it multiple times:

use strict;
use warnings;

print “Enter your name: “;

my $name = <STDIN>;
chomp($name);
print “Hello, $name!\n”;
print “Anything else you want to bore me with? “;

my $inane_reply = <STDIN>;
chomp($inane_reply);
print “You bored me with: $inane_reply\n”;

Any time you want to read from STDIN, it’s there, waiting for you patiently, like some creepy little
stalker.

Handling Command-Line Arguments

You’ve seen several examples in this book of reading from @ARGV, which, as you know, contains
arguments supplied on the command line. So you could save this as dump_args.pl:

use strict;
use warnings;
use Data::Dumper;
print Dumper(\@ARGV);

And then run it with:

perl dump_args.pl this is a list of arguments

And you should get the following output:

$VAR1 = [
 ‘this’,
 ‘is’,
 ‘a’,
 ‘list’,
 ‘of’,
 ‘arguments’
];

Many times, however, you want to pass arguments to your program and give them specifi c names
to make it easier for your program to understand them. For example, you may recall that in

c17.indd 548c17.indd 548 09/08/12 9:16 AM09/08/12 9:16 AM

The Command Line ❘ 549

Chapter 7, “Subroutines,” you had a program called maze.pl. In that program, you needed to
specify the height and width of the maze. A common way to do this follows:

perl maze.pl --height 20 --width 40

You could handle that in many ways, including writing your own parser, but you have plenty of
modules on the CPAN to do this for you. Most of these are in the Getopt:: namespace. For this
example, I’ll use Getopt::Long, by Johan Vromansbecause this is one of the most popular choices:

use strict;
use warnings;

useGetopt::Long;
my ($height, $width);

GetOptions(
 ‘height=i’ => \$height,
 ‘width=i’ => \$width,
) or die “Could not parse options”;

the rest of your program here

When you use Getopt::Long, it exports a GetOptions function. This function expects an even size
list of name/variable pairs. The “name” of each option is actually a specifi cation of how to read
that option from the command line. In this example, the =i in height=i says “the --height option
must have an integer value.” Of course, that integer value could be negative, so you may need to do
some validation after.

The variable $height gets passed as a reference. Because you pass by reference instead of value,
the Getopt::Long module can modify the variable’s value directly. Thus, with the previous code,
passing either of the following command lines sets $height and $width to 20 and 30, respectively
(because the = sign is optional):

perl maze.pl --height 20 --width 30
perl maze.pl --height=20 --width=30

What’s going on is that when you run the program, @ARGV contains all the values passed in the com-
mand line. For the two preceding examples, @ARGV contains this:

perl maze.pl --height 20 --width 30
@ARGV = (‘--height’, ‘20’, ‘--width’, ‘30’);
perl maze.pl --height=20 --width=30
@ARGV = (‘--height=20’, ‘--width=30’);

Getopt::Long removes all arguments from @ARGV that it can parse, leaving the remaining
arguments in @ARGV, for example, if you have a program named print_it.pl:

use strict;
use warnings;

c17.indd 549c17.indd 549 09/08/12 9:16 AM09/08/12 9:16 AM

550 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

useGetopt::Long;

my $times = 1;

GetOptions(
 ‘times=i’ => \$times,
) or die “Could not parse options”;

if ($times < 1) {
die “The --times argument must be greater than zero”;
}
my $args = join ‘-’, @ARGV;

for (1 .. $times) {
print “$args\n”;
}

And you run it with:

perl print_it.pl --times 3 bob dobbs

It prints out the following:

bob-dobbs
bob-dobbs
bob-dobbs

Getopt::Long also takes the minimum unique string for each option. (The single dash is optional.)

perl maze.pl -h 20 -w 30

Sometimes you don’t want to assign a value to an option, you just want to know if it’s present.
For example, you program might print out additional information such as the directories it’s
 creating, the data it has read from a confi guration fi le, and so on. But you might want this
information displayed only if you request it with a --verbose switch:

perl some_program.pl --verbose

And in your program:

useGetopt::Long;

my $is_verbose;

GetOptions(
 ‘verbose’ => \$is_verbose,
) or die “Could not parse options”;

With this, $is_verbose has a true value if you included --verbose (or -v) on the command line,
or a false value if you omitted it.

If you include =s with the option name, it expects a string:

c17.indd 550c17.indd 550 09/08/12 9:16 AM09/08/12 9:16 AM

The Command Line ❘ 551

useGetopt::Long;

my $name = “Ovid”;

GetOptions(
 ‘name=s’ => \$name,
) or die “Could not parse options”;

print “Hello, $name\n”;

And run that with:

perl get_name.pl --name Bob

That prints Hello, Bob. If you do not supply an argument, the $name value defaults to Ovid because
GetOptions does not overwrite a value if there is no corresponding value on the command line.

If your string has whitespace in it, you need to quote it (Windows requires double quotes: “Bob
Dobbs”):

perl get_name.pl --name ‘Bob Dobbs’

That’s because when you run your program with the preceding arguments, @ARGV is as follows
without the quoting:

@ARGV = (‘--name’, ‘Bob’, ‘Dobbs’);

And this with the quoting:

@ARGV = (‘--name’, ‘Bob Dobbs’);

When using Getopt::Long, you fi nd that standalone arguments (like the --verbose example),
string arguments (--name=’Bob’), and integer arguments (--height and --width) are the most
common types of command-line arguments, but there are many more ways to handle your parsing.
See perldoc Getopt::Long for more details.

perlrun

Because I’m going in-depth about how to run Perl programs from the command line, it would be a
bad thing to forget to mention the oft-overlooked perlrun documentation. By reading
perldoc perlrun, you can learn many things about how to create useful Perl one-liners to solve
thorny problems, or perhaps how to use interesting switches that can make your life easier.

The following sections give some examples.

Using the–I Switch

The -I switch tells Perl which paths to include when searching for modules to use or require.
For example, I often included this line in sample programs:

use lib ‘lib/’;

c17.indd 551c17.indd 551 09/08/12 9:16 AM09/08/12 9:16 AM

552 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

That line tells Perl to also search for Perl modules in the lib/ directory. However, you can use the
-I switch to do this from the command line:

perl -Ilib/ some_program.pl

You can specify this more than once:

perl -Ilib/ -I../mylib/ some_program.pl

Using the –e and –l Switches

The -e switch is for executing the text that follows, instead of assuming it’s a program. That’s
sometimes used with the -l switch that automatically adds a newline after every print statement.
Here’s one way to fi nd out which version of Moose you have installed:

perl -l -e ‘use Moose; print Moose->VERSION’

At the present time on my system, that prints something like:

$ perl -l -e ‘use Moose; print Moose->VERSION’
2.0402
$

Note that the $ prompt is on a line by itself. Without the -l switch, you get the following output:

$ perl -l -e ‘use Moose; print Moose->VERSION’
2.0402$

That may be annoying to you, so the -l switch makes it nicer to read.

If the switches don’t take arguments, you can “bundle” them together. For example, instead of perl
-l -e, you can use perl -le:

perl -le ‘use Moose; print Moose->VERSION’

Using the –n Switch

The -n switch wraps a while (<>) { ... } loop around your program. As you might recall, the
while(<>) { ... } syntax reads each successive line from fi lenames found in @ARGV and assigns
the line values to $_. Thus, to print out all the comments in a few programs:

perl -ne ‘print if /^\s*#/’ program1.pl program2.pl program3.pl

That’s more or less equivalent to this:

use strict;
use warnings;

PROGRAM: foreach my $program (@ARGV) {
 if (open my $fh, ‘<’, $program) {
 while (<$fh>) {

c17.indd 552c17.indd 552 09/08/12 9:16 AM09/08/12 9:16 AM

The Command Line ❘ 553

 print $_ if /^\s*#/;
 }
 }

 else {
 warn “Could not open $program for reading: $!”;
 next PROGRAM;
 }
}

As you can see, the command-line switches documented in perlrun give you a lot of power from the
command line, but they can be daunting to learn. Hit your favorite search engine and search for
perl one-liners to see many more examples. They’re popular.

And don’t forget to dive into perldoc perlrun.

TRY IT OUT Query the Google API from the Command Line

In Chapter 15, “The Interwebs,”you had a sample program that enabled you to query Google directions
from the command line. However, you hard-coded the start and end locations into the program. That’s
not useful. Now you’re going to rewrite this to allow you to change your start and end locations from
the command line. All the code for this Try It Out is in the code fi le listing_17_1_directions.pl.

1. Type in the following program and save it as listing_17_1_directions.pl:

use strict;
use warnings;

use WWW::Mechanize;
use HTML::Strip;
use JSON::Any;
use URI::Encode ‘uri_encode’;
use utf8::all;
use Getopt::Long;

my ($start, $end);
GetOptions(
 ‘start=s’ => \$start,
 ‘end=s’ => \$end,
) or die “Could not parse options”;

unless ($start and $end) {
 die “Both --start and --end arguments must be supplied”;
}

if (@ARGV) {
 my $args = join ‘, ‘, @ARGV;
 die <<”END”;
Your \@ARGV contained ‘$args’. Did you forget to quote something?
--start=$start
--end=$end
END
}

print “Searching for directions from ‘$start’ to ‘$end’\n”;

c17.indd 553c17.indd 553 09/08/12 9:16 AM09/08/12 9:16 AM

554 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

$start = uri_encode($start);
$end = uri_encode($end);

my $url = “http://maps.googleapis.com/maps/api/directions/json”;
my $query = “origin=$start&destination=$end&sensor=false”;
my $mech = WWW::Mechanize->new;

$mech->get(“$url?$query”);

my $object = JSON::Any->new->decode($mech->content);

unless (‘OK’ eq $object->{status}) {
 die $object->{status};
}
my $route = $object->{routes}[0];
my $copyrights = $route->{copyrights};
my $warnings = $route->{warnings};
my $legs = $route->{legs}[0]; # only take the fi rst
my $distance = $legs->{distance}{text};
my $duration = $legs->{duration}{text};

print “$copyrights\nThe trip is $distance long and “
 . “lasts $duration\n\n”;
print join “\n” => @$warnings;
print “\n”;

my $strip = HTML::Strip->new;

foreach my $step (@{ $legs->{steps} }) {
 my $distance = $step->{distance}{text};
 my $duration = $step->{duration}{text};
 my $instructions = $strip->parse($step->{html_instructions});
 $strip->eof;
 print “$instructions for $distance ($duration)\n”;
}

2. Run the program with the following command line (remember to use double quotes on a
Windows system):

perl listing_17_1_directions.pl \
--start=’Paris, France’ --end=’London, UK’

You should see output similar to the following (truncated for length):

Continue onto Bd Ornano for 0.8 km (1 min)
Right onto Av. de la Porte de Clignancourt for 0.4 km (1 min)
Continue onto Av. Michelet/D14 Follow D14 for 1.9 km (3 mins)
Turn right onto Rue Francisque Poulbot/D410 for 0.5 km (1 min)
many lines truncated
Slight left to stay on Westminster Bridge Rd/A302
 Continue to follow A302 Toll road for 0.5 km (1 min)
Right onto Victoria Embankment/A3211 Toll road for 0.6 km (1 min)
Left onto Northumberland Ave/A400 Toll road for 0.4 km (1 min)
At the roundabout, take the 4th exit onto Trafalgar Square/A4/A400
 Continue to follow Trafalgar Square/A400 Toll road
 Destination will be on the left for 0.2 km (1 min)

c17.indd 554c17.indd 554 09/08/12 9:16 AM09/08/12 9:16 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://maps.googleapis.com/maps/api/directions/json

The Command Line ❘ 555

How It Works

Most of this program has already been explained in a Try it Out in Chapter 15, but here’s the entire
new section:

 1: use Getopt::Long;
 2: my ($start, $end);
 3: GetOptions(
 4: ‘start=s’ => \$start,
 5: ‘end=s’ => \$end,
 6:) or die “Could not parse options”;
 7:
 8: unless ($start and $end) {
 9: die “Both --start and --end arguments must be supplied”;
 10: }
 11: if (@ARGV) {
 12: my $args = join ‘, ‘, @ARGV;
 13: die <<”END”;
 14: \@ARGV contained ‘$args’. Did you forget to quote something?
 15: --start=$start
 16: --end=$end
 17: END
 18: }
 19:
 20: print “Searching for directions from ‘$start’ to ‘$end’\n”;
 21:
 22: $start = uri_encode($start);
 23: $end = uri_encode($end);

For the previous code block:

 ➤ You use Getopt::Long to capture your command-line arguments to the $start and $end vari-
ables. That’s lines 3 through 6.

 ➤ Lines 8 through 10 verify that you’ve received values for both $start and $end. Note how you
called this in the example:

perl directions.pl --start=’Paris, France’ --end=’London, UK’

 ➤ You had to quote the arguments to make sure that the shell knows to pass these arguments as one
“chunk” to Perl, rather than as separate bits. If you had done this:

perl directions.pl --start=Paris, France --end=London, UK

You would have set $start to Paris, (with the comma) and $end to London, (again, with the
comma) and you would have had the strings France and UK left in @ARGV. You trap this error and
display this in lines 11 through 18. If you had used the preceding command line, you would have
received this error:

@ARGV contained ‘France, UK’. Did you forget to quote something?
--start=Paris,
--end=London,

c17.indd 555c17.indd 555 09/08/12 9:16 AM09/08/12 9:16 AM

556 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

 ➤ Finally, line 20 prints out the expected start and end destinations and lines 22 and 23 do the
expected URI encoding, and everything else is exactly as you saw in Chapter 15.

OTHER PROGRAMS

Most of this book has covered Perl development geared toward writing usable, standalone software.
It’s also covered quite a few CPAN modules along the way. However, sometimes you fi nd
software that does exactly what you want, but it’s not written in Perl. You have many techniques to
handling this, but here you see a couple easier ones involving reading another program’s output and
writing output for another program to use.

Running an External Program

Perl offers a variety of ways to run an external program. This section shows you how to handle the
most common ways to do this. Table 17-1 shows the tools that this section covers. Some, such as
exec and backticks, are not covered here, but are included for completeness.

TABLE 17-1: Useful Tools For Working With External Programs

COMMAND USAGE

system Executes a command when you care only about its success or failure

exec Ends the Perl program and passes control to another program

backticks and qx Runs an external program and captures its output

open Writes to or reads from another program

Capture::Tiny Captures STDOUT and STDERR from external programs

Some of the commands listed in Table 17-1 overlap and the choice of each depends on your needs.

The most basic way to run another program is the system() command. This builtin is useful when
you want to run an external program and care only about its success or failure, not its output.
For example, if you run a Perl program that has written several megabytes of output in separate
fi les in a directory, you might want to compress those fi les into a single fi le and remove the directory
afterwards.

Without going into too much detail, one way to compress a directory of fi les is to use the tar
command:

tar zcjf archive.tgz mydir/

This creates a fi le named archive.tgz containing the contents of the mydir/ directory. You can
later extract (similar to unzip) this archive with the following command:

tar xjf archive.tgz

c17.indd 556c17.indd 556 09/08/12 9:16 AM09/08/12 9:16 AM

Other Programs ❘ 557

NOTE This chapter was frustrating to write because many of the command-

line tools that I care about are written for UNIX/Linux or Mac OS X, but not for

the Windows operating systems. Fortunately, Many UNIX/Linux commands run

unchanged on an OS X system. You can run many of them on Windows using

the GnuWin project freely downloadable from http://gnuwin32.sourceforge.

net/.

Another option is to use the Cygwin program mentioned in Chapter 1, “What’s

Perl.”

To compress a directory’s contents into a single fi le and then delete that directory, you can do the
following:

use strict;
use warnings;

use DateTime;

concatenating a string to the end of the DateTime object triggers
its string overloading. This example will create a string
representation of the current date and time

my $dir = DateTime->now . “”;

lots of code to write data to the $dir directory
my @command = (‘tar’, ‘cjf’, “$dir.tgz”, $dir);
system(@command) == 0
 or die “Could not ‘@command’: $?”;

@command = (‘rm’, ‘-fr’, $dir);
system(@command) == 0
 or die “Could not ‘@command’: $?”;

This looks a bit strange (and to be fair, system programming often does when you’re not used to it),
but look at the fi rst system command to see what’s going on.

my @command = (‘tar’, ‘cjf’, “$dir.tgz”, $dir);
system(@command) == 0
 or die “Could not ‘@command’: $?”;

For this, the @command array has the command as the fi rst element, followed by the arguments to the
command as successive elements. For this example, you place only the external tar command into a
separate variable to make it easier to report the command failure in the die statement.

The system() command takes a string or a list of strings and executes them. You could pack
everything into a single string:

my $command = “tar cjf $dir.tgz $dir”;
system($command) == 0
or die “Could not ‘$command’: $?”;

c17.indd 557c17.indd 557 09/08/12 9:16 AM09/08/12 9:16 AM

http://gnuwin32.sourceforge.net/
http://gnuwin32.sourceforge.net/

558 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

However, putting the command and its arguments into a single string is not recommended, because that
calls your operating system’s shell to execute the command instead of executing the command directly.
I won’t go into detail, but if you call your operating system’s shell to execute the command, not only is
it slower, but it also can open up serious security holes. Passing a list to a system is faster, and although it
can still be dangerous if you don’t know what you’re doing, it’s a touch safer than using a string.

So why do you test that it returns 0? Because on most operating systems, programs have return
values. If that value is 0 (zero), this means the program completed successfully. Thus, what Perl
considers a false value is returned upon success! If you hadn’t tested for system(@command) == 0,
you’d have to write this:

system(@command)
and die “Could not ‘@command’: $?”;

Although that shows up in many programs that use the system command, it’s confusing to read.

WHY YOU FOCUS ON SUCCESS OR FAILURE

Programs generally exit with 0 if the program completed successfully. If your
program dies because of a failure, it exits with some value other than zero. If you
trap an error and want to handle it and then exit with a nonzero value, just pass
that value as the argument to exit:

eval { some_func() };
if (my $error = $@) {
 warn $error;
 # do cleanup
 exit 1;
}

When you call an external command and it dies, the $? variable contains the sta-
tus that the system() command returns. Usually you hope that the status is zero.
If not, you know the command failed. You can get a fair amount of data out of this
by applying various bitwise operators, as described in the entry for $? in perldoc
perlvar:

The status returned by the last pipe close, backtick (``) command,
successful call to wait() or waitpid(), or from the system()
operator. This is just the 16-bit status word returned by the
traditional Unix wait() system call (or else is made up to look
like it). Thus, the exit value of the subprocess is really
(“$? >> 8”), and “$? & 127” gives which signal, if any, the
process died from, and “$? & 128” reports whether there was a core
dump.

However, I’ll just focus on success or failure rather than trying to parse the exit
codes because different programs have different exit codes. Unfortunately, they
tend to be poorly documented, and given that programs are often not portable
between Windows and other operating systems, it’s diffi cult to cover them here.

c17.indd 558c17.indd 558 09/08/12 9:16 AM09/08/12 9:16 AM

Other Programs ❘ 559

Reading Another Program’s Output

Sometimes you run another program and need to read its output. Both backticks (̀ `) and the qx//
operator help with this (they’re the same thing but with different syntax) and they’re documented in
perldoc perlop. So in a UNIX system, the uptime command tells you how long the computer has
been running since its last reboot or powerup:

print `uptime`;
print qx(uptime);

On my system, that currently prints:

21:42 up 21 days, 4:41, 3 users, load averages: 0.96 0.92 0.91
21:42 up 21 days, 4:41, 3 users, load averages: 0.96 0.92 0.91

UNDERSTANDING THE QX OPERATOR’S QUOTES

The qx operator is a standard “quote like” operator, meaning that you can use
many punctuation characters as delimiters:

print qx(uptime);
print qx/uptime/;
print qx’uptime’;
print qx”uptime”;
print qx<uptime>;

This means you can use standard variable interpolation:

my $program = ‘uptime’;
print qx<$program>;

If you do not want variable interpolation, be sure to use single quotes or escape the
variable sigils:

print qx’$uptime’;
print qx<\$uptime>;

Be careful when interpolating variables in code that executes other programs. It’s
easy to get something wrong. For example, if you read commands to execute from
a fi le and you want to do a quick qx($command), you’ll be disappointed if the
command is rm -fr *.

If you prefer, you can also use what is known as a piped open to read program output. Just place the
pipe, |, after the program name:

c17.indd 559c17.indd 559 09/08/12 9:16 AM09/08/12 9:16 AM

560 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

open my $read_fh, “$program |”
 or die “Cannot execute ‘$program |’: $!”;
while (my $output = <$read_fh>) {
 print $output;
}

This is useful if you want to pass a function a fi lehandle and do not care if the output comes from a
fi le or another program.

If you don’t want shell metacharacters to expand when you use a piped open, you should use –|
instead of a bare |:

open my $read_fh, “$program -|”
or die “Cannot execute ‘$program -|’: $!”;

These methods capture only a program’s STDOUT. To capture its STDERR, you need to redirect it:

my $stderr = qx/program 2>&1/;

Unfortunately, the 2>&1 is a bit cryptic and not portable. You’ll see Capture::Tiny in the STDERR
section of this chapter. This module provides an easy, portable solution.

NOTE The various solutions presented for reading output for a program are

blocking solutions. That means that they wait until the program called exits

before the output is returned to you. See perldoc perlopentut for more

information. The sysread and sysopen functions can help here.

Writing to Another Program’s Input

Sometimes instead of reading from another program, you need to write to it. You can do this by
placing the pipe in front of the command:

open my $fh, “| $command”
or die “Could not open a pipe to $command: $!”;

Better still is to use the three-argument form of open, with |- to prevent shell expansion:

open my $fh, “|-”, $command
or die “Could not open a pipe to $command: $!”;

For example, say you have a block of text and you want to know how many lines, words, and char-
acters it has. You can use the UNIX wc utility:

use strict;
use warnings;

my $text = <<’END’;

c17.indd 560c17.indd 560 09/08/12 9:16 AM09/08/12 9:16 AM

Other Programs ❘ 561

I will not be pushed, filed, stamped, indexed,
briefed, debriefed, or numbered.
END

open my $fh, ‘|-’, ‘wc’ or die $!;
print $fh $text;

And that prints out:

2 12 79

That output says you have 2 lines, 12 words, and 79 characters. The reason this text is printed out is
because wc’s default output goes to STDOUT. You effectively use wc to fi lter your output.

NOTE Use the wc utility to count words, lines, and characters in a block of text.

It is not native to Windows, but you can download a set of core UNIX utilities

for Windows from http://sourceforge.net/projects/gnuwin32/files/

coreutils/5.3.0/coreutils-5.3.0.exe/download.

This can also be useful if you want to change how your own STDOUT behaves. For example, if you
want your program’s output to go through a pager such as less, you could do this (I use |- to avoid
calling the shell):

my $pager = $ENV{PAGER} || ‘/usr/bin/less’;
open STDOUT, “|-”, $pager
 or die “Could not open STDOUT to $pager: $!”;

Now your program’s STDOUT output uses the pager instead of spewing lots of information that might
scroll past their terminal window.

If you need to read and write at the same time, see IPC::Open2 and IPC::Open3, both of which are
core modules. Or you can install IPC::Run from the CPAN. It’s more fl exible.

NOTE For more information about using pipes with open, see “Pipe Opens” in

perldoc perlopentut and also read perldoc perlipc.

The topic has generated many questions over the years and perldoc perlfaq8 has more
relevant information. Unfortunately, as of this writing, the perlipc information is a touch out
of date.

c17.indd 561c17.indd 561 09/08/12 9:16 AM09/08/12 9:16 AM

http://sourceforge.net/projects/gnuwin32/files/coreutils/5.3.0/coreutils-5.3.0.exe/download
http://sourceforge.net/projects/gnuwin32/files/coreutils/5.3.0/coreutils-5.3.0.exe/download

562 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

STDERR

Earlier you saw how to capture an external program’s STDERR instead of its STDOUT.

my $stderr = qx/program 2>&1/;

Even if you know you’re going to run your program only on Linux, perhaps you want to capture
both STDOUT and STDERR? That’s where Capture::Tiny comes in.

use Capture::Tiny ‘capture’;
my ($stdout, $stderr, @result) = capture {
 print “This goes to STDOUT\n”;
 warn “This goes to STDERR\n”;
 returnqw(These are the results);
};

print “STDOUT: $stdout”;
print “STDERR: $stderr”;
print “Results: @result”;

Running the code snippet outputs:

STDOUT: This goes to STDOUT
STDERR: This goes to STDERR
Results: These are the results

You can use Capture::Tiny with capturing STDOUT, STDERR and return values from a regular
chunk of code. In the case of an external program, it works just the same. Save the following
program as example_17_1_poets.pl.

NOTE If you use Capture::Tiny, be aware that sometimes you’ll be produc-

ing huge amounts of data and Capture::Tiny might consume lots of your

 computer’s memory memory.

use strict;
use warnings;

my @favorite_poets = (
 ‘PubliusOvidiusNaso’,
 ‘John Davidson’,
 ‘Alfred, Lord Tennyson’,
 ‘Christina Rossetti’,
);

foreach my $poet (@favorite_poets) {
 print “$poet\n”;
}

warn “We’re done here”;

c17.indd 562c17.indd 562 09/08/12 9:16 AM09/08/12 9:16 AM

Other Programs ❘ 563

It should be clear what happens if you run that, but you can capture the output in a different
program named example_17_2_capture.pl:

use strict;
use warnings;

use Data::Dumper;
use Capture::Tiny ‘capture’;

my $program = “$^X example_17_1_poets.pl”;
my ($stdout, $stderr, @result) = capture { qx”$program” };

print Dumper $stdout, $stderr, \@result;

NOTE $^X is the name of the current Perl executable.

Running that should produce the following output:

$VAR1 = ‘’;
$VAR2 = ‘We\’re done here at example_17_1_poets.pl line 14.
‘;
$VAR3 = [
 ‘PubliusOvidiusNaso
‘,
 ‘John Davidson
‘,
 ‘Alfred, Lord Tennyson
‘,
 ‘Christina Rossetti
‘
];

In this case, $VAR1 is $stdout, $VAR2 is $stderr, and $VAR3 is the @output. You actually didn’t
have any STDOUT to capture because the qx operator captured that for you and returned it as the
@output of the qx command. The warning from example_17_1_poets.pl was captured and
returned as the $stderr.

Capture::Tiny tries hard to be cross platform–friendly and generally works on Windows, OS X,
and UNIX/Linux systems. However, the author, David Golden, states that portability is a goal, not
a guarantee.

NOTE To know if a given module can work on your system, a good place to

start is the CPAN testers’ matrix, http://matrix.cpantesters.org/, provided

by the Perl testing community. To see Capture::Tiny’s results go to

http://matrix.cpantesters.org/?dist=Capture-Tiny.

c17.indd 563c17.indd 563 09/08/12 9:16 AM09/08/12 9:16 AM

http://matrix.cpantesters.org/
http://matrix.cpantesters.org/?dist=Capture-Tiny

564 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

TRY IT OUT Parsing wc Output

Earlier you learned how to write data to an external utility, but that generally doesn’t give you much
control because the data is dumped directly to STDOUT. With a piped open,your program and the
program to which you’re piping data share the same STDIN, STDOUT, and STDERR. Thus, when you
print $fh $text and use a piped open, it’s the same thing as directly printing the output. Instead,
you might want to capture the output in case you want to do something different with it.

All the code in this Try It Out is in code fi le listing_17_2_wc.pl.

1. Type in the following program and save it as listing_17_2_wc.pl:

use strict;
use warnings;
my $text = <<’END’;
I will not be pushed, fi led, stamped, indexed,
briefed, debriefed, or numbered.
END
use Capture::Tiny ‘capture’;
my ($stdout, $stderr, @output) = capture {
 open my $fh, ‘|-’, ‘wc’ or die $!;
 print $fh $text;
 close $fh or die “Cannot close piped open to wc: $!”;
};
my ($lines, $words, $characters)
 = ($stdout =~ /(\d+)\s+(\d+)\s+(\d+)/);
print “Lines: $lines Words: $words Characters: $characters\n”;

2. Run the program with perllisting_17_2_wc.pl. You should see the following output:

Lines: 2 Words: 12 Characters: 79

How It Works

Again, if you’ve been following along, this one is straightforward:

my ($stdout, $stderr, @output) = capture {
open my $fh, ‘|-’, ‘wc’ or die $!;
print $fh $text;
close $fh or die “Cannot close piped open to wc: $!”;
};

In the capture() subroutine, you have a piped open to the wc executable and then you print out text
to its fi lehandle. Because a piped open shares the same STDOUT as the parent process (the program that
prints the fi lehandle), the standard output from wc goes to your own STDOUT, thus ensuring that
capture() returns this to the $stdout variable. You then use a regular expression to extract the line,
word, and character count and print them out:

my ($lines, $words, $characters)
 = ($stdout =~ /(\d+)\s+(\d+)\s+(\d+)/);
print “Lines: $lines Words: $words Characters: $characters\n”;

c17.indd 564c17.indd 564 09/08/12 9:16 AM09/08/12 9:16 AM

Summary ❘ 565

SUMMARY

In this chapter, you learned some of the basics to work with programs on the command line,
reading user input and handling command-line arguments. You also learned about perlrun, the
documentation that explains many of the switches that are available to control the behavior of
the Perl interpreter.

Finally, you learned about running other programs from inside your program. You can read their
STDOUT and STDERR, and you can send information to them, as needed.

EXERCISES

 1. Write a program called age.pl that prompts a user for her birth date in YYYY-MM-DD format and

prints her age in years. You can use the following to parse a string in that format into a DateTime

object. What happens if someone enters an invalid date?

use DateTime::Format::Strptime;

my $datetime_formatter = DateTime::Format::Strptime->new(
 pattern => ‘%Y-%m-%d’,
 time_zone => ‘GMT’,
);

my $string = ‘1967-33-33’;
my $birthdate = $datetime_formatter->parse_datetime($string);

 2. Modify your program from Exercise 1 to not prompt the user if the birth date has been supplied

from the command line. Instead, use the birth date supplied on the command line. If the user

supplied any extra arguments, assume that she’s the person’s name:

perl age.pl --birthdate=1955-04-08 Barbara Kingsolver

 Allow an --age_at parameter to allow a person to specify what day you want to calculate his

age at.

perl age.pl --birthdate 1964-10-18 --age_at 2007-10-02 Charles Stross

 3. In Chapter 14, you learned about writing tests. Use qx and Capture::Tiny to write some tests for

age.pl from Exercise 2. Use the following to verify your program:

perl age.pl --birthdate 1964-10-18 --age_at 2007-10-02 Charles Stross
perl age.pl --birthday 1967-06-20

perl age.pl Ovid

c17.indd 565c17.indd 565 09/08/12 9:16 AM09/08/12 9:16 AM

566 ❘ CHAPTER 17 PLAYS WELL WITH OTHERS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

STDIN The fi lehandle that user input is read from.

@ARGV The built-in array containing command-line arguments.

Getopt::Long A standard module that parses command-line options.

Perlrun The documentation explaining standard Perl command-line

switches.

exec Terminates the current program and passes control to a

new one.

system Executes another program when you don’t care about its

output.

Backticks and qx Executes another program and captures its STDOUT.

Piped opens Reads and writes to external programs.

Capture::Tiny Captures the STDOUT, STDERR, and outputs from a subroutine.

c17.indd 566c17.indd 566 09/08/12 9:16 AM09/08/12 9:16 AM

Common Tasks

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Working with CSV Data

 ➤ Reading and writing XML

 ➤ Parsing and manipulating dates

 ➤ Using the built-in debugger

 ➤ Profi ling your program

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided into
the following major examples:

 ➤ example_18_1_jobs.csv

 ➤ example_18_2_parse_csv.pl

 ➤ example_18_3_write_csv.pl

 ➤ example_18_4_library.xml

 ➤ example_18_5_xml_simple.pl

 ➤ example_18_6_xml_twig.pl

 ➤ example_18_7_xml_writer.pl

 ➤ example_18_8_palindrome.pl

 ➤ example_18_9_factorial.pl

 ➤ listing_18_1_cal.pl

18

c18.indd 567c18.indd 567 10/08/12 8:26 PM10/08/12 8:26 PM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://WROX.COM
http://wrox.com

568 ❘ CHAPTER 18 COMMON TASKS

By now you have a good idea of what Perl programming is about, and you should have a solid grasp
of the fundamentals. If you’ve followed along carefully and worked through the exercises, you could
possibly even qualify for some entry-level developer positions. However, developers constantly get
strange tasks thrown at them all the time and must handle them. These last two chapters cover some
of those tasks. This chapter handles common tasks that you’ll likely need to perform and the next
chapter touches on some advanced topics that mastering can take you to the next level of Perl.

By now, you should know that the CPAN is the fi rst place you look to see if someone else has
already handled your task, and you’ll explore a few of the popular CPAN modules to handle various
tricky data tasks and also how to analyze your programs when things go awry.

USING CSV DATA

One common fi le format is CSV, which stands for comma-separated values and a quick example
makes it easy to understand a CSV fi le:

Name,Age,Occupation
John Public,28,Waiter
Curtis Poe,44,Software Engineer
Leïla Contraire,36,Political Advisor

Basically, for CSV data, records are separated by newlines and fi elds are separated by commas. If a fi eld
contains a newline, comma, or double quotes, it’s generally enclosed in double quotes. Except that there
is no formal specifi cation for CSV data, which can make things a bit more diffi cult. Sometimes people
use single quotes instead of double quotes, or they’ll enclose everything in quotes that is not a number.

All these factors can make parsing CSV data a challenge. Here’s a common (and broken) method of
CSV parsing:

use strict;
use warnings;
open my $fh, ‘<’, $file or die “Cannot open $file for reading: $!”;
while (my $line = <$fh>) {
 chomp($line);
 my @fields = split /,/, $line;
 s/^”|”$//g foreach @fields;
 printf “Name: %20s Age: %3d Occupation: %10s\n”, @fields;
}

As you can see in the next example, double quotes within double quotes are often escaped with
more double quotes, but some fi les escape double quotes with backslashes. The following code
(code fi le example_18_1_jobs.csv) is a typical bit of CSV data (note the embedded newline in the
Alice Baker’s occupation):

Name,Age,Occupation
John Public,28,Bum
“Curtis “”Ovid”” Poe”,44,Software Engineer
“Contraire, Leïla”,36,Political Advisor
Alice Baker,44,”CEO,
MegaCorp”

c18.indd 568c18.indd 568 10/08/12 8:26 PM10/08/12 8:26 PM

Using CSV Data ❘ 569

Running that with your sample program generates complete garbage:

Name: John Public Age: 28 Occupation: Bum
Name: Curtis “”Ovid”” Poe Age: 44 Occupation: Software Engineer
Argument “Leïla” isn’t numeric in printf at parse_csv.pl line 13,
 <$fh> line 4.
Name: Contraire Age: 0 Occupation: 36
Name: Alice Baker Age: 44 Occupation: CEO
Missing argument in printf at parse_csv.pl line 13, <$fh> line 6.
Missing argument in printf at parse_csv.pl line 13, <$fh> line 6.
Name: MegaCorp Age: 0 Occupation:

Reading CSV Data

Rather than writing lots of code to handle these special cases, you can install the Text::CSV_XS
program from the CPAN. As the author, H. Merijn Brand, points out, the module should probably
be referred to as parsing ASV (anything separated values) because of its extreme fl exibility. Here’s
how to parse that fi le (code fi le example_18_1_parse_csv.pl):

use strict;
use warnings;

use Text::CSV_XS;
my $file = ‘example_18_1_jobs.csv’;

open my $fh, ‘<’, $file or die “Cannot open $file for reading: $!”;

my $headers = <$fh>; # discard headers
my $csv = Text::CSV_XS->new({ binary => 1, eol => $/ });

while (my $row = $csv->getline($fh)) {
 printf “Name: %20s Age: %3d Occupation: %10s\n”, @$row;
}

And the output:

Name: John Public Age: 28 Occupation: Bum
Name: Curtis “Ovid” Poe Age: 44 Occupation: Software Engineer
Name: Contraire, Leïla Age: 36 Occupation: Political Advisor
Name: Alice Baker Age: 44 Occupation: CEO,
MegaCorp

Notice that Alice Baker has her profession printed over two lines, but that’s because that was how it
was represented in the original data fi le.

NOTE If you have trouble compiling Text::CSV_XS, you may consider installing

the Text::CSV module from the CPAN. It off ers a pure Perl alternative. It’s not as

fast, but it works.

c18.indd 569c18.indd 569 10/08/12 8:26 PM10/08/12 8:26 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

570 ❘ CHAPTER 18 COMMON TASKS

Note the arguments to the constructor:

my $csv = Text::CSV_XS->new({ binary => 1, eol => $/ });

By default, Text::CSV_XS assumes all data is ASCII. If you have newlines embedded in your
fi elds or if any of your characters have numeric values above 0x7E (the tilde), then you must pass
binary => 1 to the constructor to ensure it parses correctly. The eol argument is documented as
taking $/, though you can change this, if needed.

NOTE While I mentioned using binary => 1 in the constructor if you have

non-ASCII data, a better choice for many needs is to use Text::CSV::Encoded.

The Text::CSV_XS module is used in this chapter to keep things simple.

You may recall that Chapter 9 describes $/. The $/ variable is the Perl built-in variable for
the input record separator. For example, when you read from a fi le handle in scalar context,
Perl returns data up to the input record separator (and chomp()removes that separator).
Text::CSV_XS uses the $/ to handle reading lines for you. You use $csv->getline($fh)
instead of the normal <$fh> to read the fi lehandle because newlines embedded in fi elds are not
actually input record separators.

Writing CSV Data

Obviously, if you can read CSV, you want to write it, too. In this case, just print it to the console so
that you can see what’s going on (code file example_18_3_write_csv.pl).

use Text::CSV_XS;

my $csv = Text::CSV_XS->new({ binary => 1, eol => $/ });
my @input = (
 [‘Name’, ‘Age’, ‘Occupation’],
 [‘John Public’, 28, ‘Bum’],
 [‘Curtis “Ovid” Poe’, 44, ‘Software Engineer’],
 [‘Contraire, Leïla’, 36, ‘Political Advisor’],
 [‘Alice Baker’, 44, “CEO,\nMegaCorp”],
);

foreach my $input (@input) {
 if ($csv->combine(@$input)) {
 print $csv->string;
 }
 else {
 printf “combine() failed on argument: %s\n”, $csv->error_input;
 }
}

c18.indd 570c18.indd 570 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Basic XML ❘ 571

And that prints out:

Name,Age,Occupation
“John Public”,28,Bum
“Curtis “”Ovid”” Poe”,44,”Software Engineer”
“Contraire, Leïla”,36,”Political Advisor”
“Alice Baker”,44,”CEO,
MegaCorp”

You handled escaping quotes correctly without worrying about it. As you can see, the Text::CSV_XS
constructor takes the same arguments used for reading. Later, you use the $csv->combine(LIST)
to combine a list of arguments into a single CSV string and then the $csv->string method for
printing it. If the $csv->combine method returns false, you call $csv->error_input to understand
what input caused the actual error.

The Text::CSV_XS module is fl exible. If you want to write out the data in a tab-separated format,
you could pass sep_char => “\t” to the constructor (and use this to read tab-separated format,
too). You can change the quote character and many other behaviors within the module to get exactly
the data you need.

UNDERSTANDING BASIC XML

The Extensible Markup Language (XML) is a format for encoding documents designed to be read-
able by both humans and computers. When handled correctly, it is both powerful and fl exible. The
following code (code fi le example_18_4_library.xml) is a simple example of an XML document
that might be used to represent a library of books:

<?xml version=”1.0” encoding=”UTF-8” ?>
<library>
 <book isbn=”1118013840”>
 <title>Beginning Perl</title>
 <authors>
 <author>Curtis “Ovid” Poe</author>
 </authors>
 <publisher>Wrox</publisher>
 </book>
 <book isbn=”0596526741”>
 <title>Perl Hacks</title>
 <authors>
 <author>chromatic</author>
 <author>Damian Conway</author>
 <author>Curtis “Ovid” Poe</author>
 </authors>
 <publisher>O’Reilly Media</publisher>
 </book>
</library>

Obviously, you could fi t a lot more information in that document, including synopses, genres, and
many other things that are useful. The power of XML is that it is both fl exible and moderately easy
to read. You’ll cover some of the more popular choices for XML reading and writing and use your
example_18_4_library.xml example for your sample XML document.

c18.indd 571c18.indd 571 10/08/12 8:26 PM10/08/12 8:26 PM

572 ❘ CHAPTER 18 COMMON TASKS

Reading CSV Data

There are many Perl modules for reading and writing XML, and XML::Simple is one of the more
popular choices, but it has a variety of limitations. Still, it’s so easy to use that many people prefer it
to more robust solutions.

To show you its ease of use, parse your example XML snippet with (code fi le example_18_5_
xml_simple.pl):

use strict;
use warnings;
use XML::Simple;
use Data::Dumper;
$Data::Dumper::Indent = 1;
$Data::Dumper::Sortkeys = 1;

my $document = XMLin(‘library.xml’, forcearray => [‘author’]);

print Dumper($document);

And that prints out:

$VAR1 = {
 ‘book’ => [
 {
 ‘authors’ => {
 ‘author’ => [
 ‘Curtis “Ovid” Poe’
]
 },
 ‘isbn’ => ‘1118013840’,
 ‘publisher’ => ‘Wrox’,
 ‘title’ => ‘Beginning Perl’

NOTE The problem with XML is that the XML specifi cation (http://www.w3

.org/XML/Core/#Publications) is large and complex enough that many

authors, thinking XML is just angle brackets for grouping data, write XML

 parsers and generators that are broken in many ways.

The problem is serious enough that your author reluctantly (and with a bit of

 criticism) released Data::XML::Variant to enable authors to systematically

write “bad” XML. Generally, you don’t want to do this, but when working with

other parties, they often have an XML “specifi cation” that requires attributes in

a specifi c order, does not allow quoting of attributes, and allows unclosed tags,

illegal characters, and other problems.

It’s strongly recommended that you do not use Data::XML::Variant unless you

have no other choice.

c18.indd 572c18.indd 572 10/08/12 8:26 PM10/08/12 8:26 PM

http://www.w3.org/XML/Core/#Publications
http://www.w3.org/XML/Core/#Publications

Understanding Basic XML ❘ 573

 },
 {
 ‘authors’ => {
 ‘author’ => [
 ‘chromatic’,
 ‘Damian Conway’,
 ‘Curtis “Ovid” Poe’
]
 },
 ‘isbn’ => ‘0596526741’,
 ‘publisher’ => ‘O\’Reilly Media’,
 ‘title’ => ‘Perl Hacks’
 }
]
};

You can also use XML::Simple to output your XML. With the previous $document variable, you
can do this:

print XMLout(
 $document,
 ValueAttr => { book => ‘isbn’ },
 RootName => ‘library’,
);

And that outputs:

<library>
 <book isbn=”1118013840” publisher=”Wrox” title=”Beginning Perl”>
 <authors>
 <author>Curtis "Ovid" Poe</author>
 </authors>
 </book>
 <book isbn=”0596526741” publisher=”O’Reilly Media” title=”Perl Hacks”>
 <authors>
 <author>chromatic</author>
 <author>Damian Conway</author>
 <author>Curtis "Ovid" Poe</author>
 </authors>
 </book>
</library>

The XML is not the same, and the XML::Simple documentation offers suggestions but makes it
clear that XML::Simple should be used only when the following is true:

 ➤ You’re not interested in text content consisting only of whitespace.

 ➤ You don’t mind that when things get slurped into a hash the order is lost.

 ➤ You don’t want fi ne-grained control of the formatting of generated XML.

 ➤ You would never use a hash key that was not a legal XML element name.

 ➤ You don’t need help converting between different encodings.

c18.indd 573c18.indd 573 10/08/12 8:26 PM10/08/12 8:26 PM

574 ❘ CHAPTER 18 COMMON TASKS

In other words, XML::Simple is handy, but it’s limited enough that you will likely outgrow it
quickly.

Other programmers prefer fi ner control with the XML::Twig module. This module enables you to
treat XML documents as trees. A tree is a data structure that enables you to represent complex data
as a “tree” with “branches” representing the different elements. For example, in the sample XML,
the library element is the root of the tree with two book branches.

By using a tree-based XML parser, you can select any or all the branches of the tree and do
 something with them. For example, here’s one way to fetch just the titles:

use XML::Twig;
my @titles;
my $twig = XML::Twig->new(
 twig_handlers => {
 ‘//library/book/title’ => sub { push @titles => $_->text },
 },
);
$twig->parsefile(‘library.xml’);
printf “%s\n” => join ‘ | ‘, @titles;

And that should print out:

Beginning Perl | Perl Hacks

There are several ways to use XML::Twig and this method is one of the most memory effi cient
(which is one of the reasons many people use XML::Twig for XML processing). The keys of the
twig_handlers hash references are a subset of XPath, a tool used to select elements and attributes
in XML documents. The values are subroutines that enable you to manipulate the XML or fetch
data from it. The $_ variable is set to the current node of the tree.

NOTE A handy tutorial for understanding XPath is available at http://

www.w3schools.com/xpath/.

Or maybe you want to create a hash with the keys being the unique ISBN numbers and the values
being the titles:

use XML::Twig;
use Data::Dumper;

my %books;
my $twig = XML::Twig->new(
 twig_handlers => {
 ‘//library/book’ =>
 sub {
 $books{ $_->{att}{isbn} } = $_->first_child(‘title’)->text;

c18.indd 574c18.indd 574 10/08/12 8:26 PM10/08/12 8:26 PM

http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

Understanding Basic XML ❘ 575

 }
 },
);
$twig->parsefile(‘library.xml’);
print Dumper(\%books);

And that prints out:

$VAR1 = {
 ‘0596526741’ => ‘Perl Hacks’,
 ‘1118013840’ => ‘Beginning Perl’
};

If you want to be elaborate, you could rewrite the entire XML document in a manner similar to
Extensible Stylesheet Language Transformations (XSLT). Here’s how to rewrite the XML as HTML
lists (code fi le example_18_6_xml_twig.pl):

use strict;
use warnings;
use XML::Twig;

my $twig = XML::Twig->new(
 twig_handlers => {
 ‘//library’ => sub { $_->set_tag(‘ol’) },
 ‘//library/book’ => sub {
 $_->set_tag(‘li’); $_->set_atts({})
 },
 ‘//library/book/title’ => sub { $_->set_tag(‘strong’) },
 ‘//library/book/publisher’ => sub { $_->delete },
 ‘//library/book/authors’ => \&rewrite_authors,
 },
 pretty_print => ‘indented’,
 no_prolog => 1,
 comments => ‘drop’,
);

$twig->parsefile(‘example_18_4_library.xml’);
print $twig->toString;

sub rewrite_authors {
 my $authors = $_;
 my @authors = map { $_->text } $authors->children(‘author’);
 $authors->set_tag(‘p’);
 $authors->set_text(join ‘ - ‘, @authors);
}

Running that with your sample XML should print out the following:

 Beginning Perl
 <p>Curtis “Ovid” Poe</p>

c18.indd 575c18.indd 575 10/08/12 8:26 PM10/08/12 8:26 PM

576 ❘ CHAPTER 18 COMMON TASKS

 Perl Hacks
 <p>chromatic - Damian Conway - Curtis “Ovid” Poe”</p>

There are, of course, many other powerful modules for parsing XML. XML::LibXML, XML::Parser,
XML::Sax, and XML::Compile are today among a few of the many useful (and sometimes incompre-
hensible) XML parsers available. Just because XML::Simple and XML::Twig were shown does not
mean that they are the best. Your choice of module should refl ect your needs.

Writing CSV Data

Naturally, if you read XML, you must write it, too. XML::Simple’s XMLout() function enables you
to do that, but it’s not fl exible. Instead, turn to XML::Writer to handle this task, which makes
writing XML a breeze. It generally needs to write its output to an IO::File object, but for
simplicity’s sake, use XML::Writer::String to print your XML directly.

You start by designing a good data structure to represent your XML data. XML is a set of tags,
each of which may be self-closed (<tag/>) or closed later (<tag>...</tag>). Each tag may
have zero or more attributes and either contain a string value or a zero or more tags. You can
represent each tag as an array reference. The fi rst item is the tag name, so an empty tag looks
like this:

<name/>
[‘name’]

The tag might have attributes, so the second element is a hash reference. With no values, it means
the tag has no attributes. Otherwise, the name/value pairs can represent attributes:

<name version=”1.0”/>
[name => { version => ‘1.0’ }]

Any array elements after the hashref should either be a single string, representing the text value, or
more array references for nested tags:

<name version=”1.0”>Bob</name>
[name => { version => ‘1.0’ }, ‘Bob’]
<name version=”1.0”>
<first>Bob</first>
<last>Dobbs</last>
</name>
[name => { version => ‘1.0’ },
 [first => {}, ‘Bob’],
 [last => {}, ‘Dobbs’],
]

If you squint, you can even see that it looks a little bit like XML.

c18.indd 576c18.indd 576 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Basic XML ❘ 577

To make it cleaner to read, make empty attribute hash references optional:

[name => { version => ‘1.0’ },
 [first => ‘Bob’],
 [last => ‘Dobbs’],
]

Now that you have clean data structure for your XML generation, use XML::Writer and
XML::Writer::String to create the sample XML you’ve been using for this chapter (code fi le
example_18_7_xml_writer.pl):

use strict;
use warnings;
use XML::Writer;
use XML::Writer::String;

my @to_xml = (
 library =>
 [book => { isbn => ‘1118013840’ } =>
 [title => ‘Beginning Perl’],
 [authors =>
 [author => ‘Curtis “Ovid” Poe’],
],
 [publisher => ‘Wrox’],
],
 [book => { isbn => ‘0596526741’ } =>
 [title => ‘Perl Hacks’],
 [authors =>
 [author => ‘chromatic’],
 [author => ‘Damian Conway’],
 [author => ‘Curtis “Ovid” Poe’],
],
 [publisher => “O’Reilly Media”],
],
);

my $output = XML::Writer::String->new;
my $writer = XML::Writer->new(
 OUTPUT => $output,
 DATA_MODE => 1,
 DATA_INDENT => 2,
);

$writer->xmlDecl;
write_element($writer, @to_xml);
$writer->end;

print $output->value;

sub write_element {
 my ($writer, $element, @next) = @_;
 # This allows the attributes hashref to be optional
 my ($attributes, @elements) = ‘HASH’ eq ref $next[0]

c18.indd 577c18.indd 577 10/08/12 8:26 PM10/08/12 8:26 PM

578 ❘ CHAPTER 18 COMMON TASKS

 ? @next # we had attributes
 : ({}, @next); # we did not have attributes
 $writer->startTag($element, %$attributes);
 foreach my $next_element (@elements) {
 ref $next_element
 ? write_element($writer, @$next_element)
 : $writer->characters($next_element);
 }
 $writer->endTag;
}

Running this code prints the wanted XML:

<?xml version=”1.0”?>

<library>
 <book isbn=”1118013840”>
 <title>Beginning Perl</title>
 <authors>
 <author>Curtis “Ovid” Poe</author>
 </authors>
 <publisher>Wrox</publisher>
 </book>
 <book isbn=”0596526741”>
 <title>Perl Hacks</title>
 <authors>
 <author>chromatic</author>
 <author>Damian Conway</author>
 <author>Curtis “Ovid” Poe</author>
 </authors>
 <publisher>O’Reilly Media</publisher>
 </book>
</library>

Note the following about this code:

 ➤ At the top of the xml_writer.pl code, you use XML::Writer and XML::Writer::String.
Ordinarily, XML::Writer expects to write the data to an IO::File object, but use
XML::Writer::String to make it easier to directly see the output as you work.

 ➤ Next, the data structure mirrors the example XML perfectly.

 ➤ Next, the you have code for writing the XML declaration (that’s the <?xml
 version=”1.0”?> bit), the actual XML, and fi nally printing out the result:

$writer->xmlDecl;
write_element($writer, @to_xml);
$writer->end;
print $output->value;

 ➤ Finally, you have a recursive subroutine that walks the data structure to print the XML:

sub write_element {
 my ($writer, $element, @next) = @_;
 # This allows the attributes hashref to be optional

c18.indd 578c18.indd 578 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Basic XML ❘ 579

 my ($attributes, @elements) = ‘HASH’ eq ref $next[0]
 ? @next # we had attributes
 : ({}, @next); # we did not have attributes
 $writer->startTag($element, %$attributes);
 foreach my $next_element (@elements) {
 ref $next_element
 ? write_element($writer, @$next_element)
 : $writer->characters($next_element);
 }
 $writer->endTag;
}

Because objects in Perl are references, any changes made to the object will persist, and you don’t
need to return it. (this simplifi es Your code somewhat.) You can write out an XML start tag
with this:

$writer->startTag($element, %$attributes);

Then you recurse throughout the elements, and if you have an array reference, you recursively call
write_element() again with the next elements. If you have a string, such as Wrox, write it directly
after the tag:

$writer->characters($next_element);

Finally, call $writer->endTag, which automatically prints the closing tag for whichever
 $writer->startTag you last called.

NOTE The data structure for writing XML might look a bit strange, but it’s a real-

world example. Your author had to work from home for a couple of weeks due

to a back injury and rewrote the XML generation for the Programme Information

Platform (PIPs) for the BBC. The data structure is therefore identical to the data

structure used to provide XML data for the world’s largest broadcaster’s

data feeds for meta data. It also has a side eff ect of being unambiguously

serializable in both JSON and YAML formats.

If you’re curious about a tiny behind-the-scenes look at a powerful application

powered by Perl, you can read more about PIPs at http://www.bbc.co.uk/

blogs/bbcinternet/2009/02/what_is_pips.html.

The sample code for this chapter skips much of the data validation and error reporting that was
necessary and also doesn’t include the work needed to deserialize XML, YAML, and JSON back
into the same Perl data structure. (XML is a bit tricky, but the YAML and JSON deserialization is
straightforward.)

c18.indd 579c18.indd 579 10/08/12 8:26 PM10/08/12 8:26 PM

http://www.bbc.co.uk/blogs/bbcinternet/2009/02/what_is_pips.html
http://www.bbc.co.uk/blogs/bbcinternet/2009/02/what_is_pips.html

580 ❘ CHAPTER 18 COMMON TASKS

HANDLING DATES

In 1999, you author was working as a mainframe programmer and some of his job was dealing
with the infamous Y2K issue. Many systems had years stored as 2 bytes, thus meaning, for example,
that the year 00 would often be interpreted as 1900 rather than 2000. There was a rather strange
conspiracy theory running around that programmers across the planet had somehow managed to
work together to create a nonexistent problem to guarantee job security. In response, your author
penned the following haiku:

Is Y2K real?
The problem’s being solved by
Those who can’t find dates.

(For the pedants: yes, it’s a senryu).

Today, handling dates is as tricky as ever, and programmers invariably underestimate the subtle-
ties involved. Fortunately, Perl offers a variety of excellent tools to make your life easier. In your
 programming career, you will eventually be confronted with your fi rst date. Don’t blow it; listen to
the experts.

Using the DateTime Module

The DateTime module, written by Dave Rolsky, is your fi rst choice when learning to navigate this
tricky area. If you need to work with dates and times regularly, you must read the documentation
thoroughly, and also read the http://datetime.perl.org/ website.

You’ve already seen a fair amount of use of this module in the book, but now you’ll review a couple
features that are easy to forget.

Say that you’re passed a DateTime object and you want to know if it’s after now:

if ($datetime > DateTime->now) {
 # $datetime is in the future
}

Sometimes you get a string containing a date, and you want to parse that into a DateTime object.
DateTime::Format::Strptime is a good choice. (You can also use DateTime::Format::Builder
for hard-to-parse cases).

use DateTime::Format::Strptime;
my $parser = DateTime::Format::Strptime->new(pattern => ‘%Y-%m-%d’);
my $datetime = $parser->parse_datetime(‘1967-06-20’);

And you can even represent time down to the nanosecond level:

my $dt_ns = DateTime->new(
 year => 2012,
 month => 5,
 day => 23,
 hour => 22,

c18.indd 580c18.indd 580 10/08/12 8:26 PM10/08/12 8:26 PM

http://datetime.perl.org/

Handling Dates ❘ 581

 minute => 35,
 second => 16,
 nanosecond => 130,
);

Using Date::Tiny and DateTime::Tiny

One problem with using DateTime is that dates are so much harder than people think. The module
is slow to load and takes about 3 or 4 megabytes of memory. If all you need to do is represent a
date and don’t care about durations, comparisons, or other aspects of date math, you might fi nd the
Date::Tiny and DateTime::Tiny modules by Adam Kennedy interesting. Not only are they much
smaller (approximately 100 kilobytes of memory), but they’re much faster. However, they achieve
this by deliberately excluding many features that DateTime provides. Their basic usage is similar:

my $date = Date::Tiny->new(
 year => 1967,
 month => 6,
 day => 20,
);
my $date = DateTime::Tiny->new(
 year => 2006,
 month => 12,
 day => 31,
 hour => 10,
 minute => 45,
 second => 32,
);

The Date::Tiny module is useful when you need only a date, and the DateTime::Tiny module is
useful when you need both a date and time. Your author has found these handy on performance
sensitive systems when he quickly needs to generate a datetime string for now:

my $today = Date::Tiny->now;
my $now = DateTime::Tiny->now;

Unlike DateTime, each of these has a simple, built-in date string parser. The date or datetime strings
are expected to be in ISO 8601 format:

my $birthday =Date::Tiny->from_string(‘1967-06-20’);
my $party_like_its=DateTime::Tiny->from_string(‘1998-12-31T23:59:59’);

NOTE In case you wonder why the date 1967-06-20 shows up so often in the

text, it’s because this is your author’s birthday. Now you have no excuse for

forgetting.

c18.indd 581c18.indd 581 10/08/12 8:26 PM10/08/12 8:26 PM

582 ❘ CHAPTER 18 COMMON TASKS

Both the Date::Tiny and DateTime::Tiny modules provide a DateTime method for returning the
object as its corresponding DateTime object. This is useful if you discover that you need to manipu-
late the DateTime in ways that the Date::Tiny and DateTime::Tiny modules do not allow.

my $dt1 = $birthday->DateTime;
my $party = $party_like_its->DateTime->add(seconds => 1);

TRY IT OUT Writing a Calendar Display

On most Linux systems, there is a standard utility named cal. This utility prints out a calendar of
a given month and year, defaulting to the current month and year. You can rewrite this in Perl, but
instead of the positional arguments used with cal, you can use named arguments:

 perl listing_18_1_cal.pl --month 6 --year 1967
 perl listing_18_1_cal.pl -m 6 -y 1967

And that should print out:

 June 1967
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 3

You’re going to use many methods on the DateTime object that you probably haven’t seen before,
but you would learn if you read the documentation (something your author has tried to drill into you
quite a bit). Further, you can use a few Perl constructs that are less common, but that you’ve already
seen in this book. If you really know Perl well, you can get a lot of power out of little code.

Further, you can see the POD for this script to get an idea of what a full, proper Perl program looks like
in the real world.

All the code in this Try It Out is in the code fi le listing_18_1_cal.pl.

1. Type in the following program and save it as listing_18_1_cal.pl:

use strict;
use warnings;

use DateTime;
use Getopt::Long;

my $SPACES_PER_DAY = 3;

my $now = DateTime->now;
my $year = $now->year;
my $month = $now->month;

GetOptions(
 ‘month=i’ => \$month,
 ‘year=i’ => \$year,

c18.indd 582c18.indd 582 10/08/12 8:26 PM10/08/12 8:26 PM

Handling Dates ❘ 583

) or die “Bad options”;

my @header = qw(S M T W T F S);
my %date = (
 month => $month,
 year => $year,
 day => 1,
);

my $date = DateTime->new(%date);
my $last_day = DateTime->last_day_of_month(%date)->day;
my $day_of_week = $date->day_of_week;
my $month_name = $date->month_name;

my ($start, $end) = (1, $last_day);

my @null_days = $day_of_week == 7 ? () : (“”) x $day_of_week;

my @calendar = (undef, @header, @null_days, 1 .. $last_day);

print centered_title($month_name, $year);
for my $i (1 .. $#calendar) {
 printf “%${SPACES_PER_DAY}s” => $calendar[$i];
 print “\n” if !($i % 7);
}

sub centered_title {
 my ($month_name, $year) = @_;
 my $title = “$month_name, $year”;
 my $padding = “ “ x (($SPACES_PER_DAY*7-length($title))/2);
 return “ $padding$title\n”;
}

__END__

=head1 NAME

listing_18_1_cal.pl - print a calendar for a given month and year

=head1 DESCRIPTION

Often we need to quickly display a calendar for a given month
and year. This program will do this for you:

 perl listing_18_1_cal.pl --month 6 --year 2012
 perl listing_18_1_cal.pl -m 6 -y 2012

 June, 2012
 S M T W T F S
 1 2
 3 4 5 6 7 8 9
 10 11 12 13 14 15 16
 17 18 19 20 21 22 23
 24 25 26 27 28 29 30

=head1 OPTIONS

c18.indd 583c18.indd 583 10/08/12 8:26 PM10/08/12 8:26 PM

584 ❘ CHAPTER 18 COMMON TASKS

 --month,-m The number of the month (defaults to current month)
 --year,-y The number of the year (defaults to current year)

=head1 EXAMPLES

Current month and year:

 perl listing_18_1_cal.pl

Current month, different year:

 perl listing_18_1_cal.pl --year 1999
 perl listing_18_1_cal.pl -y 1999

Current year, different month:

 perl listing_18_1_cal.pl --month 1
 perl listing_18_1_cal.pl -m 1

Exact month and year:

 perl listing_18_1_cal.pl --month 12 --year 1999
 perl listing_18_1_cal.pl -m 12 -y 1999

2. Run the program with perl listing_18_1_cal.pl -m 8 -y 1957. You should see the
following output:

 August 1957
 Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
 11 12 13 14 15 16 17
 18 19 20 21 22 23 24
 25 26 27 28 29 30 31

How It Works

The idea behind this program is to fi gure out the number of days in a given month for a given year.
Then you construct an array with the header, each element of which is the fi rst letter of the day of the
week, a number of “empty strings” equivalent to the fi rst days of the week that don’t correspond to
days of the current month, and then the days of the month.

With that properly constructed array, printing the calendar is merely printing off every seven elements
(separated by spaces), followed by newlines.

Lines 1 through 16 set up the initial data, including reading the optional month and year from the
command line. The $SPACES_PER_DAY variable defi nes the padding you’ll use for each day when you
print the calendar. The @header variable contains the fi rst letter of each day of the week.

 1: use strict;
 2: use warnings;
 3: use DateTime;
 4: use Getopt::Long;

c18.indd 584c18.indd 584 10/08/12 8:26 PM10/08/12 8:26 PM

Handling Dates ❘ 585

 5:
 6: my $SPACES_PER_DAY = 3;
 7:
 8: my $now = DateTime->now;
 9: my $year = $now->year;
 10: my $month = $now->month;
 11: GetOptions(
 12: ‘month=i’ => \$month,
 13: ‘year=i’ => \$year,
 14:) or die “Bad options”;
 15:
 16: my @header = qw(S M T W T F S);

Lines 17 through 27 calculate various values you’ll need to print your calendar. You’ve not used the
last_day_of_month constructor for the DateTime object before, but you will know about it if you’ve
read the DateTime documentation.

 17: my %date = (
 18: month => $month,
 19: year => $year,
 20: day => 1,
 21:);
 22: my $date = DateTime->new(%date);
 23: my $last_day = DateTime->last_day_of_month(%date)->day;
 24: my $day_of_week = $date->day_of_week;
 25: my $month_name = $date->month_name;
 26:
 27: my ($start, $end) = (1, $last_day);

Line 29 is interesting. This enables you to insert “empty string” elements into your @calendar array.
These are used to pad the beginning of the week when you print out your calendar. Use the x infi x
operator with parentheses around the left argument ((“”) x $day_of_week) to enforce list context. If
the day of the week is 4, it returns four empty strings elements.

 29: my @null_days = $day_of_week == 7 ? () : (“”)x$day_of_week;

So if the day of the week for the fi rst day of the month is 5, you see the following:

 S M T W T F S
 1 2 3

The @null_days variable is empty if $day_of_week is 7. Otherwise, you’d wind up with an empty row
in the calendar if you’re not careful.

Then construct the actual calendar array. It contains the header (the fi rst letter of every day of the
week), the @null_days, and the number 1 to the number of the last day of the month:

 31: my @calendar = (undef, @header, @null_days, 1..$last_day);

Use undef for the fi rst element because it makes the later math simpler. You’ll see that in a bit.

Line 33 prints the title (the month and year) centered. Lines 39 through 44 contain the subroutine that
calculates the centered title.

c18.indd 585c18.indd 585 10/08/12 8:26 PM10/08/12 8:26 PM

586 ❘ CHAPTER 18 COMMON TASKS

 33: print centered_title($month_name, $year);
 39: sub centered_title {
 40: my ($month_name, $year) = @_;
 41: my $title = “$month_name, $year”;
 42: my $padding=” “x(($SPACES_PER_DAY*7-length($title))/2);
 43: return “ $padding$title\n”;
 44: }

Line 43 returns “ $padding$title\n”. The extra space at the beginning of the string you returned is
a tiny hack to improve centering. You’ll often see tiny hacks like this in Perl code.

Finally, print the actual calendar:

 34: for my $i (1 .. $#calendar) {
 35: printf “%${SPACES_PER_DAY}s” => $calendar[$i];
 36: print “\n” if !($i % 7);
 37: }
 38:

The @calendar array included an undef as the fi rst element because you wanted to skip it. If you
started the elements you wanted print at index 0, line 36 would have looked like this and have been
more confusing:

print “\n” if !(($i - 1) % 7);

Also note line 35 carefully:

 printf “%${SPACES_PER_DAY}s” => $calendar[$i];

You interpolate the $SPACES_PER_DAY variable in the string to dynamically build the format for the
printf builtin. The format string becomes %3s. The identifi er of the scalar is wrapped in curly braces:
${SPACES_PER_DAY} because that tells Perl where the start and end of the variable name is. Otherwise,
the format string would be %$SPACES_PER_DAYs and Perl would complain that the $SPACES_PER_DAYs
(note the trailing ”s”) variable doesn’t exist.

NOTE The trick to wrap the variable identifi er in curly braces in a string also

works outside of strings:

my ${foo} = 3;
print $foo; # prints 3

However, do not do this. It doesn’t add any value here and is good only for

obfuscating code and showing off (usually a bad idea). It is mentioned here for

completeness.

This program shows off a lot of idiomatic Perl and shows you what a real-world

program actually looks like. It’s worth going over a few times to make sure you

understand what it’s doing.

c18.indd 586c18.indd 586 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 587

UNDERSTANDING YOUR PROGRAM

Writing programs is great, but you often might be in a situation in which something has gone wrong
and you need to understand what it is. Perl offers a rich variety of tools to help you understand these
issues, so you’ll look at some of them now.

Using the Debugger

The debugger for Perl is probably one of the most useful tools you can use, but many Perl pro-
grammers fi nd it quite intimidating. Basic usage of the Perl debugger is quite simple, but the Fear
of the command line seems to intimidate many Perl developers and they avoid the debugger. This
is actually rather understandable because the debugger is cryptic. You will fi nd, though, that
learning the debugger pays off handsomely when you take the time to learn it. Now look at some
of the basics.

There are several ways to use the Perl debugger, the most common of which is this:

perl -d some_program.pl

That command runs some_program.pl in the debugger. Rather than try to explain everything,
your author shows you a sample program. Imagine that, for some strange reason, you have a list
of strings and you want to return the number of letters in a string if it’s a palindrome (hey, you try
coming up with interesting examples for a book this long!), but zero if it’s not a palindrome. For
example, the sentence “Murder for a jar of red rum” should have a length of 21, but “Hey, dude.”
should return 0. So look at the sample program (code fi le example_18_8_palindrome.pl):

use strict;
use warnings;
use Data::Dumper;

my @strings = (
 ‘Dogma? I am God.’,
 ‘I did, did I?’,
 ‘Lager, sir, is regal.’,
 ‘This is not a palindrome’,
 ‘Murder for a jar of red rum.’,
 ‘Reviled did I live, said I, as evil I did deliver.’,
);

my %lengths = map { $_ => plength($_) } @strings;

print Dumper \%lengths;

sub plength {
 my $word = @_;
 $word =~ s/\W//g;
 return 0 unless $word eq reverse $word;
 return length $word;
}

c18.indd 587c18.indd 587 10/08/12 8:26 PM10/08/12 8:26 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

588 ❘ CHAPTER 18 COMMON TASKS

That’s straightforward, but it prints out:

$VAR1 = {
 ‘Reviled did I live, said I, as evil I did deliver.’ => 1,
 ‘This is not a palindrome’ => 1,
 ‘Lager, sir, is regal.’ => 1,
 ‘Dogma? I am God.’ => 1,
 ‘I did, did I?’ => 1,
 ‘Murder for a jar of red rum.’ => 1
 };

Obviously, it’s not true that all of those strings have a length of 1 and clearly, one of them is not a
palindrome (which one is an exercise for the reader). So fi re up your debugger and fi gure out what’s
going on.

$ perl -d palindrome.pl
Loading DB routines from perl5db.pl version 1.33
Editor support available.
Enter h or `h h’ for help, or `man perldebug’ for more help.
main::(palindrome.pl:5): my @palindromes = (
main::(palindrome.pl:6): ‘Dogma? I am God.’,
main::(palindrome.pl:7): ‘I did, did I?’,
main::(palindrome.pl:8): ‘Lager, sir, is regal.’,
main::(palindrome.pl:9): ‘This is not a palindrome’,
main::(palindrome.pl:10): ‘Murder for a jar of red rum.’,
main::(palindrome.pl:11): ‘Reviled did I live, said I, as …
main::(palindrome.pl:12):);
 DB<1>

When you fi rst fi le up the debugger, it shows the fi rst line or lines of code that it’s about to run and
displays them. Whenever a new line of code shows up in the debugger, it’s a line of code that is
about to be executed, not one that has already been executed.

So you can see that Perl is about to evaluate the contents of the @palindromes array. The code
started with three use statements, but those aren’t shown because they happen at compile time, and
the debugger (usually) starts at the fi rst run-time statement.

So what do you do? Type n. That advances to the ‘n’ext line of code.

DB<1> n
main::(palindrome.pl:14)::my %lengths = map { $_ => plength($_) } @palindromes;

Now you see that the next line of code to execute is the map statements. Because there are six
elements in @palindromes, you could hit n six times to execute this six times:

 DB<1> n
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;
 DB<1> n
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;
 DB<1> n
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;

c18.indd 588c18.indd 588 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 589

 DB<1> n
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;
 DB<1> n
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;
 DB<1> n
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;
 DB<1> n
main::(palindrome.pl:15): print Dumper \%lengths;

However, that doesn’t let you see what’s happening in the plength subroutine, so after the fi rst n
command, type s to step into the subroutine.

 DB<1> s
main::(palindrome.pl:14): my %lengths=map{$_=>plength($_)}@strings;
 DB<1> s
 main::plength(palindrome.pl:18):: my $word = @_;

The fi rst s steps into the map command, and the second s steps into plength to shows that you’re
about to execute the fi rst line of the subroutine. Type n again to go to the next line:

 DB<1> n
 main::plength(palindrome.pl:19):: $word =~ s/\W//g;

Now that you’ve executed the my $word = @_; line, $word has a value, so look at that by using the
p command. The p command is shorthand for print:

 DB<2> p $word
 1

Ah hah! As you can see, $word has a value of 1. So what’s in @_? You use the x command for this.
It’s like the debugger version of Data::Dumper, but with a slightly different output:

 DB<5> x \@_
0 ARRAY(0x7ff0398ac3a8)
 0 ‘Dogma? I am God.’

The x command dumps out the variables. If it’s a reference, it displays the reference type and address
(something like ARRAY(0x7ff0398ac3a8)) and then shows the contents of the variable. In this case,
you have a one-element array containing the string Dogma? I am God.. Obviously, you’re passing in
the correct value, but now you should understand what happened. You tried to assign a list to a sca-
lar, and that’s why $word contained the value of 1. So quit the debugger with the q command, and
fi x the fi rst line of the subroutine by forcing the list context:

my ($word) = @_;

Now when you run the program again, you get the following output:

$VAR1 = {
 ‘Reviled did I live, said I, as evil I did deliver.’ => 0,
 ‘This is not a palindrome’ => 0,

c18.indd 589c18.indd 589 10/08/12 8:26 PM10/08/12 8:26 PM

590 ❘ CHAPTER 18 COMMON TASKS

 ‘Lager, sir, is regal.’ => 0,
 ‘Dogma? I am God.’ => 0,
 ‘I did, did I?’ => 8,
 ‘Murder for a jar of red rum.’ => 0
 };

Hmm, the I did, did I? line worked, but not the rest. Because you have a line that returns 0, it
looks suspicious. Now run the debugger again. As you probably noticed, the preceding output was
rather limited. You usually saw only one line at a time and that can make it hard to see what’s going
on. So now fi x that.

When you are in the debugger, you can type v to see a “view” of the lines surrounding your current
line. The current line is designated with a ==> marker, for example:

 DB<1> v
15: print Dumper \%lengths;
16
17 sub plength {
18==> my $word = @_;
19: $word =~ s/\W//g;
20: return 0 unless $word eq reverse $word;
21: return length $word;
22 }
 DB<1>

As you can see, you’re on the fi rst line of the plength() subroutine, but with the extra lines before
and after, it’s much easier to see where you are and to understand what’s going on.

Obviously, you don’t want to type v after every time you enter a command, so when you enter
the debugger, before you type anything else, type {{v. The {{ command construct, followed by any
debugger command, tells the debugger to execute the debugger command before every debugger
prompt, (Hey, we already said the debugger was cryptic!) So do that now, followed by the n
command to move to the next line of code.

$ perl -d palindrome.pl
Loading DB routines from perl5db.pl version 1.33
Editor support available.
Enter h or `h h’ for help, or `man perldebug’ for more help.
main::(palindrome.pl:5): my @strings = (
main::(palindrome.pl:6): ‘Dogma? I am God.’,
main::(palindrome.pl:7): ‘I did, did I?’,
main::(palindrome.pl:8): ‘Lager, sir, is regal.’,
main::(palindrome.pl:9): ‘This is not a palindrome’,
main::(palindrome.pl:10): ‘Murder for a jar of red rum.’,
main::(palindrome.pl:11): ‘Reviled did I live, said I, as …
main::(palindrome.pl:12):);
 DB<1> {{v
 DB<2> n
main::(palindrome.pl:14): my %lengths=map {$_=>plength($_)}@strings;

c18.indd 590c18.indd 590 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 591

auto(-1) DB<2> v
11 ‘Reviled did I live, said I, as evil I did deliver.’,
12);
13
14==> my %lengths = map { $_ => plength($_) } @strings;
15: print Dumper \%lengths;
16
17 sub plength {
18: my ($word) = @_;
19: $word =~ s/\W//g;
20: return 0 unless $word eq reverse $word;
 DB<2>

The debugger looks better already. Now step into the plength subroutine by setting a breakpoint
with b plength (you can set breakpoints with either line numbers or subroutine names) and then
pressing c to continue to the breakpoint. Then use n a couple of times to get to the desired line
of code.

 DB<2> b plength
 DB<3> c
main::plength(palindrome.pl:18): my ($word) = @_;
auto(-1) DB<3> v
15: print Dumper \%lengths;
16
17 sub plength {
18==>b my ($word) = @_;
19: $word =~ s/\W//g;
20: return 0 unless $word eq reverse $word;
21: return length $word;
22 }
 DB<3> n
main::plength(palindrome.pl:19): $word =~ s/\W//g;
auto(-1) DB<3> v
16
17 sub plength {
18:b my ($word) = @_;
19==> $word =~ s/\W//g;
20: return 0 unless $word eq reverse $word;
21: return length $word;
22 }
 DB<3> n
::plength(palindrome.pl:20): return 0 unless $word eq reverse $word;
auto(-1) DB<3> v
17 sub plength {
18:b my ($word) = @_;
19: $word =~ s/\W//g;
20==> return 0 unless $word eq reverse $word;
21: return length $word;
22 }
 DB<3>

c18.indd 591c18.indd 591 10/08/12 8:26 PM10/08/12 8:26 PM

592 ❘ CHAPTER 18 COMMON TASKS

At this point, remember your output:

$VAR1 = {
 ‘Reviled did I live, said I, as evil I did deliver.’ => 0,
 ‘This is not a palindrome’ => 0,
 ‘Lager, sir, is regal.’ => 0,
 ‘Dogma? I am God.’ => 0,
 ‘I did, did I?’ => 8,
 ‘Murder for a jar of red rum.’ => 0
 };

Clearly you have a problem where you’re returning 0 from plength() and you’re on the line of code
that is responsible for this:

return 0 unless $word eq reverse $word;

So use the p command to print out some values. For DB<4> you can even print out the value of an
expression (in this case the eq check in the line of code that’s the problem):

 DB<3> p $word
DogmaIamGod
 DB<4> $t = reverse $word
 DB<5> p $t
doGmaIamgoD
 DB<6> p ($word eq reverse $word) ? ‘Yes’ : ‘No’
No

This makes is clear that you want a case-insensitive check, so change the value of $word:

 DB<7> $word = lc $word
 DB<8> p ($word eq reverse $word) ? ‘Yes’ : ‘No’
Yes
 DB<9> n

NOTE If you, like your author, prefer to always have several lines of context in

your debugger output, create a fi le in your home directory named .perldb. Add

the following text:

@DB::typeahead = (‘{{v’);

When you launch the debugger, Perl can fi nd that fi le and execute those

Perl commands. In this case, before you type anything, the debugger “types” the

commands present in the array. This gives you the lines of context that you are

looking for.

See perldoc perldebug for a full explanation of the debugger and perldoc

perldebtut for a tutorial on using it.

c18.indd 592c18.indd 592 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 593

main::plength(palindrome.pl:21): return length $word;
auto(-1) DB<13> v
18:b my ($word) = @_;
19: $word =~ s/\W//g;
20: return 0 unless $word eq reverse $word;
21==> return length $word;
22 }
 DB<10>

As you can see, changing the value of $word to lc $word allows the code to continue correctly.
Now it’s obvious how to fi x it.

Table 18-1 has a list of common debugger commands for a handy reference. This section doesn’t
cover everything and there’s a lot more to learn.

TABLE 18-1: Common Debugger Commands

COMMAND MEANING

n Go to the next line of code. Do not enter a subroutine call.

s Step into a subroutine call.

b subname Set a breakpoint at a subroutine name.

b line Set a breakpoint at the specifi ed line number.

c Continue executing code until the next breakpoint.

p EXPR Print the value of a variable or expression.

x EXPR Like the p command, but will “dump” references.

v View a range of lines around the current line.

T Show a stacktrace.

q Quit the debugger.

{{ command Execute the command before every debugger prompt.

w EXPR Set a global watch expression.

W EXPR Delete a global watch expression.

h Display debugger help.

r Return from a subroutine.

S pattern Display all subroutines matching patterns.

c18.indd 593c18.indd 593 10/08/12 8:26 PM10/08/12 8:26 PM

594 ❘ CHAPTER 18 COMMON TASKS

Profi ling

So you have a large, working piece of software. It’s composed of several modules, but it’s slow
and buggy. You’re not sure why, so how do you fi x it? That’s where various profi ling tools come in
handy.

Using Devel::Cover

A few years ago in London, your author was at a gathering of London Perl Mongers when one of
the attendees sheepishly admitted to them that he had just started testing and only one percent of his
code was covered by tests. However, he had started writing tests by focusing on real bugs that were
reported in his system, and his phone support people reported a signifi cant drop in help desk calls.
Some experienced developers are aware of this, and instead of writing tests for all their code, they
focus their tests on the most critical parts of their code and hope to come back later and write
tests for the rest.

But what does code coverage mean? Imagine the following subroutine:

sub is_temperature_out_of_bounds {
 my $celsius = shift;
 if ($celsius > 40) {
 return 1;
 }
 elsif ($celsius < 10) {
 return 1;
 }
 else {
 return;
 }
}

The is_temperature_out_of_bounds() subroutine should return a false value if the temperature is
greater than 40 degrees Celsius or less than 10 degrees Celsius. Some tests might look like this:

ok is_temperature_out_of_bounds(50), ‘50 degrees is too high’;
ok !is_temperature_out_of_bounds(30), ‘30 degrees is ok’;

In this case, the tests clearly miss the condition of where the temperature is less than 10 degrees. The
subroutine is simple enough that you may think it’s not important, but if someone changes this sub-
routine in the future, it would be unfortunate to not have full tests covering all possible conditions
and lines of code.

So how do you know which code is actually covered by your test suite? That’s where Paul Johnson’s
excellent Devel::Cover module comes in. This module can give you excellent reports on exactly
what is covered in your test suites. Take a look at the code coverage for AI::Prolog, a module your
author wrote to do logic programming in Perl.

c18.indd 594c18.indd 594 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 595

For AI::Prolog, instead of installing it via the CPAN, you download it from the CPAN and untar
the distribution. (tar zxvf AI-Prolog-0.741.tar.gz, or Windows users can double-click the
icon.) Type perl Makefile.PL, accept the default prompt for installing the aiprolog shell, and
then type make.

Now that you’ve built the distribution, you can test it with Devel::Cover.

cover -delete
HARNESS_PERL_SWITCHES=-MDevel::Cover make test
cover

The cover -delete command tells Devel::Cover to delete any previous code coverage runs.

The HARNESS_PERL_SWITCHES environment variable tells Perl to load Devel::Cover for every
test that it runs. You should see output similar to the following (with some warnings deleted for
clarity — your output will not be identical):

$ HARNESS_PERL_SWITCHES=-MDevel::Cover make test
t/01pod.t ok
t/05examples.t ok
t/10choicepoint.t ok
t/20term.t ok
t/25cut.t ok
t/25number.t ok
t/30termlist.t ok
t/35clause.t ok
t/35primitive.t ok
t/35step.t ok
t/50engine.t ok
t/60aiprolog.t ok
t/80math.t ok
t/80preprocessor.t ok
t/80preprocessor_math.t .. ok
t/90results.t ok
All tests successful.
Files=19, Tests=461, 16 wallclock secs
Result: PASS

NOTE AI::Prolog implements an interpreter for a language called Prolog. In

most programming languages, you tell the computer how to solve problems step

by step. In Prolog and other logic programming languages, you give them all the

data you know about a problem and the rules of how the data is related. Then

when you present it with a problem, the language fi gures out how to solve the

problem for you! Logic programming languages are fascinating. Your author

recommends that anyone who wants to be a top-notch developer learn multiple

programming paradigms including logic programming.

c18.indd 595c18.indd 595 10/08/12 8:26 PM10/08/12 8:26 PM

596 ❘ CHAPTER 18 COMMON TASKS

Then you issue the cover command:

$ cover

Reading database from /tmp/AI-Prolog-0.741/cover_db

---------------------------- ------ ------ ------ ------ ------ ------ ------

File stmt bran cond sub pod time total

---------------------------- ------ ------ ------ ------ ------ ------ ------

lib/AI/Prolog.pm 69.7 37.5 n/a 72.2 88.9 22.6 67.0

lib/AI/Prolog/ChoicePoint.pm 100.0 n/a n/a 100.0 0.0 2.2 85.7

lib/AI/Prolog/Engine.pm 83.3 70.3 75.0 77.1 60.0 4.5 78.5

...olog/Engine/Primitives.pm 59.5 12.5 0.0 90.9 0.0 1.0 55.7

...I/Prolog/KnowledgeBase.pm 30.4 16.7 0.0 46.2 0.0 0.4 27.2

lib/AI/Prolog/Parser.pm 82.7 75.0 58.8 75.0 0.0 44.8 76.7

...og/Parser/PreProcessor.pm 100.0 n/a n/a 100.0 0.0 2.8 94.1

...rser/PreProcessor/Math.pm 96.8 85.7 100.0 95.5 0.0 3.3 93.5

lib/AI/Prolog/Term.pm 77.7 66.7 58.9 82.6 0.0 12.2 68.8

lib/AI/Prolog/Term/Cut.pm 100.0 n/a n/a 100.0 0.0 0.1 88.5

lib/AI/Prolog/Term/Number.pm 100.0 100.0 66.7 100.0 0.0 0.2 88.2

lib/AI/Prolog/TermList.pm 97.2 83.3 66.7 100.0 0.0 2.1 89.5

...Prolog/TermList/Clause.pm 95.2 75.0 n/a 100.0 0.0 0.7 85.3

...log/TermList/Primitive.pm 100.0 50.0 n/a 100.0 0.0 2.7 84.6

...I/Prolog/TermList/Step.pm 100.0 n/a n/a 100.0 0.0 0.5 95.0

Total 76.2 61.8 58.7 81.9 12.7 100.0 70.4

---------------------------- ------ ------ ------ ------ ------ ------ ------

HTML output written to /tmp/AI-Prolog-0.741/cover_db/coverage.html

done.

NOTE If you do not have a Makefile.PL or Build.PL fi le for your code, you can

run coverage with prove:

HARNESS_PERL_SWITCHES=-MDevel::Cover prove -l t

For every module in the distribution, you have a percentage of coverage for all statements (stmt),
branches (bran), conditionals (cond), subroutines (sub), and documentation (pod). The time column
merely represents the percent of time the tests spent in each module. An n/a result means that the par-
ticular type of code to cover was not found. The totals across the bottom and down the right side are
averages for the amounts (except for the time column). The number 70.4 in the bottom right portion of
the result shows the overall code coverage percent. 70.4% is not bad, but it’s not particularly great, either.

WARNING Many programmers new to testing make the mistake of thinking they

should shoot for 100 percent code coverage with their tests. Many types of code,

such as GUIs or threaded code, are intrinsically hard to test, and the amount

of stress you fi nd in attempting to test virtually untestable code sometimes

means that manual testing is fi ne. Remember, you have deadlines and code

to deliver, and if you have hard to test code, focus your tests on those areas of

your code that are the most critical.

c18.indd 596c18.indd 596 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 597

Statements represent individual lines of code (as separated by semicolons). Branches represent things
like if/else conditions. Conditional coverage examines boolean operators such as if (($x && y)
|| !$z) { ... }. POD coverage uses a heuristic to determine if subroutines not beginning with
underscores have POD documentation for them.

NOTE Having 100 percent coverage for your code does not mean that it is bug-

free because for larger systems, it’s generally impossible to test all possible

combinations of inputs and all the diff erent paths through the code. Thorough

code coverage is good, but it’s no “silver bullet” to ensure that your code works

as expected.

Knowing that you have code not covered by your tests isn’t helpful unless you know which code is
not covered. The second to last line of your output was this:

HTML output written to /tmp/AI-Prolog-0.741/cover_db/coverage.html

Open that up in a browser and you should see output similar to Figure 18-1.

FIGURE 18-1

c18.indd 597c18.indd 597 10/08/12 8:26 PM10/08/12 8:26 PM

598 ❘ CHAPTER 18 COMMON TASKS

Many of the items in that report are underlined. These items have hyperlinks that let you drill down
to individual modules to see what lines of code your tests have missed. If you have some code with
no code coverage, it might actually be dead code you can delete!

Devel::NYTProf

Knowing what code your tests cover is great, but what if your code runs about as fast as a paraple-
gic cheetah? Not so great. Often in working with large-scale systems, you fi nd that network latency,
database access, or simple disk operations are responsible for slow code, but not always. When
looking for slow code, the fi rst problem to solve is to identify which code is actually slow. When you
work on a system with a few hundred thousand lines of code, this is not a trivial problem. That’s
where Devel::NYTProf comes in. Written by Tim Bunce (the author of the DBI module covered
in Chapter 16) and Adam Kaplan, the Devel::NYTProf module is often used with test suites to
determine where your slow code is.

NOTE For a better introduction to Devel::NYTProf, see Tim Bunce’s

screencast on the topic at http://blip.tv/timbunce/devel-nytprof-

v4-oscon-201007-3932242.

It contains many excellent tips and tricks that you should know when trying to

fi nd performance problems in your code.

Devel::NYTProf recommends Perl version 5.8.9 or better, with 5.10.1 or better being preferred.

The basic way to use Devel::NYTProf is to execute perl with the -d fl ag:

perl -d:NYTProf some_perl.pl

The -d fl ag, as explained earlier in this chapter, starts Perl with the debugger. However,
followed by a colon and an $identifier, Perl attempts to load Devel::$identifier and runs
the some_perl.pl program listed on the command line. With the -d:NYTProf argument, Perl loads
Devel::NYTProf and then runs some_perl.pl.

In this case, you’ll run in on the example_7_4_maze.pl program that you wrote in Chapter 7.
Use the downloadable version because that has more interesting timing information.

perl -d:NYTProf example_7_4_maze.pl

W hen using Devel::NYTProf, the program generally takes 3 to 4 times longer to run, but this is far
faster than earlier (and broken) profi lers were. Then you can open the Devel::NYTProf output in
your favorite browser:

nytprofhtml --open

c18.indd 598c18.indd 598 10/08/12 8:26 PM10/08/12 8:26 PM

http://blip.tv/timbunce/devel-nytprofv4-oscon-201007-3932242
http://blip.tv/timbunce/devel-nytprofv4-oscon-201007-3932242

Understanding Your Program ❘ 599

The output should resemble Figure 18-2.

NOTE The command nytprofhtml --open may not work on your system.

Instead, you can use this:

nytprofhtml nytprof.out

And that creates a directory full of HTML fi les you can browse. It’s the same

thing as nytprofhtml --open but without the magical opening of a browser

window for you.

FIGURE 18-2

The fi rst page of this output contains the 15 slowest subroutines (though you can see all the subrou-
tines if you like), but to understand them, you need to know what the columns mean:

 ➤ The header information: This gives you a good idea of what issues to look for.

 ➤ The Calls column: Represents the number of times the subroutine was called. You can see
that the relatively fast diagnostics::CORE::subst was called a whopping 7,801 times!
That makes it slow even if the subroutine is fast.

c18.indd 599c18.indd 599 10/08/12 8:26 PM10/08/12 8:26 PM

600 ❘ CHAPTER 18 COMMON TASKS

 ➤ The P column: This represents the number of places the subroutine was called from.
For diagnostics::CORE::subst, you can see that it was called from seven places.

 ➤ The F column: This represents the number of fi les the line of the subroutine was called from.

 ➤ Exclusive and Inclusive time columns: These confuse a few people at fi rst. The Inclusive
Time represents how much time the subroutine took to run, including the time of any
subroutine calls it made. The Exclusive Time column represents the time the subroutine took
to run, excluding the timing of any of its subroutine calls. That’s why Exclusive Time should
always be equal to or less than Inclusive Time.

 ➤ The Subroutine column: This names the offending subroutine.

So how do you use the profi ling information? Well, you can guess that diagnostics::CORE::subst
was probably called from the diagnostics pragma, so merely removing that pragma should speed
things up a bit.

The top two lines, though, are interesting:

Calls P F Exclusive Inclusive Subroutine
400 1 1 4.39s 4.39s Time::HiRes::usleep (xsub)
402 3 1 2.12s 2.12s main::CORE:system (opcode)

For the downloadable version of this program, you repeatedly redraw the maze, in slow motion, to
see the recursive rendering of the maze. You take out all the usleep and system calls to ensure that
your code renders as quickly as possible. Running your profi ler again gives new results, as shown in
Figure 18-3.

FIGURE 18-3

c18.indd 600c18.indd 600 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 601

You’ve gone from more than 7 seconds to approximately one-half a second. That’s great, but
clearly this is not a real-world example, and in this case, you dramatically changed the behavior of
the code.

Subroutines with names like BEGIN@... represent compile time code, such as loading use
 warnings. Others, such as the top two tunnel() and have_not_visited() subroutines are clearly
examples of code you can look at for further optimization. To fi gure out how to make them run
faster, don’t guess. Benchmark them! That’s covered in the next section.

Benchmark

The Benchmark module is one of the core modules released with Perl version 5. You use it to bench-
mark some code to see how long it takes to run, and compare it with alternative versions of code
that do the same thing.

WARNING It is very common among developers (sometimes even experienced

ones!) to worry about the performance of their programs when they should not.

Though there are times this makes sense, programmers tend to be incredibly

bad at judging which parts of their software they should optimize. Just because

you know that a routine is slow, if it takes only .2% of your program’s running

time, it’s probably not worth speeding up. That’s why Devel::NYTProf is an

excellent tool to fi nd out what parts of your program are the real trouble spots.

Just remember one rule: When your program runs fast enough for your needs,

stop optimizing.

Take a look at a concrete example using the example of a factorial. You can defi ne the factorial of
a function as that number times the factorial of that number minus one, with the factorial of zero
being defi ned as one. In other words, the factorial of 4 is 24 (4 * 3 * 2 * 1). You could write
this with a recursive function that clearly defi nes your intent:

sub fac {
 my $number = shift;
 return 1 if 0 == $number;
 return $number * fac($number - 1);
}

NOTE A common error in factorial functions is to return 0 for the factorial of 0

because programmers forget (or don’t know) that the proper result is 1. That’s

why your factorial program has return 1 if 0 == $number rather than when

1 == $number.

c18.indd 601c18.indd 601 10/08/12 8:26 PM10/08/12 8:26 PM

602 ❘ CHAPTER 18 COMMON TASKS

This seems fi ne, but what if profi ling the code shows that this function is called thousands of times?
Would it be worthwhile to eliminate the overhead of the recursive function call? Find out by using
the timethese() function from Benchmark. One way to use this function looks like this. (See the
documentation for full details.)

timethese(
 $number_of_times_to_run_the_code,
 {
 name1 => \&subref1,
 name2 => \&subref2,
 }
);

This is how it works (code fi le example_18_9_factorial.pl):

use strict;
use warnings;

use Benchmark ‘timethese’;

sub recursive_factorial {
 my $number = shift;
 return 1 if 0 == $number;
 return $number * recursive_factorial($number - 1);
}

sub loop_factorial {
 my $number = shift;
 return 1 if 0 == $number or 1 == $number;
 my $factorial = 1;
 for (2 .. $number) {
 $factorial *= $_;
 }
 return $factorial;
}

timethese(
 1_000_000,
 {
 ‘recursive’ => sub { recursive_factorial(15) },
 ‘loop’ => sub { loop_factorial(15) },
 }
);

So the timethese() function runs your recursive and loop versions of factorial one million times
each, computing the factorial of 15. Here’s the output from this on the author’s computer (reformat-
ted slightly to fi t the book):

Benchmark: timing 1000000 iterations of loop, recursive...
 loop: 2 wallclock secs (1.92 CPU) @ 520833.33/s (n=1000000)
 recursive: 7 wallclock secs (6.66 CPU) @ 150150.15/s (n=1000000)

As you can see, the loop version of the factorial function is more than three times as fast as the
recursive version. You might be happy with that, but can you do faster? Sure you can.

c18.indd 602c18.indd 602 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 603

The factorial function is a pure function. That means the function has no side effects (such as
 deleting fi les or altering global variables) and always returns the same output for the same input.
Pure functions are great candidates for caching, so cache the factorial and return the cached value
if it’s found. This can take a bit more code, but for “hot” pieces of code (code that gets run a lot), it
can be worth the effort:

{
 my %factorial_for;

 sub cached_factorial {
 my $number = shift;

 unless (exists $factorial_for{$number}) {
 if (0 == $number or 1 == $number) {
 $factorial_for{$number} = 1;
 }
 else {
 my $factorial = 1;
 for (2 .. $number) {
 $factorial *= $_;
 }
 $factorial_for{$number} = $factorial;
 }
 }

 return $factorial_for{$number};
 }
}

Or if you use Perl version 5.10.0 or better:

use 5.10.0;
sub cached_factorial {
 state %factorial_for;

 my $number = shift;

 unless (exists $factorial_for{$number}) {
 if (0 == $number or 1 == $number) {
 $factorial_for{$number} = 1;
 }
 else {
 my $factorial = 1;
 for (2 .. $number) {
 $factorial *= $_;
 }
 $factorial_for{$number} = $factorial;
 }
 }

 return $factorial_for{$number};
}

c18.indd 603c18.indd 603 10/08/12 8:26 PM10/08/12 8:26 PM

604 ❘ CHAPTER 18 COMMON TASKS

And you can add this to your timethese function:

timethese(
 1_000_000,
 {
 ‘recursive’ => sub { recursive_factorial(15) },
 ‘loop’ => sub { loop_factorial(15) },
 ‘cached’ => sub { cached_factorial(15) },
 }
);

With these results:

Benchmark: timing 1000000 iterations of cached, loop, recursive...
 cached: 0 wallclock secs (0.47 CPU) @ 2127659.57/s (n=1000000)
 loop: 3 wallclock secs (1.96 CPU) @ 510204.08/s (n=1000000)
 recursive: 7 wallclock secs (6.60 CPU) @ 151515.15/s (n=1000000)

The wallclock time (the amount of time it took from the user’s perspective) is rounded off, but
when you look at the number after the @ sign, you see that the cached version executed more than
two million times per second, whereas the loop version ran only about half a million times per
 second, so the cached version is roughly 4 times faster than the loop and 14 times faster than the
recursive function. Sometimes more lines of code run faster than fewer!

When benchmarking code, you must remember a few things:

 ➤ There’s usually no point in benchmarking code before you’ve profi led your program.

 ➤ Always make sure that every version you’re benchmarking behaves identically.

 ➤ Run your benchmark several times. Other processes running on your system can interfere
with benchmarks.

 ➤ If your faster code is too complicated to understand, is it worth it?

 ➤ When it’s fast enough, stop benchmarking!

Perl::Critic

Understanding how much of your code is covered by tests and how well your code performs is great,
but how do you know you’ve written good code? Perl::Critic is a highly confi gurable static anal-
ysis tool that can “read” your Perl code, and although it won’t tell you if the code is any good, it can
identify problem spots your code.

Perl::Critic applies policies to your code and analyzes each fi le to determine if it violates
the policies. These policies can have one of fi ve levels of severity, from gentle (level 5) to brutal
(level 1). The default policies that ship with Perl::Critic are mostly derived from the book Perl Best
Practices, written by Damian Conway. Some of the policy violations seem a bit out of date (such as
RCS keywords Id not found, a reference to older version control systems), whereas others catch
potentially serious issues with your code (“return” statement followed by “sort” at line 6,
column 5. Behavior is undefined if called in scalar context.). Perl::Critic is not
limited to the Perl best practices. You can write your own policies, and many other policies are on the

c18.indd 604c18.indd 604 10/08/12 8:26 PM10/08/12 8:26 PM

Understanding Your Program ❘ 605

CPAN for you to download and apply. You can even create a .perlcriticrc fi le, explained in
perldoc Perl::Critic (the module) and perldoc perlcriticrc (the command-line tool).

Two common ways to use the perlcritic tool is to pass it a fi lename or directory:

perlcritic some_program.pl
perlcritic lib/

By default, Perl::Critic runs in “gentle” mode and reports only on the most severe violations, or
ones that are likely to cause your program issues. So run this on the example_18_9_factorial.pl
benchmarking program you wrote earlier in this chapter:

$ perlcritic example_18_9_factorial.pl
example_18_9_factorial.plsource OK

That’s great. You have no serious violations here. That’s equivalent to:

$ perlcritic --gentle example_18_9_factorial.pl
$ perlcritic -5 example_18_9_factorial.pl

Now kick to the --stern level (reformatted slightly):

$ perlcritic -4 example_18_9_factorial.pl
Code not contained in explicit package at line 1, column 1.
 Violates encapsulation. (Severity: 4)
Module does not end with “1;” at line 46, column 1.
 Must end with a recognizable true value. (Severity: 4)

In this case you haven’t started your code with a package name, and it doesn’t end with a 1 on the
last line as you would expect a module to end. The policy violation is described, the line and column
where the policy is found is presented, a brief description of why the policy matters is presented, and
the severity level is included.

However, those policies are for modules, and this is just a simple script and you don’t care about
those, so exclude them. The --exclude parameter takes a regular expression as its argument and
any violations matching that pattern are excluded:

$ perlcritic -4 --exclude ‘package|module’ example_18_9_factorial.pl
example_18_9_factorial.pl source OK

Next is the --harsh level, or level -3.

$ perlcritic -3 --exclude ‘package|module’ example_18_9_factorial.pl
example_18_9_factorial.pl source OK

So far so good.

$ perlcritic -2 --exclude ‘package|module’ example_18_9_factorial.pl
RCS keywords Id not found at line 1, column 1.
 See page 441 of PBP. (Severity: 2)
RCS keywords $Revision$, $HeadURL$, $Date$ not found at line 1, column 1.

c18.indd 605c18.indd 605 10/08/12 8:26 PM10/08/12 8:26 PM

606 ❘ CHAPTER 18 COMMON TASKS

 See page 441 of PBP. (Severity: 2)
RCS keywords $Revision$, $Source$, $Date$ not found at line 1, column 1.
 See page 441 of PBP. (Severity: 2)
“unless” block used at line 28, column 9. See page 97 of PBP.
 (Severity: 2)
1_000_000 is not one of the allowed literal values (0, 1, 2).
 Use the Readonly or Const::Fast module or the “constant”
 pragma instead at line 45, column 5. Unnamed numeric
 literals make code less maintainable. (Severity: 2)

(Note that we’ve omitted a couple of violations for the sake of brevity).

The RCS keywords violations are references to older source control management systems (used to
keep track of changes in your source code) such as CVS or Subversion that we won’t cover here.
Your author uses a program called git to handle this, so these aren’t relevant to him. However,
when you run perlcritic you will read See page 441 of PBP if perlcritic detects this issue. In
lieu of an explanation of the importance of RCS keywords, you are referred to page 441 of the Perl
Best Practices book.

The “unless” block used violation is actually a valid concern. Many developers get confused by
unless blocks because they can make straightforward logic a bit of a nightmare:

unless ($foo || $bar)) {
 ...
}

Even the most experienced might be tripped up by this code. It runs only if both $foo and $bar
are false, so maybe the perlcritic violation has pointed out something about the code that might
make it harder to maintain.

Usually you want to be warned about this, but you don’t think it’s a problem in this code, so you’ll
annotate the source code to tell Perl::Critic not to worry about this. You need to read perldoc
Perl::Critic::PolicySummary to understand what policy you’ve violated:

unless (exists $factorial_for{$number}) { ## no critic ‘ProhibitUnlessBlocks’

Or you can add the --statistics switch to get a summary at the end, including the formal names
of the policies you’ve violated:

 1 files.
 3 subroutines/methods.
41 statements.
51 lines, consisting of:
 7 blank lines.
 0 comment lines.
 0 data lines.
 44 lines of Perl code.
 0 lines of POD.
Average McCabe score of subroutines was 4.00.
13 violations.
Violations per file was 13.000.
Violations per statement was 0.317.

c18.indd 606c18.indd 606 10/08/12 8:26 PM10/08/12 8:26 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Understanding Your Program ❘ 607

Violations per line of code was 0.255.
2 severity 4 violations.
9 severity 2 violations.
2 severity 1 violations.
1 violations of CodeLayout::ProhibitTrailingWhitespace.
1 violations of CodeLayout::RequireTidyCode.
1 violations of ControlStructures::ProhibitUnlessBlocks.
3 violations of Miscellanea::RequireRcsKeywords.
1 violations of Modules::RequireEndWithOne.
1 violations of Modules::RequireExplicitPackage.
1 violations of Modules::RequireVersionVar.
4 violations of ValuesAndExpressions::ProhibitMagicNumbers.

In this case, you can see that it was ControlStructures::ProhibitUnlessBlocks that you have
violated, but just the last part of the name is required when you add an annotation to your code
telling Perl critic to ignore the issue.

Now look at the next violation:

1_000_000 is not one of the allowed literal values (0, 1, 2).
 Use the Readonly or Const::Fast module or the “constant” pragma
 instead at line 45, column 5. Unnamed numeric literals make
 code less maintainable. (Severity: 2)

This one is certainly a problem. If you’re going to hard-code literal values in your code, it’s better to
declare them at the top of your code and use a descriptive name:

use constant NUMBER_OF_TIMES_TO_RUN => 1_000_000;

Not only does this help to document your code, but also it makes it easier to fi nd all the values in
your code that are more likely to need to change at a later date.

Right now, you’ve seen a few cases in which there are policies you don’t like. Perhaps you want to
disable them globally. You can create a .perlcriticrc fi le in your home directory (or a custom one
in your code directory) with the following contents:

exclude = RequireRCSKeywords RequireTidyCode RequireFinalReturn
[TestingAndDebugging::RequireUseStrict]
equivalent_modules = Dancer
[TestingAndDebugging::RequireUseWarnings]
equivalent_modules = Dancer

The exclude = line turns off several policies that you don’t want (obviously, this is subjective). The
TestingAndDebugging::RequireUseStrict and TestingAndDebugging::RequireUseWarnings
sections tell Perl::Critic that you don’t require strict and warnings when using the Dancer
module. (Dancer is a lovely web framework and using it turns on strictures and warnings for you.)

You can use your .perlcriticrc to include new policies you have created, change the default
warning level, and do many other things. Perl::Critic can be an excellent tool to ensure your
coding standards are met.

c18.indd 607c18.indd 607 10/08/12 8:26 PM10/08/12 8:26 PM

608 ❘ CHAPTER 18 COMMON TASKS

SUMMARY

In this chapter you learned about numerous small problems that, although not core Perl, are none-
theless common enough, yet tricky, tasks it’s having a basic exposure to. You’ve learned about read-
ing and writing CSV fi les, different ways to handle XML, and a bit more about the dates and times.

You also learned about a variety of useful tools, such as the debugger that help you better
 understand how your programs behave. You learned a bit about Devel::Cover, code that can tell
you how well your test suites cover your code base. You learned to use Devel::NYTProf to uncover
performance problems in your code and use the Benchmark module to test whether alternative
implementations are actually faster.

Finally, you’ve been exposed to Perl::Critic, a tool that enables you uncover potential problems
in your code.

EXERCISES

 1. Describe at least three potential problems with the following code to read a CSV fi le:

open my $fh, ‘<’, $fi le
 or die “Cannot open $fi le for reading: $!”;

while (my $line = <$fh>) {
 my ($name, $rank, $notes) = split /,/ => $line;
 print <<”END”;
 Name: $name
 Rank: $rank
 Notes: $notes
}

 2. Why might you use DateTime::Tiny instead of the DateTime module? List some strengths and

weaknesses of each.

 3. Why should you use Devel::NYTProf? When should you not use it? What are some of the

 problems with aggressively optimizing your code for performance?

 4. Type in the following program:

use Getopt::Long;
my $name = Nobody;

my $times = 3;

GetOptions(
 ‘name=s’ => \$name,
 ‘times=i’ => \$times,
) or die;

c18.indd 608c18.indd 608 10/08/12 8:26 PM10/08/12 8:26 PM

Summary ❘ 609

hello($name, $times);

sub hello {
 for (1 .. $_[1]) {
 print “$_[0]\n”;
 }
}

 The program is correct and does what it intended. Try running the program both with and

 without arguments if you’re unsure of what it’s doing. Then run this command for the “gentle”

warnings from perlcritic.

perlcritic -5 program.pl

 Now run perlcritic -1 program.pl and read the violations. How do they diff er? Do you agree

or disagree with what Perl::Critic reports?

 5. Make the Perl::Critic violations reported in Exercise 4 go away. You may want to read

the Perl::Critic documentation to fi x some of these issues. See --profile in perldoc

perlcritic for a useful start. You may want to run perlcritic with --statistics to see the

full names of the policy violations.

c18.indd 609c18.indd 609 10/08/12 8:26 PM10/08/12 8:26 PM

610 ❘ CHAPTER 18 COMMON TASKS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

Text::CSV_XS A Perl module to handle correctly reading and writing CSV data.

XML::Simple A simple but infl exible method to read and write XML data.

XML::Twig An excellent XML parsing module.

XML::Writer A useful module for writing correct XML.

DateTime A full-featured date and time manipulation/presentation module.

Date::Tiny A minimalistic date object. Good when you don’t need date math.

DateTime::Tiny Like Date::Tiny, but for dates and times.

Perl Debugger Used to run Perl programs in debug mode and understand their

behavior.

Devel::Cover A module that tells you what code is covered by your test suite.

Devel::NYTProf A module that profi les your program and identify slow code.

Benchmark A module that compares the performance characteristics of diff erent

versions of code.

Perl::Critic A code analysis module that enables you to fi nd possible problems in

your code.

perlcritic The command-line interface to the Perl::Critic module.

c18.indd 610c18.indd 610 10/08/12 8:26 PM10/08/12 8:26 PM

The Next Steps

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What this book covers… and what it leaves out

 ➤ Using an DBIx::Class and other mappers to map relations

 ➤ How to use the Template Toolkit

 ➤ Building web applications with Catalyst

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013847 on the Download Code tab. The code for this chapter is divided
into the following major examples:

 ➤ lib/My/Schema.pm

 ➤ lib/My/Schema/Result/License.pm

 ➤ lib/My/Schema/Result/Media.pm

 ➤ lib/My/Schema/Result/MediaType.pm

 ➤ listing_19_1_dbic.pl

 ➤ listing_19_2_letter.pl

 ➤ templates/en/letter.tt2

 ➤ templates/fr/letter.tt2

19

c19.indd 611c19.indd 611 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://www.wrox.com/remtitle.cgi?isbn=1118013847
http://wrox.com
http://WROX.COM

612 ❘ CHAPTER 19 THE NEXT STEPS

You’ve fi nally made it to the last chapter! (Be honest, you’ve skipped ahead and started reading this.)
Chapters 1 through 11 gave you the skills you need to be an entry level Perl programmer (Chapter 17
helps there, too). Chapters 12 through 16 gave you the skills to take the next step in your Perl
programming career. Chapter 18 covers a few skills that explain some common tasks you’ll
encounter, and strong skills for understanding your code. This chapter introduces you to the skills
that can take you to the next level.

WHAT NEXT?

It’s diffi cult to say that you truly understand a programming language until you understand the
libraries for that language. Your author, for example, “knows” Java and has programmed in it from
time to time, but he doesn’t actually know the common libraries for the language. Thus, although
he may be a strong programmer, many companies would think twice about hiring him as a Java
programmer. (Or he’d take such a serious pay cut that it wouldn’t be worth it.) This chapter intro-
duces you to the unholy trinity of Perl: DBIx::Class, Template Toolkit, and Catalyst. These three
modules are probably the most common modules used to build large-scale websites. They give you
incredible power, but they take quite a while to learn.

A full book could be used to cover each of Catalyst, Template Toolkit, and DBIx::Class. The fi rst
two modules have published books and DBIx::Class has a book in progress (https://github.com/
castaway/dbix-class-book). These are large modules that take quite a bit of time to exercise their
full power. DBIx::Class was written by Matt Trout, and he’s also one of the major fi gures behind
the Catalyst framework. Template Toolkit (just Template on the CPAN), was written by Andy
Wardley. All three of these modules are well maintained and updated regularly. This chapter doesn’t
have the room to cover them in-depth, but you get a quick introduction to each.

First, quickly recap what has and hasn’t been covered.

What This Book Covers

So far, you’ve learned about or received:

 ➤ The core syntax of the Perl language.

 ➤ Quite a bit about where to go for help.

 ➤ Where to download new modules.

 ➤ (Constantly reinforced) where to look for documentation (and to actually read it). This
alone can put you a step ahead of many programmers.

 ➤ How packages and modules work.

 ➤ Different strategies for writing object-oriented code.

 ➤ A good introduction to writing tests for your code.

These are skills that can separate the complete beginners from those who are ready for the
workforce.

c19.indd 612c19.indd 612 10/08/12 8:27 PM10/08/12 8:27 PM

https://github.com/castaway/dbix-class-book
https://github.com/castaway/dbix-class-book

Understanding Object-Relational Mappers ❘ 613

What This Book Leaves Out

You’re going to be surprised, but you’ve not learned how to be a programmer. There is a huge differ-
ence between understanding the syntax of a programming language and understanding how to be a
programmer. That’s why, if you’ve never programmed before but you’ve mastered the techniques in
this book, you are still probably an entry-level programmer. There is much, much more to it. That
being said, you must start somewhere, and learning how to program by learning a programming
language is, well, probably not a bad idea.

NOTE If you want to learn the skills needed to be a good programmer and

not just be someone who knows a programming language, your author

recommends Code Complete, 2nd edition, written by Steve McConnell for

Microsoft Press. It’s an excellent, well-researched book.

A huge amount of information about solving math issues, manipulating dates and times, and various
clever algorithms for complex data-structures has not been covered. Symbol table manipulation (it’s
not too hard, but you really need to know Perl well fi rst), tying variables, and GUI programming
has not been covered. There’s also plenty of stuff with process management, sockets, and network-
ing tools that are useful when you want to do system programming, but that requires plenty of other
skills that are far beyond what this book is designed to cover.

In fact, your author expects plenty of e-mail mentioning things that he should have covered and
didn’t, but in a book this size, the web-centric text worked well to keep things focused.

Perl is, at the end of the day, a huge language. There aren’t many popular languages that rival it in
sheer size and complexity (C++ is one, but it’s a bit easier to use), but that’s OK. In Perl, it’s perfectly
OK to specialize in those areas that you actually need to know and just look up the others.

Now move on to the fi nal bits.

UNDERSTANDING OBJECT-RELATIONAL MAPPERS

An object-relational mapper (commonly known as an ORM) is a common tool that’s used to
provide an OO layer over database access. When they’re well written, they make it easier to swap
between different databases without changing much of your code other than your database con-
nection. In this sense, they’re even more powerful than the DBI module enabling you to change
databases: DBI sometimes requires that you write SQL that is specifi c to a particular database, but a
good ORM writes that code for you, taking into account the dialect of SQL that you use.

Using an ORM is easy. Say you have a customers table and want to get the fi rst and last name of a
customer with a given ID. Basic usage of an ORM often looks like this:

my $customer = My::Customer->find($id);
print join ‘ ‘, $customer->first_name, $customer->last_name;

c19.indd 613c19.indd 613 10/08/12 8:27 PM10/08/12 8:27 PM

614 ❘ CHAPTER 19 THE NEXT STEPS

For DBI, it might look like this:

my @customer = $dbh->selectrow_array(
 “SELECT first_name, last_name FROM customer”
 {}, $id
);
print join ‘ ‘, @customer;

That doesn’t seem like much of an advantage, but aside from being easier to read, it also makes your
life more fl exible. Because you have an object instead of a class, you could write a full_name()
method and do this:

print $customer->full_name;

With that, you don’t need to write that join code every time you want to print the customer’s full
name.

Or if you want to fetch all the orders associated with a customer, you might do this:

my $orders = $customer->orders;

But for DBI, you usually must prepare, execute, and fetch another SQL statement. That’s extra code
that distracts from what you actually want to do: fetch the customer’s orders.

Understanding DBIx::Class

Like most major programming languages, there are a number of ORMs available for Perl. Another
popular ORM is Rose::DB::Object. It’s ridiculously fast and unlike other ORMs does not try too
hard to hide the abstraction between the database and the objects. (Whether this is a benefi t is left
as an exercise for you.) However, DBIx::Class is by far the most popular ORM for Perl, and if
called upon to use one in your job, this is the one you might choose.

DBIx::Class was created a number of years ago by Matt Trout. He was tired of answering ques-
tions about how to work around problems in the older Class::DBI ORM, so he wrote his own.

One of the lovely features of DBIx::Class is that it makes a clear distinction between objects (a
result), sets of objects (a resultset), and the schema that contains them. By enforcing this distinction,
a number of powerful techniques become available.

They are powerful enough and aren’t covered in this chapter because this is only an introduction.
Deal with it, and hope your author isn’t simply hand-waving.

Understanding Basic DBIx::Class Usage

Assume you already have a small database with two tables named customers and orders and a
customer can have many orders. You’re tired of writing SQL by hand, so you decide to use an ORM.

To use DBIx::Class you must defi ne your schema. For example, if your top-level namespace is
Loki::, you might defi ne your schema like this, in lib/Loki/Schema.pm:

c19.indd 614c19.indd 614 10/08/12 8:27 PM10/08/12 8:27 PM

Understanding Object-Relational Mappers ❘ 615

package Loki::Schema;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_namespaces();

1;

The load_namespaces() method tells DBIx::Class to look for the actual result classes in
Loki::Schema::Result. (This is confi gurable.) In your code, rather than loading separate classes
for every table, you just need to load your schema class, and it takes care of loading the other
classes for you.

The connection information isn’t embedded in the schema class. This makes it easier for you have to
multiple instances of the same schema (for example, a production schema and a test schema) and for
the code using the schema to tell it where the database is.

Assuming your customers table has customer_id, first_name, and last_name, fi elds, your
customers table Result class might look like this:

Loki::Schema::Result::Customer;

use base qw/DBIx::Class::Core/;

__PACKAGE__->table(‘customers’);
__PACKAGE__->add_columns(qw/ customer_id first_name last_name /);
__PACKAGE__->set_primary_key(‘customer_id’);

__PACKAGE__->has_many(
 orders => ‘Loki::Schema::Result::Order’,
 ‘customer_id’
);

sub full_name {
 my $self = shift;
 return join ‘ ‘, $self->first_name, $self->last_name;
}

1;

Regarding the previous code, you:

 1. Inherit from DBIx::Class::Core. That provides the magic that makes everything work.

 2. Defi ne the table name, the columns, and the primary key of the table using class methods.
Those are the three things you want for every Result:: class.

 3. Defi ne your relationships. In this case, you state that each customer has many orders. Note
that has_many() doesn’t necessarily mean that a customer will have orders. It means that
they can have zero, one, or many orders.

The has_many() class method takes the accessor name you’ll be using ($customer->orders), the
name of the class that you are pointing to, and the foreign key in that class that refers to your own

c19.indd 615c19.indd 615 10/08/12 8:27 PM10/08/12 8:27 PM

616 ❘ CHAPTER 19 THE NEXT STEPS

primary key. (Thus, the customer_id argument in has_many() refers to the orders.customer_id
and not the customers.customer_id.)

A full_name() method is provided. This shows that this is just an ordinary class, and you can
provide additional methods just as you would with any other class.

NOTE To understand how has_many() and other relationship columns work,

study perldoc DBIx::Class::Relationship. Many developers apparently

don’t read that documentation and, as a result, get confused when trying to

describe relationships between tables.

Now see how the class for orders is defi ned:

Loki::Schema::Result::Order;

use base qw/DBIx::Class::Core/;

__PACKAGE__->table(‘orders’);
__PACKAGE__->add_columns(qw/order_id number delivered total customer_id/);
__PACKAGE__->set_primary_key(‘order_id’);

__PACKAGE__->belongs_to(
 customer => ‘Loki::Schema::Result::Customer’,
 ‘customer_id’
);

1;

It’s almost the same, but the belongs_to() relationship is from the reverse of the has_many()
relationship. A customer has many orders while an order belongs to a customer. The fi rst two argu-
ments are still the accessor name ($order->customer) and the related class name, but now the third
argument is the orders foreign key ID (customer_id) and not the id in the foreign table.

Also, you can actually attach a lot of meta data to a column:

__PACKAGE__->add_columns(
 customer_id => {
 data_type => ‘integer’,
 size => 16,
 is_nullable => 0,
 is_auto_increment => 1,
 },
 first_name => {
 data_type => ‘varchar’,
 size => 256,
 is_nullable => 0,
 },
 last_name => {

c19.indd 616c19.indd 616 10/08/12 8:27 PM10/08/12 8:27 PM

Understanding Object-Relational Mappers ❘ 617

 data_type => ‘varchar’,
 size => 256,
 is_nullable => 0,
 },
);

This meta data is entirely optional and is generally not used by DBIx::Class, but there are plenty of
other modules (such as DBIx::Class::WebForm) that do use this meta data to help you create rich
meta data.

NOTE Your author might have avoided some confusion over relationships by

naming the ID column of the customers table id instead of customer_id. By

having distinct names, it would have been more clear that the customer_id in

the belongs_to() argument list refers to orders.customer_id and not

customers.customer_id..

However, it’s generally good database practice to ensure that columns in diff er-

ent tables that refer to the same thing have the same name. Thus, you never get

into a situation in which you’re writing id = customer_id and wonder if id is

the identifi er for the correct object. By keeping naming consistent, you can write

table1.customer_id = table2.customer_id, and it’s clear that you’re really

comparing the same thing. This generally isn’t done in this book to keep to a

convention that many newer developers are familiar with (having the ID simply

named id). This may have been a mistake.

Now use your schema:

use Loki::Schema;

my $schema = Loki::Schema->connect(
 $dsn,
 $user,
 $pass,
 \%optional_attributes
);

my $customer_rs
 = Loki::Schema::Result::Customer->resultset(‘Customer’);

while (my $customer = $customer_rs->next) {
 my $orders_rs = $customer->orders;
 my $total = 0;
 while (my $order = $orders_rs->next) {
 $total += $order->total;
 }
 printf “Customer: %40s Total: %0.2f\n”,
 $customer->full_name, $total;
}

c19.indd 617c19.indd 617 10/08/12 8:27 PM10/08/12 8:27 PM

618 ❘ CHAPTER 19 THE NEXT STEPS

The connect() method takes the same arguments as DBI->connect(). This is not a coincidence
and it makes your life much easier.

The resultset() class method returns a DBIx::Class::ResultSet object, and you can call
next() on it repeatedly to iterate over all the objects returned. (The call to the database is not made
until you need results returned.) There are many ways you can use it:

find customer Result with given id (must refer to primary key)
my $customer = $customer_rs->find($id);

Find a customer ResultSet with the last name of ‘Smith’
$customer_rs = $customer_rs->search({ last_name => ‘Smith’ });

Find a customer ResultSet whose last name begins with ‘S’,
ordered by last_name, and then first name
my $customer_rs = Loki::Schema->resultset(‘Customer’)->search(
 { last_name => { like => ‘S%’ } },
 { order_by => { -asc => [qw/last_name first_name/] },
);

Remember: in DBIx::Class, the ResultSet returns a set of results that you can search on.
Individual Result objects correspond to rows in a database, and you can’t search on them, but you
can call methods on them to get and set data:

my $customer = $customer_rs->find($id);
$customer->first_name(‘Bob’);
$customer->update; # save the changed data to the database

There’s a lot more to DBIx::Class than described, but this gives you some idea of the basics. One of
the lovely things about this module is that it tends to defer calls to the database unless they are
actually needed. For example, if you call the update() method on a result that has not been
changed, there’s no need to update the record in the database, so no UPDATE SQL call is made to
the database.

There’s a lot more to learn about DBIx::Class, so read DBIx::Class::Manual for a good start.

Understanding the Pros and Cons of an ORM

Before you reach for an ORM, it’s worth being aware of some of the benefi ts and drawbacks.
Further, be aware that many of the benefi ts and drawbacks are highly dependent on the particular
ORM that you use. For example, ORMs are often slower than direct database access, but that’s gen-
erally not true of Rose::DB::Object, but tends to be true of many alternatives. Your specifi c needs
should dictate which ORM, if any, you choose.

ORMs are great for reducing code complexity and, if designed well, often make changing databases
easy, such as changing from Oracle to PostgreSQL as your author did at one company. (Although it’s
your author’s experience that changing databases happens rarely, so this benefi t is often overstated.)
ORMs also tend to remove the SQL from your actual code, so if you need to change your schema
(such as a table name), you often have only one spot to do this in. There are other ways to do this,

c19.indd 618c19.indd 618 10/08/12 8:27 PM10/08/12 8:27 PM

Understanding Object-Relational Mappers ❘ 619

but when people avoid ORMs, they often spread their database knowledge throughout the code and
have multiple places in their code that they need to change the data.

On the fl ip side, you often hear about the Object-Relational Impedance Mismatch. In short, it
means that the hierarchical nature of objects and the relational nature of databases (for those with
a computer science background, think trees versus graphs) often don’t map well together. Classes,
for example, enable subclassing, but most databases do not support this for tables. So you can map
a class to a table, or to a set of related tables, and things can get hairy. Or you fi nd that the data you
want to select doesn’t map to a single object. Or you have subtle issues when you discover that SQL’s
NULL is not the same thing as Perl’s undef.

For most simple applications, ORMs are helpful, but as your applications grow, it’s worth under-
standing the trade-offs you make when you use an ORM. Your author recommends hitting your
favorite search engine and searching for The Vietnam of Computer Science. It’s a long and fairly
technical read, but it’s worth digging into and understanding what the author is trying to say.

TRY IT OUT Convert Your DBI Code to DBIx::Class

In Chapter 16 you created a small SQLite database to manage rights data. For your small example,
using DBI directly and writing SQL was fi ne, but as systems grow, it might be harder to maintain, so
you can convert them to DBIx::Class. The three tables looked like this:

CREATE TABLE media (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 location VARCHAR(255) NOT NULL,
 source VARCHAR(511) NOT NULL,
 attribution VARCHAR(255) NOT NULL,
 media_type_id INTEGER NOT NULL,
 license_id INTEGER NOT NULL,
 FOREIGN KEY (media_type_id) REFERENCES media_types(id),
 FOREIGN KEY (license_id) REFERENCES licenses(id)
);

CREATE TABLE licenses (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 allows_commercial BOOLEAN NOT NULL
);

CREATE TABLE media_types (
 id INTEGER PRIMARY KEY,
 media_type VARCHAR(10) NOT NULL
);

Create three result classes, My::Schema::Result::Media, My::Schema::Result::License, and
My::Schema::Result::MediaType.

All the code for this Try It Out is in the code folder lib/My/Schema.pm.

c19.indd 619c19.indd 619 10/08/12 8:27 PM10/08/12 8:27 PM

620 ❘ CHAPTER 19 THE NEXT STEPS

 1. Create your schema class and three result classes:

package My::Schema;
use strict;
use warnings;

use base ‘DBIx::Class::Schema’;

__PACKAGE__->load_namespaces;

1;

 2. Create your media class (code fi le lib/My/Schema/Result/Media.pm):

package My::Schema::Result::Media;
use strict;
use warnings;

use base ‘DBIx::Class::Core’;

__PACKAGE__->table(“media”);
__PACKAGE__->add_columns(qw{
 id name location source attribution media_type_id license_id
});
__PACKAGE__->set_primary_key(“id”);

__PACKAGE__->belongs_to(
 license => “My::Schema::Result::License”,
 “license_id”,
);

__PACKAGE__->belongs_to(
 media_type => “My::Schema::Result::MediaType”,
 “media_type_id”,
);

1;

 3. Create your media type class (code fi le lib/My/Schema/Result/MediaType.pm):

package My::Schema::Result::MediaType;
use strict;
use warnings;

use base ‘DBIx::Class::Core’;

__PACKAGE__->table(“media_types”);
__PACKAGE__->add_columns(qw{id media_type});
__PACKAGE__->set_primary_key(“id”);

__PACKAGE__->has_many(
 media => “My::Schema::Result::Media”,

c19.indd 620c19.indd 620 10/08/12 8:27 PM10/08/12 8:27 PM

Understanding Object-Relational Mappers ❘ 621

 “media_type_id”
);

1;

 3. Create your license class (code fi le lib/My/Schema/Result/License.pm):

package My::Schema::Result::License;
use strict;
use warnings;

use base ‘DBIx::Class::Core’;

__PACKAGE__->table(“licenses”);__PACKAGE__->add_columns(qw{ id name allows_
commercial });
__PACKAGE__->set_primary_key(“id”);

__PACKAGE__->has_many(
 media => “My::Schema::Result::Media”,
 “media_type_id”
);

1;

 4. Run the scripts from Chapter 16 to create and populate the database schema.

 5. Now create a program named listing_19_1_dbic.pl (fi nal code is found in code fi le
listing_19_1_dbic.pl):

use strict;
use warnings;

use My::Schema;
my $schema = My::Schema->connect(
 “dbi:SQLite:dbname=rights.db”,
 “”,
 “”,
 { RaiseError => 1, PrintError => 0 },
);

find anything named ‘Anne Frank Stamp’
my $media_rs
 = $schema->resultset(‘Media’)->search(
 { name => ‘Anne Frank Stamp’ });
my $count = $media_rs->count;
print “We found $count record(s)\n”;

print “\nNow finding all media\n\n”;
find all media, in reverse alphabetical order
$media_rs = $schema->resultset(‘Media’)->search(
 {}, # we want all of them
 { order_by => { -desc => ‘name’ } },
);

c19.indd 621c19.indd 621 10/08/12 8:27 PM10/08/12 8:27 PM

622 ❘ CHAPTER 19 THE NEXT STEPS

while (my $media = $media_rs->next) {
 my $name = $media->name;
 my $location = $media->location;
 my $license = $media->license->name;
 my $media_type = $media->media_type->media_type;

 print <<”END”;
Name: $name
Location: $location
License: $license
Media: $media_type

END
}

 6. Run the program with perl listing_19_1_dbic.pl. You should see the following output:

We found 1 record(s)
Now fi nding all media
Name: Clair de Lune
Location: /data/claire_de_lune.ogg
License: Public Domain
Media: audio
Name: Anne Frank Stamp
Location: /data/anne_fronk_stamp.jpg
License: Public Domain
Media: image

How It Works

Your author had to do a fair amount of setup to get this example working, but after that setup is done,
you don’t need to do it again. That means that code you write later can rely on your DBIx::Class
classes and you don’t need to worry about duplicating the code over and over again.

The My::Schema class called this class method:

 __PACKAGE__->load_namespaces()

The load_namespaces() method, inherited from DBIx::Class::Schema, is responsible to fi nd the
Result:: and ResultSet:: classes (if any) and load them for you. For example, in your code, you
should not need to use My::Schema::Result::Media.

Each of the My::Schema::Result::Media, My::Schema::Result::License, and
My::Schema::Result::MediaType classes inherit from DBIx::Class::Core and follow a standard
pattern in that they:

 ➤ Declare the table

 ➤ Declare the columns

 ➤ Declare the primary key

 ➤ Declare the relationships (if any)

c19.indd 622c19.indd 622 10/08/12 8:27 PM10/08/12 8:27 PM

Understanding Object-Relational Mappers ❘ 623

And fi nally, you have listing_19_1_dbic.pl to put it all together. Lines 1 through 10 declare strict,
warnings, use the schema, and connect to it:

 1: use strict;
 2: use warnings;
 3:
 4: use My::Schema;
 5: my $schema = My::Schema->connect(
 6: “dbi:SQLite:dbname=rights.db”,
 7: “”,
 8: “”,
 9: { RaiseError => 1, PrintError => 0 },
 10:);

Lines 12 through 16 search for any media named Anne Frank Stamp and return a resultset matching
your search. In this case, you have only one item found.

 12: # find anything named ‘Anne Frank Stamp’
 13: my $media_rs
 14: = $schema->resultset(‘Media’)->search(
 15: { name => ‘Anne Frank Stamp’ });
 16: my $count = $media_rs->count;
 17: print “We found $count record(s)\n”;

Lines 18 through 23 search for all media (the empty hash reference in line 21 says “you have no search
criteria, so all records will be returned”) and line 22 says that you want your records in reverse alpha-
betical order by name.

18: print “\nNow finding all media\n\n”;
 19: # find all media, in reverse alphabetical order
 20: $media_rs = $schema->resultset(‘Media’)->search(
 21: {}, # we want all of them
 22: { order_by => { -desc => ‘name’ } },
 23:);

Finally, you have lines 25 through 38 iterating over your $media_rs result set and printing your various
bits and pieces of information.

Lines 28 and 29 each take advantage of relationships you declared in My::Schema::Result::Media to
fetch your related My::Schema::Result::License and My::Schema::Result::MediaType objects.

 25: while (my $media = $media_rs->next) {
 26: my $name = $media->name;
 27: my $location = $media->location;
 28: my $license = $media->license->name;
 29: my $media_type = $media->media_type->media_type;
 30:
 31: print <<”END”;
 32: Name: $name
 33: Location: $location
 34: License: $license

c19.indd 623c19.indd 623 10/08/12 8:27 PM10/08/12 8:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

624 ❘ CHAPTER 19 THE NEXT STEPS

 35: Media: $media_type
 36:
 37: END
 38: }

When you have your $media->license and $media->media_type methods, under the hood
DBIx::Class makes separate SQL statements for each and (sort of) resemble this:

SELECT * FROM licenses me WHERE (me.id = ?)
SELECT * FROM media_types me WHERE (me.id = ?)

Thus, although you have one call to the database to select your media, for every record, you have two
extra calls to the database. This can be expensive if you have lots of records. You can get around this
by prefetching the licenses and media types:

$media_rs = $schema->resultset(‘Media’)->search(
 {}, # we want all of them
 { order_by => { -desc => ‘me.name’ },
 prefetch => [qw/license media_type/],
 },
);

The order_by parameter now refers to me.name instead of name. This is because each license record
also has a name parameter, and the SQL wouldn’t know which name to order by. However, the primary
table is always aliased to me, allowing the SQL to know which name to order by. Under the hood, the
resulting SQL looks similar to this:

 SELECT me.*, license.*, media_type.*
 FROM media me
 JOIN licenses license ON license.id = me.license_id
 JOIN media_types media_type ON media_type.id=me.media_type_id
ORDER BY me.name DESC

By prefetching your related tables, you make a single call to the database and often have a much faster
program. This can use a lot more memory, so you have the familiar trade-off between speed and mem-
ory usage.

Using DBIx::Class::Schema::Loader

You might fi nd writing DBIx::Class schema classes a bit tedious. That’s where DBIx::Class::
Schema::Loader comes in handy. It provides the dbicdump utility. You can autogenerate the
previous classes with this:

dbicdump -o dump_directory=lib My::Schema $dsn $user $pass

The dbicdump program uses DBIx::Class::Schema::Loader to read an existing database and
automatically create a set of schema classes for it. For SQLite, because you don’t require a username
and password, you could do this:

c19.indd 624c19.indd 624 10/08/12 8:27 PM10/08/12 8:27 PM

Using the Template Toolkit ❘ 625

dbicdump -o dump_directory=lib My::Schema “dbi:SQLite:dbname=rights.db”

The output won’t be exactly the same as the examples you have, but it can provide documentation
on the various columns and richer information about the columns:

__PACKAGE__->add_columns(
 “id”,

 { data_type => “integer”, is_auto_increment => 1, is_nullable => 0 },

 “name”,

 { data_type => “varchar”, is_nullable => 0, size => 255 },

 “location”,

 { data_type => “varchar”, is_nullable => 0, size => 255 },

 “source”,

 { data_type => “varchar”, is_nullable => 0, size => 511 },

 “attribution”,

 { data_type => “varchar”, is_nullable => 0, size => 255 },

 “media_type_id”,

 { data_type => “integer”, is_foreign_key => 1, is_nullable => 0 },

 “license_id”,

 { data_type => “integer”, is_foreign_key => 1, is_nullable => 0 },

);

Your author strongly recommends that you check this module out. If you have an existing database,
it can make your life much easier.

USING THE TEMPLATE TOOLKIT

Chapter 15, introduced you to Template::Tiny, a small templating module that makes it easy to
create quick-and-dirty templates. However, although fast, it’s not powerful. Although there are
many alternative templating modules on the CPAN, consider Template Toolkit, one of the most
popular. You can read about it at http://tt2.org/.

Why Use Templates?

A template is a pattern for data that you want to present to your user. It has variables that can be
fi lled in dynamically to allow you to present the same form of data, but with different values. At its
simplest, you can think of string interpolation as a template:

foreach my $name (@names) {
 print “Hello, $name\n”;
}

However, templates go beyond this. They generally mean you can embed simple logic directly in the
template. In Chapter 15, one of the example templates had this snippet:

[% IF have_params %]
 <p>Our list of params:</p>
 <table rules=”all”>
 <tr><th>Name</th><th>Value</th></tr>

c19.indd 625c19.indd 625 10/08/12 8:27 PM10/08/12 8:27 PM

http://tt2.org/

626 ❘ CHAPTER 19 THE NEXT STEPS

 [% FOREACH param IN params %]
 <tr><td>[% param.name %]</td><td>[% param.value %]</td></tr>
 [% END %]
 </table>
[% ELSE %]
 <p>No params supplied!</p>
[% END %]

If you wanted to do this in Perl, you must write something like this:

my $output = ‘’;
if ($have_params) {
 $output .= <<’END’;
 <p>Our list of params:</p>
 <table rules=”all”>
 <tr><th>Name</th><th>Value</th></tr>
END
 foreach my $param (@params) {
 $output .=
 “<tr><td>$param->{name}</td><td>$param->{value}</td></tr>”;
 }
 $output .= “</table>\n”;
}
else {
 $output .= “<p>No params supplied!</p>”;
}

This tiny example isn’t too bad, but as the amount of information (and logic) that you must handle
in your output grows, it starts to get unwieldy and may even get in the way to understand your main
program logic.

Instead, you often want to separate gathering your data and presenting your data. This could, for
example, allow a Perl programmer to focus on writing the code to fetch the data while allowing a
web designer to create a lovely template for presenting the data. This can be extremely useful if the
data doesn’t change but its presentation does. Rather than having to rewrite your code, the designer
can create a new set of templates.

Or perhaps you have a set of data that you want to present as HTML, XML, or text? Don’t change
your program. Just use the same data with different templates.

An Introduction to Template Toolkit

The Template Toolkit module, on the CPAN, is known as Template. For our examples, assume you
have a directory named templates that contains your templates.

use Template;

my $template = Template->new(
 INCLUDE_PATH => ‘templates’,
);

c19.indd 626c19.indd 626 10/08/12 8:27 PM10/08/12 8:27 PM

Using the Template Toolkit ❘ 627

my %template_data = (
 name => ‘Ovid’,
 amount_of => {
 plums => 2,
 books => 8,
 coins => 7,
 sword => 1,
 },
 skills => [qw/cowering hiding running/],
);

$template->process(‘character.tt2’, \%template_data)
 or die $template->error;

The preceding code looks for a fi le named templates/character.tt2 and uses the %template_
data to fi ll out the template. Assume that templates/character.tt2 contained the following
template:

Hello, [% name %],
Your primary skills are:
[% FOREACH skill IN skills -%]
 [% skill %]
[% END %]
[% IF amount_of -%]
You own:
 [% FOREACH item IN amount_of.keys -%]
 [% amount_of.$item %] [% item %]
 [% END %]
[% ELSE %]
You are empty-handed.
[% END %]

When you run the sample program, it prints the following:

Hello, Ovid,
Your primary skills are:
 cowering
 hiding
 running
You own:
 1 sword
 2 plums
 8 books
 7 coins

The fi rst argument to the process() method is the name of the template fi le you want to
process. Template looks for this fi le in the INCLUDE_PATH directory. The second argument should
be a reference to a hash. The keys of the hash are the names of the variables interpolated in the
template.

c19.indd 627c19.indd 627 10/08/12 8:27 PM10/08/12 8:27 PM

628 ❘ CHAPTER 19 THE NEXT STEPS

When processing the template, you see that the variable can be interpolated directly:

Hello, [% name %],

And you can iterate over arrays:

[% FOREACH skill IN skills -%]
 [% skill %]
[% END %]

You can also test if a variable exists and take action upon it:

[% IF amount_of -%]
 We have inventory.
[% ELSE %]
 We are the 99%
 [% END %]

Note how you iterate over hashes:

[% FOREACH item IN amount_of.keys -%]
 [% amount_of.$item %] [% item %]
[% END %]

The .keys method is a vmethod (virtual method) that’s available for hash references. There are
vmethods available for scalars, hashes, and lists. See Template::Manual::VMethods for a full
list of vmethods available.

That’s interesting because you refer to amount_of.$item. The $item tells Template Toolkit that
you have a variable named $item and you want to reevaluate it before fetching that item from the
amount_of hash reference. Otherwise, amount_of.item would keep trying to fetch a key named
item from the %amount_of hash and would return undef every time.

You can also gain some fi ne-grained control over the output. For example, you could switch your
character template to this:

NOTE You may fi nd that you don’t always want to have Template Toolkit print

the data directly to STDOUT. You might want to capture it to a variable. In that

case, pass a reference to a scalar as the third argument to process():

my $output;
$template->process(‘character.tt2’, \%template_data, \$output)
 or die $template->error;
print $output;

Instead of $output, you can also give it a fi lename (not as a reference!) or fi le-

handle to write the output to.

c19.indd 628c19.indd 628 10/08/12 8:27 PM10/08/12 8:27 PM

Using the Template Toolkit ❘ 629

Hello, [% name %],
Your primary
[%- IF skills.size == 1 -%] skill is [% skills.0 %]
[% ELSE %] skills are
 [%- FOREACH skill IN skills -%]
 [%- IF skill == skills.last -%]and [%- skill -%]
 [%- ELSE -%] [%- skill -%],
 [%- END -%]
 [%- END -%]
[% END %]
[% IF inventory %]
You own:
[% FOREACH item IN inventory.keys -%]
 [% inventory.$item %] [% item %]
[% END %]
[% ELSE %]
You are empty-handed.
[% END %]

And running your program again prints this:

Hello, Ovid,
Your primary skills are cowering, hiding, and running
You own:
 1 sword
 2 plums
 8 books
 7 coins

But if you only had the hiding skill, the skills line prints:

Your primary skill is hiding

This makes it easy to change your output on-the-fl y without having to change your code.

If you look closely at the template, you can notice that the many of the start and end tags for tem-
plate commands have a hyphen (-):

[%- IF skills.size == 1 -%] skill is [% skills.0 %]
[% ELSE %] skills are
 [%- FOREACH skill IN skills -%]
 [%- IF skill == skills.last -%]and [%- skill -%]
 [%- ELSE -%] [%- skill -%],
 [%- END -%]
 [%- END -%]
[% END %]

NOTE If you don’t like the IN in the FOREACH x IN Y syntax, replace it with =:

[% FOREACH item = items %]
 You have [% item %]
[% END %]

c19.indd 629c19.indd 629 10/08/12 8:27 PM10/08/12 8:27 PM

630 ❘ CHAPTER 19 THE NEXT STEPS

If you start the template tag with a pre-chomp tag, [%-, you can remove whitespace and newlines
before the output. Naturally, a -%] removes whitespace and newlines after the output. By under-
standing where to use these pre- and post-chomp tags, you can make your template output match
what you’re looking for but still have properly indented template commands to make things much
easier to read.

Template Toolkit also supports fi ltering the data, such as converting characters that have special
meaning in HTML:

[% name | html %]

In the preceding example, you pass a name value to a template, but if you render as HTML you’ll be
disappointed if someone has supplied a name of My</html>name and breaks your web page. The |
html fi lter after the name would convert that to My</html>name.

Template Toolkit also allows including headers and footers, sharing common sections between dif-
ferent templates and many other features, but this isn’t covered in this introduction.

TRY IT OUT Letters in French and English

The life of a loan shark is a hard one. By defi nition your customers are not the type of people who fi nd
it easy to pay their debts. What’s worse, some of your customers speak English and some of them speak
French. From time to time, you need to send them a friendly reminder that they owe you money. You
can fi nd all the code in this Try It Out in the code fi les listing_19_2_letter.pl, templates/en/
letter.tt2, and templates/fr/letter.tt2.

 1. Type in the following program, and save it as listing_19_2_letter.pl:

use strict;
use warnings;
use Getopt::Long;
use Template;
use DateTime;
use File::Spec::Functions ‘catfile’;

my ($name, $amount, $lang);

my %body_parts = (
 en => [qw/arms legs/],
 fr => [qw/bras jambes/],
);
my %supported_lang = map { $_ => 1 } keys %body_parts;

my $template = Template->new(
 INCLUDE_PATH => ‘templates’,
);

GetOptions(
 ‘name=s’ => \$name,
 ‘amount=f’ => \$amount,
 ‘lang=s’ => \$lang,

c19.indd 630c19.indd 630 10/08/12 8:27 PM10/08/12 8:27 PM

Using the Template Toolkit ❘ 631

) or die “Bad options”;

$lang ||= ‘en’;

unless ($name and $amount) {
 die “You must provide both name and amount”;
}

if (not exists $supported_lang{$lang}) {
 die “’$lang’ is not a supported lang”;
}

my $now = DateTime->now(locale => $lang);
my @things_to_break = @{ $body_parts{$lang} };
my %template_data = (
 month => ucfirst($now->month_name),
 day => $now->day,
 year => $now->year,
 name => $name,
 body_part => $things_to_break[rand scalar @things_to_break],
 amount => $amount,
);

my $file = catfile($lang, ‘letter.tt2’);
$template->process(
 $file,
 \%template_data,
 undef,
 binmode => ‘:encoding(UTF8)’
) or die $template->error;

 2. Make a templates/en directory and a templates/fr directory. In templates/en, save the fol-
lowing as letter.tt2:

 [% month %] [% day %], [% year %]

Dear [% name %],

Our records show that you owe us $[% amount %]. If you do not pay
immediately, we will be forced to break your [% body_part %].

Have a nice day :)
Me

In the templates/fr directory, save the following as letter.tt2. (Note that the fi nal fi lename is
identical!) Don’t stress too much if you can’t fi gure out how to type the accented characters. Loan
sharks aren’t always the sharpest.

 [% month %] [% day %], [% year %]

Cher [% name %],

Nos dossiers indiquent que tu nous dois $[% amount %]. Si tu ne

c19.indd 631c19.indd 631 10/08/12 8:27 PM10/08/12 8:27 PM

632 ❘ CHAPTER 19 THE NEXT STEPS

payes pas immédiatement, nous seront obligés de te casser les
[% body_part %].

Bonne journée :)
Moi

 3. Run the program with the following output:

perl listing_19_2_letter.pl --lang en --amount 1000.15 --name Bob

You should see output similar to the following:

June 9, 2012

Dear Bob,

Our records show that you owe us $1000.15. If you do not pay
immediately, we will be forced to break your arms.

Have a nice day :)
Me

Run the program again, but change the --lang parameter to fr (Use the short option form,
-l fr, to remind you that you can do this):

perl listing_19_2_letter.pl -l fr -a 1000.15 -n Robert

You should see output similar to this:

Juin 9, 2012

Cher Robert,

Nos dossiers indiquent que tu nous dois $1000.15. Si tu ne
payes pas immédiatement, nous seront obligés de te casser les
jambes.

Bonne journée :)
Moi

How It Works

Lines 1 through 6 use the various modules you need to make this program work:

 1: use strict;
 2: use warnings;
 3: use Getopt::Long;
 4: use Template;
 5: use DateTime;
 6: use File::Spec::Functions ‘catfile’;

Lines 8 through 18 declare and sometimes initialize the variables you need. You can see that line 14
uses the keys from the %body_parts hash to avoid duplicating data.

c19.indd 632c19.indd 632 10/08/12 8:27 PM10/08/12 8:27 PM

Using the Template Toolkit ❘ 633

 8: my ($name, $amount, $lang);
 9:
 10: my %body_parts = (
 11: en => [qw/arms legs/],
 12: fr => [qw/bras jambes/],
 13:);
 14: my %supported_lang = map { $_ => 1 } keys %body_parts;
 15:
 16: my $template = Template->new(
 17: INCLUDE_PATH => ‘templates’,
 18:);

Lines 20 through 34 get your command line options and validate them. You die if a required command
line option is missing and $lang defaults to en (English) if not supplied.

 20: GetOptions(
 21: ‘name=s’ => \$name,
 22: ‘amount=f’ => \$amount,
 23: ‘lang=s’ => \$lang,
 24:) or die “Bad options”;
 25:
 26: $lang ||= ‘en’;
 27:
 28: unless ($name and $amount) {
 29: die “You must provide both name and amount”;
 30: }
 31:
 32: if (not exists $supported_lang{$lang}) {
 33: die “’$lang’ is not a supported lang”;
 34: }

Line 34 creates your DateTime object and sets its locale to $lang. This allows you to fetch the correct
month name for your requested language.

 36: my $now = DateTime->now(locale => $lang);

Lines 37 through 45 set up the actual template data.

 37: my @things_to_break = @{ $body_parts{$lang} };
 38: my %template_data = (
 39: month => ucfirst($now->month_name),
 40: day => $now->day,
 41: year => $now->year,
 42: name => $name,
 43: body_part =>$things_to_break[rand scalar @things_to_break],
 44: amount => $amount,
 45:);

This bit is a handy trick for randomly selecting one element of an array:

 $things_to_break[rand scalar @things_to_break],

c19.indd 633c19.indd 633 10/08/12 8:27 PM10/08/12 8:27 PM

634 ❘ CHAPTER 19 THE NEXT STEPS

Line 47 builds the path to the fi le in a way that works regardless of which operating system you are on:

 47: my $file = catfile($lang, ‘letter.tt2’);

And fi nally you process your template:

 48: $template->process(
 49: $file,
 50: \%template_data,
 51: undef,
 52: binmode => ‘:encoding(UTF8)’
 53:) or die $template->error;

The undef as the third parameter tells Template Toolkit to print the results to STDOUT. The optional
fourth argument:

binmode => ‘:encoding(UTF8)’

Tells Template Toolkit that you want your output fi lehandle to be encoded as UTF-8. This will be use-
ful if you fi nd that you have Russian or Chinese customers and need to send them friendly reminder
letters, too. Customer service is important!

You’ve noticed that the French and English version of the templates had the same fi rst line:

[% month %] [% day %], [% year %]

You could extract this into a header.tt2 fi le and replace the opening of the letters with:

[% INCLUDE header.tt2 %]

This can allow you to reuse this data in several fi les and easily change it in all fi les at once, if wanted.
See the INCLUDE_PATH argument to the Template constructor to understand this better.

USING CATALYST TO BUILD APPS

Much of this book focuses on teaching you Perl with an emphasis on techniques you need for build-
ing web-based applications. The web and web-based applications are one of the driving forces
behind many enterprises today, and this is not going to change any time soon. Thus, it’s time to fi n-
ish the book by taking a look at the most popular web framework for Perl.

NOTE Many other web frameworks for Perl are worth your time to investigate.

Your author is rather fond of Dancer, but Mojolicious is becoming popular, and

CGI::Application has been around for years. Of course, others are around

and still more will appear. Just because Catalyst is demonstrated doesn’t

mean you shouldn’t consider others. Remember: Diff erent applications have

diff erent needs, so investigate your choice of web framework appropriately.

c19.indd 634c19.indd 634 10/08/12 8:27 PM10/08/12 8:27 PM

Using Catalyst to Build Apps ❘ 635

Catalyst describes itself like this (http://www.catalystframework.org/):

Catalyst is an open-source Perl MVC web framework that encourages
rapid development and clean design without getting in your way by
forcing rules.

What this means is that out-of-the-box, Catalyst provides most of what you need to write web
applications, but you can change just about any component to suit your needs.

The Beauty of MVC

Chapter 15 briefl y touched on the Model-View-Controller (MVC) pattern. Although originally not
created for web applications, this method to organize your code is a useful way to organize a web
application to make it easy to maintain and extend.

In MVC for the web, the users (typically people surfi ng the web), generally see web pages. This is
the view. When they click a link or submit a form on your site, the information from the view is sent
to a controller that controls what to do with that data.

NOTE Views do not have to be web pages. They can be RSS feeds, e-mail,

JSON, YAML, or any other form of output. A view can also be used to represent

the same data in multiple ways. You might request some data in JSON format,

whereas another application might request the same data as a spreadsheet.

For a web view it may be for a standard browser or a mobile phone. It’s common

to have the same controller and model be invoked for each of these, but instead

have the data sent to diff erent views. This makes for great code reuse.

The controller generally consults the model (the part of the application that manages the data
and business rules) and returns the model’s answers to a new view, which is then rendered for the
consumer.

To a certain extent, this design pattern should have been named View-Controller-Model because
that’s the path of behavior from the user’s standpoint. (Or perhaps, VCMCV, but that’s starting to
get cumbersome.)

Catalyst does not require you to follow the MVC pattern, but it defaults to this pattern and it’s
strongly encouraged.

Setting Up a Catalyst Application

To get up and running with Catalyst, you need to install Catalyst from the CPAN. You should
install Task::Catalyst. This contains most of the major modules needed to build your Catalyst
applications. It also contains all the new modules you need for this section. If you already have
Catalyst installed, you need at least Catalyst version 5.8 for this section because this is the
version of Catalyst that was fi rst ported to Moose. Use at least version 5.90012 because this
is the version used for these examples.

c19.indd 635c19.indd 635 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.catalystframework.org/

636 ❘ CHAPTER 19 THE NEXT STEPS

Autogenerating the Shell of a Catalyst Application

In this section, you start by making a small web application to view the rights data tracked in
Chapter 16 (and mentioned previously in the current chapter). In your chapter19 directory, type the
following:

catalyst.pl Rights

You can see a lot of output about various things being created, including a Rights/ directory. Now
change into that directory to start your new Rights application.

NOTE All the code for the Rights application is downloadable from http://www

.wrox.com/. The usual download message isn’t included here because much of

this code is autogenerated by Catalyst. Rest assured the download area will

have a chapter19/Rights directory available for you.

$ perl script/rights_server.pl

[debug] Debug messages enabled

[debug] Statistics enabled

[debug] Loaded plugins:

.---.

| Catalyst::Plugin::ConfigLoader 0.30 |

‘---’

[debug] Loaded dispatcher “Catalyst::Dispatcher”

[debug] Loaded engine “Catalyst::Engine”

[debug] Found home “./Rights”

[debug] Loaded Config “./Rights/rights.conf”

[debug] Loaded components:

.--+----------.

| Class | Type |

+--+----------+

| Rights::Controller::Root | instance |

‘--+----------’

[debug] Loaded Private actions:

.----------------------+-----------------------------+--------------.

| Private | Class | Method |

+----------------------+-----------------------------+--------------+

| /default | Rights::Controller::Root | default |

| /end | Rights::Controller::Root | end |

| /index | Rights::Controller::Root | index |

‘----------------------+-----------------------------+--------------’

[debug] Loaded Path actions:

.-----------------------------------+-------------------------------.

| Path | Private |

+-----------------------------------+-------------------------------+

| / | /index |

| /... | /default |

‘-----------------------------------+-------------------------------’

[info] Rights powered by Catalyst 5.90012

HTTP::Server::PSGI: Accepting connections at http://localhost:3000/

c19.indd 636c19.indd 636 10/08/12 8:27 PM10/08/12 8:27 PM

http://www.wrox.com/
http://www.wrox.com/
http://localhost:3000/

Using Catalyst to Build Apps ❘ 637

Immediately you can see plenty of useful information about the state of your application and also
that it’s accepting connections on http://localhost:3000/. Go to your favorite web browser and
visit that URL. You should see something similar to Figure 19-1.

FIGURE 19-1

The default welcome screen in Catalyst points to a tutorial, then the manual, and then gives you
information on what to do next to build your application. Meanwhile, something similar to the fol-
lowing is printed in your terminal window:

[info] *** Request 1 (0.004/s) [46773] [Sun Jun 10 11:08:30 2012] ***

[debug] Path is “/”

[debug] “GET” request for “/” from “127.0.0.1”

[debug] Response Code: 200; Content-Type: text/html; charset=utf-8;

 Content-Length: 5469

[info] Request took 0.002885s (346.620/s)

.--+-----------.

| Action | Time |

+--+-----------+

| /index | 0.000197s |

| /end | 0.000189s |

‘--+-----------’

You can see information presented for most requests to help you debug your application. It won’t
make much sense now, but in reading through it carefully and learning more about Catalyst, it’s an
invaluable resource.

c19.indd 637c19.indd 637 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/

638 ❘ CHAPTER 19 THE NEXT STEPS

So how does this work? The scripts/rights_server.pl program looks like this:

BEGIN {
 $ENV{CATALYST_SCRIPT_GEN} = 40;
}

use Catalyst::ScriptRunner;
Catalyst::ScriptRunner->run(‘Rights’, ‘Server’);

1;

Now look at the outline of your code by running your tree.pl program on the lib/ directory:

$ tree.pl lib
lib/
| Rights/
| | Controller/
| | |-- Root.pm
| | Model/
| | View/
|-- Rights.pm

As you can see, the shell of an MVC application has already been built for you. Currently, the only
code is Rights and Rights::Controller::Root. The scripts/rights_server.pl program loads
your Rights.pm module (which in turn can load everything else for you) and runs it in a built-in
web server.

The Rights.pm package sets up everything you need to run your application. It looks like this; the
actual class has a bunch of POD documentation:

package Rights;
use Moose;
use namespace::autoclean;

use Catalyst::Runtime 5.80;
use Catalyst qw/
 -Debug
 ConfigLoader
 Static::Simple
/;
extends ‘Catalyst’;

our $VERSION = ‘0.01’;

__PACKAGE__->config(
 name => ‘Rights’,
 # Disable deprecated behavior needed by old applications
 disable_component_resolution_regex_fallback => 1,
 enable_catalyst_header => 1, # Send X-Catalyst header
);

__PACKAGE__->setup();

1;

c19.indd 638c19.indd 638 10/08/12 8:27 PM10/08/12 8:27 PM

Using Catalyst to Build Apps ❘ 639

When you use Catalyst:

use Catalyst qw/
 -Debug
 ConfigLoader
 Static::Simple
/;

By default you include the -Debug fl ag (which you should disable for production because there’s no
need to spam your logs with debugging information) that prints the useful information to the
console while running your application. The ConfigLoader and Static::Simple lines are plug-ins
that are used to load a confi g fi le (using Config::General format) and Static::Simple is a
plug-in that enables you to serve static fi les, such as images, CSS, and the like.

Next, you inherit from Catalyst (remember that Moose uses extends to set up inheritance) and
confi gure your application:

extends ‘Catalyst’;

our $VERSION = ‘0.01’;

__PACKAGE__->config(
 name => ‘Rights’,
 # Disable deprecated behavior needed by old applications
 disable_component_resolution_regex_fallback => 1,
 enable_catalyst_header => 1, # Send X-Catalyst header
);

Finally, the setup() method loads the other modules and starts the Rights application:

__PACKAGE__->setup();

Next, you have Rights::Controller::Root:

package Rights::Controller::Root;
use Moose;
use namespace::autoclean;

BEGIN { extends ‘Catalyst::Controller’ }

__PACKAGE__->config(namespace => ‘’);

sub index :Path :Args(0) {
 my ($self, $c) = @_;
 # Hello World
 $c->response->body($c->welcome_message);
}

sub default :Path {
 my ($self, $c) = @_;
 $c->response->body(‘Page not found’);
 $c->response->status(404);
}

c19.indd 639c19.indd 639 10/08/12 8:27 PM10/08/12 8:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

640 ❘ CHAPTER 19 THE NEXT STEPS

sub end : ActionClass(‘RenderView’) {}

__PACKAGE__->meta->make_immutable;

1;

The important parts of Rights::Controller::Root are explained next.

 ➤ The index page (the one you saw in Figure 19-1), is created with the index method:

sub index :Path :Args(0) {
 my ($self, $c) = @_;
 # Hello World
 $c->response->body($c->welcome_message);
}

NOTE The :Path :Args(0) are called subroutine attributes, which aren’t cov-

ered in this book, but you can read a bit more about them in the Subroutine

Attributes section of perldoc perlsub. Attributes are a way to provide a bit

of extra information about a subroutine or method (and other things not covered

in this book).

 ➤ In Catalyst, URLs are mapped to controllers. For your application, actions (methods) in
the Rights::Controller::Root namespace are relative to /; the index method is called
when you visit http://localhost:3000/. If you change :Path to :Path(‘hello’), your
index method is called when you visit http://localhost:3000/hello. This is useful when
you don’t want your URL names to map directly to your method names.

 ➤ The :Args(0) attribute means that no other path segments are passed to this method. If
you had :Path(‘hello’) :Args(1), if you visited http://localhost:3000/hello/2, then
2 would be the argument passed to the index method.

 ➤ The $self argument is the Catalyst application instance, but it’s $c that you’re interested
in. It’s the context object for the application. The context object is an instance representing
the context in which the current method was called. You’ll see more of this later, too.

In this case, this:

$c->response->body($c->welcome_message);

Sets the body of the response to the $c->welcome_message output. That’s the HTML page you saw
in Figure 19-1.

Writing Your Catalyst Application

You’ve seen the shell of your Rights application and now it’s time to start customizing it to fi t your
needs.

c19.indd 640c19.indd 640 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/
http://localhost:3000/hello
http://localhost:3000/hello/2

Using Catalyst to Build Apps ❘ 641

 1. Kill your web server with CTRL-C. (Control-C).

 2. Restart it with:

perl scripts/rights_server.pl -r

The -r switch tells Catalyst to restart the application whenever you change your source
code. This makes testing an application while writing it easy.

 3. Change your index method to this:

sub index :Path :Args(1) {
 my ($self, $c, $name) = @_;
 # Hello World
 $c->response->body(“Hello, $name”);
}

If you visit http://localhost:3000/Ovid, the web page says Hello, Ovid. Of course, you want to
use HTML::Entities to escape entities put into this output. A clever hacker could use this to inject
arbitrary HTML or JavaScript directly into your web page, so don’t do that.

In Catalyst, the default() method can be used as a catch-all for other paths that don’t match. So
if you visit http://localhost:3000/asdf, you receive a 404 NOT FOUND because the default handler
matches it:

sub default :Path {
 my ($self, $c) = @_;
 $c->response->body(‘Page not found’);
 $c->response->status(404);
}

The end method is interesting:

sub end : ActionClass(‘RenderView’) {}

The end of a request usually involves rendering a request, and the :ActionClass action can handle
this automatically. Otherwise, you might want something like this:

sub end : Private {
 my ($self, $c) = @_;
 $c->forward($c->view(‘TT’));
}

That would forward your action to a TT (Template Toolkit) view and render it for you. However,
you don’t have a view set up yet, so now do that.

Using Catalyst Views

To use views in Catalyst, you have a useful helper script named rights_create.pl. Create a view
using Template Toolkit:

$ perl script/rights_create.pl view TT TT
exists “./Rights/script/../lib/Rights/View”

c19.indd 641c19.indd 641 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/Ovid
http://localhost:3000/asdf

642 ❘ CHAPTER 19 THE NEXT STEPS

exists “./Rights/script/../t”
created “./Rights/script/../lib/Rights/View/TT.pm”
created “./Rights/script/../t/view_TT.t”

NOTE The output for Catalyst commands generally has path information

like ./Rights/. However, Catalyst actually prints the absolute path. On your

author’s computer, the path actually looks like:

/Users/ovid/beginning_perl/book/chapter19/Rights/

The path is deliberately shortened in the examples to make them easier to read

and fi t the format of the book.

When you run scripts/rights_create.pl, the fi rst argument is what you’re creating. This is
usually one of model, view, or controller. For a view, the fi rst TT argument is the name you are
giving the view. The second argument is the view subclass you’re going to use. Because you subclass
Catalyst::View::TT, the standard Catalyst view for Template Toolkit, you must use TT for the
third argument. If you want your view to be named Rights::View::Template and subclass from
Catalyst::View::TT, you would use this command:

perl script/rights_create.pl view Template TT

By running this command, you get a module named Rights::View::TT and a test named
t/view_TT.t. (Using the default scripts to create modules, views, and controllers generates default
test scripts for them.)

The Rights::View::TT module looks like this:

package Rights::View::TT;
use Moose;
use namespace::autoclean;

extends ‘Catalyst::View::TT’;

__PACKAGE__->config(
 TEMPLATE_EXTENSION => ‘.tt’,
 render_die => 1, # die if we encounter rendering errors
);

1;

That’s all you need to do to make sure you can correctly render Template Toolkit views.

Calling the View from a Controller

In your Rights::Controller::Root module, add the following method:

sub hello : Path(‘hello’) : Args(1) {
 my ($self, $c, $my_name) = @_;

c19.indd 642c19.indd 642 10/08/12 8:27 PM10/08/12 8:27 PM

Using Catalyst to Build Apps ❘ 643

 $c->stash->{template} = ‘hello.tt’;
 $c->stash->{my_name} = $my_name;
}

And in the root/ directory (which should already be created for you), save the following as
hello.tt:

<p>Hello, [% my_name | html %]!</p>

Because the path is hello and it’s relative to the root directory and because it takes one argument,
you can visit http://localhost:3000/hello/World and the web page would contain the HTML
<p>Hello, World!</p>. The | html fi lter after the my_name variable tells Template Toolkit to
encode HTML entities. This is generally a recommended practice to make it harder for someone
to send naughty code to your output.

Use the $c->stash hash reference to pass data to your templates. The template key is the name of
the template you want to render. The my_name key, in the example, is a variable you’re passing to
Template Toolkit and is rendered by [% my_name %].

The method hello() is for Catalyst to know which method to call, but the :Path, although
often the same as the method name, is not required to be the same. If you had :Path(‘bonjour’)
:Args(1) for the hello() method, you could have visited http://localhost:3000/bonjour/Monde
and the resulting HTML in your browser would have been <p>Hello, Monde!</p>.

NOTE When building larger applications, it can be diffi cult to remember what all

your paths are. When running Catalyst under -Debug mode, you can read the

Loaded Path Actions output to understand what paths are available:

[debug] Loaded Path actions:
.-----------------------------+------------------------------.
| Path | Private |
+-----------------------------+------------------------------+
/	/index
/...	/default
/hello/*	/hello
‘-----------------------------+------------------------------’

That output tells you that you can visit / and /hello/$something. Everything

else (/...) will be handled by the default() method.

Using Catalyst Models

As explained, a model contains your data and all the business rules for that data. You can quickly
create a model for Catalyst using the rights database you created in Chapter 16 and reused in the
fi rst Try It Out section in this chapter. If you run the scripts to create and populate the database, you
should have an SQLite database named rights.db. As of this writing, to create the model you need

c19.indd 643c19.indd 643 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/hello/World
http://localhost:3000/bonjour/Monde

644 ❘ CHAPTER 19 THE NEXT STEPS

to install DBIx::Class::Schema::Loader, MooseX::NonMoose, and MooseX::MarkAsMethods.
Then, run the following, broken up over two lines, but you can run it on one line by omitting the \:

perl script/rights_create.pl model Media DBIC::Schema Rights::Schema \
 create=static ‘dbi:SQLite:./rights.db’

In this example:

 ➤ The fi rst argument to rights_create.pl says you’re going to create a model.

 ➤ The second argument, Media, names the model (Rights::Model::Media).

 ➤ The DBIC::Schema argument is used to inherit from the Catalyst::Model::DBIC::Schema
class (you should notice the pattern by now).

 ➤ The fourth argument specifi es the top-level namespace (usually the name of your app, hence
Rights).

 ➤ You specify create=static to tell Catalyst::Model::DBIC::Schema that you’re going to
read the database to create the schema classes for the model.

 ➤ Finally, you have the data source name (DSN), just like you’d pass as the fi rst argument to
DBI->connect().

If this were a database like MySQL or PostgreSQL that required a username and password, you’d
provide those after the DSN.

Now if you run tree.pl on your lib directory, you should see the following:

$ tree.pl lib/
lib/
| Rights/
| | Controller/
| | |-- Root.pm
| | Model/
| | |-- Media.pm
| | Schema/
| | | Result/
| | | |-- License.pm
| | | |-- Media.pm
| | | |-- MediaType.pm
| |-- Schema.pm
| | View/
| | |-- TT.pm
|-- Rights.pm

In your Rights::Model::Media fi le, you have the following:

package Rights::Model::Media;
use strict;

use base ‘Catalyst::Model::DBIC::Schema’;

__PACKAGE__->config(

c19.indd 644c19.indd 644 10/08/12 8:27 PM10/08/12 8:27 PM

Using Catalyst to Build Apps ❘ 645

 schema_class => ‘Rights::Schema’,
 connect_info => {
 dsn => ‘dbi:SQLite:./rights.db’,
 user => ‘’,
 password => ‘’,
 }
);

1;

And this gives you everything you need to connect to your model. You’ll use this, but in the real
world, you’d probably want your dsn, user, and password data to be supplied by a confi g fi le. This
would enable you, for example, to connect to different databases when testing in development and
in production.

Creating Schema Classes for the Model

You don’t need to see all the result classes because you already have a good idea of what they look
like from earlier in this chapter, but here’s the Rights::Result::MediaType module:

use utf8;
package Rights::Schema::Result::MediaType;

use strict;
use warnings;
use Moose;
use MooseX::NonMoose;
use MooseX::MarkAsMethods autoclean => 1;

extends ‘DBIx::Class::Core’;

__PACKAGE__->load_components(“InflateColumn::DateTime”);
__PACKAGE__->table(“media_types”);
__PACKAGE__->add_columns(
 “id”,
 { data_type => “integer”,is_auto_increment => 1,is_nullable => 0 },
 “media_type”,
 { data_type => “varchar”,is_nullable => 0,size => 10 },
);
__PACKAGE__->set_primary_key(“id”);

__PACKAGE__->has_many(
 “medias”,
 “Rights::Schema::Result::Media”,
 { “foreign.media_type_id” => “self.id” },
 { cascade_copy => 0, cascade_delete => 0 },
);

__PACKAGE__->meta->make_immutable;

1;

Without going over everything this means, suffi ce it to say that this contains everything you need to
access this data via DBIx::Class.

c19.indd 645c19.indd 645 10/08/12 8:27 PM10/08/12 8:27 PM

646 ❘ CHAPTER 19 THE NEXT STEPS

In your Rights::Controller::Root class, add the following method:

sub media : Path(‘all_media’) : Args(0) {
 my ($self, $c) = @_;

 my $media_rs = $c->model(‘Media::Media’)->search(
 {}, # we want all of them
 { order_by => { -desc => ‘name’ } },
);

 $c->stash->{template} = ‘all_media.tt’;
 $c->stash->{media_rs} = $media_rs;
}

NOTE The model is named Media and you can fetch it via $c->model(‘Media’).

However, the resultset you’re fetching is also named Media. If you want to fetch

all license types, do this:

my $licenses = $c->model(‘Media::LicenseType’);

Don’t be confused by having a model with the same name as one of the result-

sets you are fetching.

And in the root directory, add the following template as all_media.tt:

<table rules=”all”>
[% WHILE (media = media_rs.next) %]
 <tr>
 <td>[% media.name |html %]</td>
 <td>[% media.license.name |html %]</td>
 </tr>
[% END %]
</table>

Now when you visit your browser and enter http://localhost:3000/all_media, you see a table of
your media records and the names of their licenses.

This shows a couple of features of Template Toolkit that you haven’t seen yet. In Template Toolkit,
the condition for a WHILE loop often needs to be wrapped in parentheses to ensure that it parses cor-
rectly. You also show that you can call methods on your template objects. (Template Toolkit checks
if it’s a method and, if not, checks if the variable is a hash reference and then tries to fi nd a key
matching the same name.)

Using Catalyst Controllers

You could keep putting new actions in Rights::Controller::Root, but that would be hard to
maintain. Instead, the following steps show you how to create a new controller, specifi cally for
media.

c19.indd 646c19.indd 646 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/all_media

Using Catalyst to Build Apps ❘ 647

perl script/rights_create.pl controller Media

 1. The new Rights::Controller::Media module is basic:

package Rights::Controller::Media;
use Moose;
use namespace::autoclean;

BEGIN { extends ‘Catalyst::Controller’; }

sub index :Path :Args(0) {
 my ($self, $c) = @_;
 $c->response->body(‘Matched Rights::Controller::Media in Media.’);
}

__PACKAGE__->meta->make_immutable;

1;

 2. Delete the media() method from Rights::Controller::Root and make that the index()
method in Rights::Model::Media:

sub index :Path :Args(0) {
 my ($self, $c) = @_;

 my $media_rs = $c->model(‘Video::Media’)->search(
 {}, # we want all of them
 { order_by => { -desc => ‘name’ } },
);
 $c->stash->{template} = ‘media/all.tt’;
 $c->stash->{media_rs} = $media_rs;
}

 3. You now need to rename the template from all_media.tt to media/all.tt, so create the
root/media directory and move root/all_media.tt to root/media/all.tt. Now you
can see your table of all media when you visit http://localhost:3000/media. Awesome!
You’re starting to get some intelligent structure in your application.

 4. What about seeing more intelligent information? You want to see a full record, so change
root/media/all.tt to be the following:

<table rules=”all”>
[% WHILE (media = media_rs.next) %]
 <tr>
 <td>[%media.name|html%]</td>
 <td>[% media.license.name |html %]</td>
 </tr>
[% END %]
</table>

 5. You now have hyperlinks to URLs like /media/1, /media/2, and so on. They currently go
to a 404, so add the appropriate action in Rights::Controller::Media.

c19.indd 647c19.indd 647 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/media

648 ❘ CHAPTER 19 THE NEXT STEPS

sub media : Path : Args(1) {
 my ($self, $c, $id) = @_;

 my $media_rs = $c->model(‘Media::Media’)->search(
 $c->stash->{template} = ‘media/display.tt’;
 $c->stash->{media} = $media;
}

 6. By naming this media and specifying 1 argument with :Args(1), you can navigate to
http://localhost:3000/media/1 and try to fetch the media matching ID of 1. Now create
root/media/display.tt:

[% IF media %]
<table>
 <tr>
 <td>Name:</td>
 <td>[% media.name |html %]</td>
 </tr>
 <tr>
 <td>Location:</td>
 <td>[% media.location |html %]</td>
 </tr>
 <tr>
 <td>Name:</td>
 <td>[% media.source |html %]</td>
 </tr>
 <tr>
 <td>License:</td>
 <td>[% media.license.name |html %]</td>
 </tr>
</table>
[% ELSE %]
Media not found
[% END %]

In this example, if you didn’t have a matching ID, you’d see Media not found. If you do have a
matching ID, you see a table similar to:

Name: Anne Frank Stamp
Location: /data/anne_frank_stamp.jpg
Name: http://commons.wikimedia.org/wiki/File:Anne_Frank_stamp.jpg
License: Public Domain

Also, in Step 5 above, the code $c->model(‘Media::Media’) returns the resultset class. The argu-
ment is the model name, Media, followed by two colons and then the schema name, also Media. For
the Video schema, you’d have $c->model(‘Media::Video’).

CRUD: Create, Read, Update, and Delete

Viewing your records is great, but as time goes on, you probably get tired of using SQL to directly
create, read, update, and delete database records. That’s when you want a CRUD (Create, Read,
Update, and Delete) web interface. When done properly, a CRUD interface makes it easy to

c19.indd 648c19.indd 648 10/08/12 8:27 PM10/08/12 8:27 PM

http://localhost:3000/media/1
http://commons.wikimedia.org/wiki/File:Anne_Frank_stamp.jpg

Using Catalyst to Build Apps ❘ 649

manage your data via the web. The author could show you how to do all this directly, but you can
cheat because this is only an introduction to Catalyst.

Follow these steps to create an easy-to-use web interface for managing your database data.

 1. Enter Catalyst::Plugin::AutoCRUD. This useful module, by Oliver Gorwits, automati-
cally creates a CRUD interface for you. It’s confi gurable, but here’s only the basic usage.
It assumes that your database has a DBIx::Class schema or such a schema can be loaded
with DBIx::Class::Schema::Loader. (This increases your startup time, however.)

 2. In your Rights.pm module, change the use Catalyst import list to have AutoCRUD at the
end:

use Catalyst qw/
 -Debug
 Confi gLoader
 Static::Simple
 AutoCRUD
/;

 3. Add a display_name() method to each of your Rights::Schema::Result::Media,
Rights::Schema::Result::MediaType, and Rights::Schema::Result::License classes.
For each of these classes you can notice text near the bottom resembling the following:

Created by DBIx::Class::Schema::Loader v0.07024 @ 2012-06-10 17:22:36
DO NOT MODIFY THIS OR ANYTHING ABOVE! md5sum:OwY2SAMQanKKPXMMfMMpNg

NOTE The reason DBIx::Class::Schema::Loader adds this is because you

often want to create a DBIx::Class schema for your code, but then you want to

extend it with extra methods. However, if you add or remove tables, or change

existing ones, you might want to run DBIx::Class::Schema::Loader again,

but you don’t want to destroy the extra methods you’ve added. If you add your

methods below the DO NOT MODIFY THIS OR ANYTHING ABOVE line, when you

run DBIx::Class::Schema::Loader again, it changes only the schema code

above that line and your added code remains intact.

So for your display_name methods, add them after the DO NOT line.

 4. For Rights::Schema::Result::Media, add this:

sub display_name {
 my $self = shift;
 return $self->name;
}

c19.indd 649c19.indd 649 10/08/12 8:27 PM10/08/12 8:27 PM

650 ❘ CHAPTER 19 THE NEXT STEPS

 5. For Rights::Schema::Result::License, add this:

sub display_name {
 my $self = shift;
 return $self->name;
}

 6. For Rights::Schema::Result::MediaType, add this:

sub display_name {
 my $self = shift;
 return $self->media_type;
}

NOTE The display_name() methods will be used by Catalyst::Plugin::

AutoCRUD when it creates drop-down (<select/>) menus for tables that link to

one another.

 7. Restart your Catalyst server (or let it restart automatically if you started it with the
-r switch) and navigate to http:://localhost:3000/autocrud. You should see a page
similar to Figure 19-2.

FIGURE 19-2

You should see links for each of the three tables, Licenses, Media, and Media Types. Click the
License link, and you should be taken to http://localhost:3000/autocrud/media/licenses
where you’ll see a page similar to Figure 19-3. From here you can add new licenses, delete them,
modify the data, or fi lter them by value. (This is useful when you search through a lot of data.)

c19.indd 650c19.indd 650 10/08/12 8:27 PM10/08/12 8:27 PM

http:://localhost:3000/autocrud
http://localhost:3000/autocrud/media/licenses

Summary ❘ 651

Catalyst::Plugin::AutoCRUD does have a few limitations as described in the documentation.
However, it’s harder to imagine a faster and easier editing tool for your web-facing database than
this one.

S UMMARY

To give you an idea of where to go from here, this chapter explained what the entire book covers
and, more important, some of the things it doesn’t cover. Then you got a taste of a few advanced
concepts for Perl that, after you learn them, can give you a good start on a solid programming
career.

The DBIx::Class object-relational mapper, along with some of the strengths and weaknesses
of ORMs was covered. You saw how to use DBIx::Class::Schema::Loader to make generat-
ing your classes easy. See also the DBIx::Class tutorial at http://search.cpan.org/dist/
DBIx-Class-Tutorial/.

A bit of the (very) basic usage of Template Toolkit was also explained and you saw how to separate
the data you gather from its presentation. Be sure to read the Template Toolkit tutorial at http://
template-toolkit.org/docs/tutorial/.

FIGURE 19-3

WARNING Catalyst::Plugin::AutoCRUD is powerful, but it’s easy

to misconfi gure a server and possibly expose to the outside world an

 interface to destroy your data! Your author recommends (and the author of

Catalyst::Plugin::AutoCRUD has stated his agreement) that if you use

this module, that you consider doing so on a separate web server (or a

separate application within a web server) with much tighter security than your

normal application interface. This isn’t strictly necessary, but it makes it much

easier to ensure that an accidental server misconfi guration doesn’t expose this

interface to the outside world.

c19.indd 651c19.indd 651 10/08/12 8:27 PM10/08/12 8:27 PM

http://search.cpan.org/dist/DBIx-Class-Tutorial/
http://search.cpan.org/dist/DBIx-Class-Tutorial/
http://template-toolkit.org/docs/tutorial/
http://template-toolkit.org/docs/tutorial/

652 ❘ CHAPTER 19 THE NEXT STEPS

Finally, you took a nice tour of Catalyst, the most popular web framework for Perl. The Model-
View-Controller pattern was explained and you saw examples of implementing each component in
Catalyst. The section fi nished by showing you a quick method for generating an interface for man-
aging your database data via the web. Read the Catalyst Manual (http://search.cpan.org/dist/
Catalyst-Manual/) for more information.

By now you should have a solid grasp of Perl and be ready to go out there and get a great job!

EXERCISES

 1. Briefl y describe an object-relational mapper and why you might want to use one.

 2. Using Google Translate (http://translate.google.com/) or your own knowledge of a foreign

language, modify listing_19_2_letter.pl to include a new language. You might want to check

DateTime::Locale to see if it supports the language you want to translate to.

 3. This exercise requires a moderate amount of work. You can think of it as the “fi nal exam” for

this book. You can probably do everything in this exercise merely by having followed this

book, but there are a couple of places where reading the documentation may be helpful.

This exercise brings together your knowledge of Perl, Catalyst, DBIx::Class, Templates,

HTML, and SQL. Despite that, it’s actually a straightforward task. Be sure to read your resulting

Rights::Schema::Result:: classes to know what methods are available.

 You now have a small website for managing rights data, but maybe you want to do some-

thing with it? Like fi ghting DMCA notices when someone tries to take your videos off Vimeo or

YouTube? For this fi nal exercise of the book, you need to add the following table to your rights

database:

CREATE TABLE IF NOT EXISTS videos (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 url VARCHAR(1000) NOT NULL,
 released DATETIME NULL
);

 Because one video might have many media items and one media item might be in several vid-

eos, you need to create a video_to_media lookup table. It looks like this:

CREATE TABLE IF NOT EXISTS video_to_media (
 id INTEGER PRIMARY KEY,
 video_id INTEGER NOT NULL,
 media_id INTEGER NOT NULL,
 FOREIGN KEY (video_id) REFERENCES videos(id)
 FOREIGN KEY (media_id) REFERENCES media(id)
);

 Add a Rights::Schema::Result::Video class and a Rights::Schema::Result::

MediaToVideo class to your Rights Catalyst application. You also need to update your

c19.indd 652c19.indd 652 10/08/12 8:27 PM10/08/12 8:27 PM

http://search.cpan.org/dist/Catalyst-Manual/
http://search.cpan.org/dist/Catalyst-Manual/
http://translate.google.com/

Summary ❘ 653

Rights::Schema::Result::Media class because each media can refer to the video_to_media

table. Finally, create new controllers and templates to display all videos and individual videos.

 As a tip to help you get around an issue with how Template Toolkit works, if you want to list all

the media associated with a video, you might write the following code:

 [% video_to_medias_rs = video.video_to_medias %]
 <td>Media</td>
 [% IF video_to_medias_rs.count %]
 <td>

 [% WHILE (v2m = video_to_medias_rs.next) %]

 [%v2m.media.name%]

 [% END %]

 </td>
 [% ELSE %]
 <td>No media found</td>
 [% END %]

 This looks perfectly reasonable, but no matter how many video_to_medias (the name is

awkward, but that’s how DBIx::Class::Schema::Loader creates it) results are found, you

always get the No media found message displayed. This is because Template Toolkit always

calls methods in list context, and for the video_to_medias resultset method, this returns a

list of results to the video_to_medias_rs variable instead of a single resultset object. The

DBIx::Class::Manual::FAQ explains the workaround. Every resultset method created for

a result relationship can also be called by appending an _rs to the end of it. If you do that, it

ignores context and always returns a single resultset. Thus, the fi rst line of the preceding tem-

plate code should be changed to:

 [% video_to_medias_rs = video.video_to_medias_rs %]

 By making this change, your template code can work correctly.

c19.indd 653c19.indd 653 10/08/12 8:27 PM10/08/12 8:27 PM

654 ❘ CHAPTER 19 THE NEXT STEPS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC DESCRIPTION

ORM An object-relational mapper. An easy way to use data-

base records as objects.

DBIx::Class One of the most popular ORMs for Perl.

DBIx::Class::Schema::Loader An easy way to create a DBIx::Class schema.

Template Toolkit A powerful, complete templating system for Perl.

Catalyst A web framework for Perl, designed to make building

websites easy.

MVC The Model, View, Controller pattern for organizing

websites.

Model Where your data and business rules are managed.

View The external interface to your application. Often an HTML

page.

Controller The code that connects your model and view together.

Catalyst::Plugin::AutoCRUD An easy way to create a web interface to your database.

c19.indd 654c19.indd 654 10/08/12 8:27 PM10/08/12 8:27 PM

Answers to Exercises

CHAPTER 3 ANSWERS TO EXERCISES

Exercise 1 Solution

The major difference between strict and warnings is that strict prevents your program
from running when it encounters some unsafe code, such as using an undeclared variable.

In contrast, warnings do not prevent your program from running but instead emit
“warnings” when your code exhibits behavior that may be problematic, such as when you
attempt to use an uninitialized variable or try to add a number to a string.

Exercise 2 Solution

The following is an example (code fi le exercise_3_2a_array.pl) to create an array with
the values Andrew, Andy, and Kaufman and writing a program that prints Andrew “Andy”
Kaufman:

use strict;
use warnings;
use diagnostics;

my @name = qw(Andrew Andy Kaufman);
print qq{$name[0] “$name[1]” $name[2]\n};

Another way to accomplish this is as follows (code fi le exercise_3_2b_array.pl):

use strict;
use warnings;
use diagnostics;

my @name = (‘Andrew’, ‘Andy’, ‘Kaufman’);
my ($first, $nick, $last) = @name;
print qq{$first “$nick” $last\n};

APPENDIX

bapp01.indd 655bapp01.indd 655 09/08/12 9:02 AM09/08/12 9:02 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

656 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 3 Solution

The following code (code fi le exercise_3_3_fruit.pl) is an example of how to create a hash with
the keys being names of fruits and the values being their normal color, and then printing every key/
value pair as a separate line similar to bananas are yellow:

use strict;
use warnings;
use diagnostics;

my %color_for = (
 bananas => ‘yellow’,
 apples => ‘red’,
 oranges => ‘orange’,
);
for my $fruit (keys %color_for) {
 my $color = $color_for{$fruit};
 print “$fruit are $color\n”;
}

CHAPTER 4 ANSWERS TO EXERCISES

Exercise 1 Solution

$second, $fourth, and $sixth all evaluate to true. The $fourth variable is a bit of a trick. Even
though it looks like 0.0 because it’s a string, it evaluates as true because all nonempty strings
evaluate as true. To make it evaluate as false, add zero to it:

0+$fourth;

That forces Perl to consider it a number.

Exercise 2 Solution

One way to create the @celsius array is as follows:

my @fahrenheit = (0, 32, 65, 80, 212);
my @celsius = map { ($_ - 32) * 5/9 } @fahrenheit;

Exercise 3 Solution

The @upper array can be created with:

my @ids = qw(AAA bbb Ccc ddD EEE);
my @upper = grep { $_ eq uc($_) } @ids;

656 ❘ APPENDIX

bapp01.indd 656bapp01.indd 656 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 5 Answers to Exercises ❘ 657

Exercise 4 Solution

$answer1 contains 28 because the multiplication operator has a higher precedence than addition.

$answer2 initially contains 6 because subtraction is left associative, but after the autoincrement in
the third line, it contains 7.

$answer3 contains 4 because $answer2 will be subtracted from 10 before it is incremented. If the ++
autoincrement operator were before the $answer2 (10 - ++$answer2), it would have contained 3.

If the autoincrement operator confused you, that’s okay. That’s why your author often recommends
that those lines be rewritten as follows:

my $answer2 = 9 - 2 - 1;
my $answer3 = 10 - $answer2;
$answer2++;

By having autoincrement and autodecrement operators in their own statements, the code is often
easier to understand.

CHAPTER 5 ANSWERS TO EXERCISES

Exercise 1 Solution

The code prints 12345678910. If you want those numbers on separate lines, you can do this:

print “$_\n” for 1..10;

Exercise 2 Solution

Remember that the ternary operator requires both the “if true” and “if false” conditions, but you’re
missing that for the second ternary operator.

my $temperature = 22;
print $temperature < 15? “Too cold!\n”
 : $temperature > 35? “Too hot!\n”
 : “Just right!\n”;

Exercise 3 Solution

As usual, there are many ways to do this. If you get the correct answer, your code still probably
looks different from this answer. Here’s one way.

my @numbers = qw< 3 9 0 7 8 >;

my $total = 0;
$total += $_ foreach @numbers;

bapp01.indd 657bapp01.indd 657 09/08/12 9:02 AM09/08/12 9:02 AM

658 ❘ APPENDIX A ANSWERS TO EXERCISES

my $average = $total / @numbers;

print “The numbers are: @numbers\n”;
print “The average is $average\n”;

Remember that an array in scalar context returns the number of elements in the array, so $total /
@numbers evaluates to 27 / 5.

Exercise 4 Solution

The logic error is in the loop terminating condition of $i <= $num_elements. This is called an
off by one error because the fi nal value of $i is one greater than the fi nal index in @array. This is
a common problem with C-style for loops. Changing the loop to $i < $num_elements fi xes the
problem.

The programmers see the error at run time by adding a use warnings statement at the beginning of
their program. You get a warning similar to the following:

Use of uninitialized value within @array in concatenation (.) or string

However, the previous code is much simpler if you use a Perl-style for/foreach loop. (Remember
that they’re exactly the same thing,)

my @array = qw(fee fie foe fum);
for my $word (@array) {
 print “$word\n”;
}

The Perl-style loop not only avoids off-by-one errors, but the code executes faster, too.

Exercise 5 Solution

For the add your code here bit, you might write something like the following:

foreach my $stat (keys %stat_for) {
 my $random = 2 + int(rand(6)) + int(rand(6));
 $stat_for{$stat} = $random;
}

Exercise 6 Solution

The full code is:

my %stat_for = (
 strength => undef,
 intelligence => undef,
 dexterity => undef,
);

foreach my $stat (keys %stat_for) {

bapp01.indd 658bapp01.indd 658 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 6 Answers to Exercises ❘ 659

 my $random = 2 + int(rand(6)) + int(rand(6));
 redo if $random < 6;
 $stat_for{$stat} = $random;
}

print <<”END_CHARACTER”;
Strength: $stat_for{strength}
Intelligence: $stat_for{intelligence}
Dexterity: $stat_for{dexterity}
END_CHARACTER

CHAPTER 6 ANSWERS TO EXERCISES

NOTE Many exercises have multiple possible answers. You see one way to

arrive at a valid answer. Don’t worry too much if you’ve picked a diff erent way,

but make sure you understand why the author’s answers work.

Exercise 1 Solution

use strict;
use warnings;
use Data::Dumper;

my @fi rst = 1 .. 5;
my $aref = \@fi rst;
my @second = @$aref;

print Dumper(\@fi rst, \@second);

In the preceding example, the .. operator binds more tightly than the = operator, allowing you to
create an assign the list without using grouping parentheses. Alternatively, you could write (remem-
ber it’s the comma which creates the list):

my @fi rst = (1, 2, 3, 4, 5);

Exercise 2 Solution

The following code is fairly typical for Perl. Don’t worry if you wrote it a different way so long as
you arrived at the same numbers. However, pay particular attention to how to calculate the sum of
the sales. That technique is fairly common in Perl.

my $sales = {
 monday => { jim => [2], mary => [1, 3, 7] },
 tuesday => { jim => [3, 8], mary => [5, 5] },
 wednesday => { jim => [7, 0], mary => [3] },
 thursday => { jim => [4], mary => [5, 7, 2, 5, 2] },

bapp01.indd 659bapp01.indd 659 09/08/12 9:02 AM09/08/12 9:02 AM

660 ❘ APPENDIX A ANSWERS TO EXERCISES

 friday => { jim => [1, 1, 5], mary => [2] },
};
my $friday = $sales->{friday}{jim};
my $num_sales = @$friday;
my $total = 0;
$total += $_ foreach @$friday;
print “Jim had $num_sales sales, for a total of $total dollars\n”;

Exercise 3 Solution

This one may have been tricky. You may have noticed that the qw operator uses curly braces, which
are the same braces used with hash keys. However, this is not a bug. Perl is smart enough to know
what you mean here.

my $score_for = {
 jim => 89,
 mary => 73,
 alice => 100,
 bob => 83.
};

first way
my ($jim, $mary) = @$score_for{ qw{jim mary} };
print “$jim $mary\n”;

second way
$jim = $score_for->{jim};
$mary = $score_for->{mary};
print “$jim $mary\n”;

The real problem is writing %$score_for{ ... }. Remember, when writing a slice, you
use the @ symbol to show that you want to get a list of variables. That’s one way to fi x the issue.

The second way is to forget about using a slice and assigning the variables individually. Many
programmers fi nd this solution cleaner.

CHAPTER 7 ANSWERS TO EXERCISES

Exercise 1 Solution

The following code prints 6.4, the average of the numbers passed in:

sub average {
 my @numbers = @_;
 my $total = 0;
 $total += $_ foreach @numbers;
 return $total / @numbers;
}
print average(qw< 1 5 18 3 5>);

bapp01.indd 660bapp01.indd 660 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 8 Answers to Exercises ❘ 661

Exercise 2 Solution

use Scalar::Util ‘looks_like_number’;
use Carp ‘croak’;
sub average {
 my @numbers = @_;
 my $total = 0;
 foreach my $number (@numbers) {
 if (not looks_like_number($number)) {
 croak “$number doesn’t look like a number”;
 }
 else {
 $total += $number;
 }
 }
 return $total / @numbers;
}
print average(qw< 1 5 18 bob 3 5>);

Exercise 3 Solution

sub make_multiplier {
 my $number = shift;
 return sub { return shift(@_) * $number };
}
my $times_seven = make_multiplier(7);
my $times_five = make_multiplier(5);
print 21 == $times_seven->(3) ? “yes\n” : “no\n”;
print 20 == $times_five->(4) ? “yes\n” : “no\n”;

Exercise 4 Solution

sub sum {
 return 0 unless @_;
 my ($head, @tail) = @_;
 return $head + sum(@tail);
}
print sum(1, 93, 3, 5);

CHAPTER 8 ANSWERS TO EXERCISES

Exercise 1 Solution

my $social_security_re = qr/\b(\d{3})-(\d{2})-(\d{4})\b/;
or
my $social_security_re = qr/\b(\d\d\d)-(\d\d)-(\d\d\d\d)\b/;

bapp01.indd 661bapp01.indd 661 09/08/12 9:02 AM09/08/12 9:02 AM

662 ❘ APPENDIX A ANSWERS TO EXERCISES

There are, of course, other solutions.

Use word boundaries at the beginning and end of the regex. If you don’t, you could easily have
something like this matching:

44444444444444-44-44444444444444

You don’t want that, obviously.

Exercise 2 Solution

Part of the art of writing regular expressions is knowing your data. A regular expression is often
crafted for a particular quick-and-dirty job. In this case, you can assume usernames are only alpha-
betical characters and user numbers are fi ve-digit numbers.

use strict;
use warnings;
use Data::Dumper;
my $employee_numbers = <<’END_EMPLOYEES’;
alice: 48472
bob:34582
we need to fire charlie
 charlie : 45824
denise is a new hire
denise : 34553
END_EMPLOYEES
my %employee_number_for;
while ($employee_numbers =~ /^ \s* (\w+) \s* : \s* (\d{5}) \s* $/gmx) {
 $employee_number_for{$1} = $2;
}
print Dumper \%employee_number_for;

This example looked easy, but the /g was needed to match all the employees, and the /m (multiline)
is used to make the ^ and $ anchors treat each line of text as a separate string. That prints out the
following:

$VAR1 = {
 ‘alice’ => ‘48472’,
 ‘denise’ => ‘34553’,
 ‘charlie’ => ‘45824’,
 ‘bob’ => ‘34582’
 };

Exercise 3 Solution

my $text = <<’END’;
We hired Mark in 2011-02-03. He’s working on product
1034-34-345A. He is expected to finish the work on or
before 2012-12-12 because our idiot CEO thinks the world
will end.
END

bapp01.indd 662bapp01.indd 662 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 9 Answers to Exercises ❘ 663

my %month_for = (
 ‘01’ => ‘January’,
 ‘02’ => ‘February’,
 ‘03’ => ‘March’,
 ‘04’ => ‘April’,
 ‘05’ => ‘May’,
 ‘06’ => ‘June’,
 ‘07’ => ‘July’,
 ‘08’ => ‘August’,
 ‘09’ => ‘September’,
 ‘10’ => ‘October’,
 ‘11’ => ‘November’,
 ‘12’ => ‘December’,
);
$text =~ s{\b(\d\d\d\d)-(\d\d)-(\d\d)\b}
 {sprintf “$month_for{$2} %d, %d”, $3, $1}ge;
print $text;

And that will print out the following:

 We hired Mark in February 3, 2011. He’s working on product
 1034-34-345A. He is expected to finish the work on or
 before December 12, 2012 because our idiot CEO thinks the world
 will end.

There’s nothing tricky with this one, but we had to quote the hash keys because otherwise Perl
would interpret those as octal numbers (see Chapter 4).

The sprintf() formats are also straightforward, In reality, using a module such as DateTime
would help you validate that these are valid dates.

CHAPTER 9 ANSWERS TO EXERCISES

Exercise 1 Solution

use strict;
use warnings;
print while <>;

Exercise 2 Solution

use strict;
use warnings;
while (<>) {
 next if !/\S/; # skip whitespace only lines
 next if /^\s*#/; # skip comments
 print;
}

bapp01.indd 663bapp01.indd 663 09/08/12 9:02 AM09/08/12 9:02 AM

664 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 3 Solution

use strict;
use warnings;
use Encode ‘decode’;

binmode STDOUT, ‘:encoding(UTF-8)’;

for my $number (@ARGV) {
 $number = decode(‘UTF-8’, $number);
 print chr($number);
}

After you do this correctly and have a Kannada font installed, it prints this following:

For a somewhat cleaner bit of code, you can write this:

use strict;
use warnings;
use utf8::all;
print chr for @ARGV;

Exercise 4 Solution

use strict;
use warnings;
use Encode ‘decode’;

binmode STDOUT, ‘:encoding(UTF-8)’;

foreach my $word (@ARGV) {
 $word = decode(‘UTF-8’, $word);
 my @chars = split // => $word;
 foreach my $char (@chars) {
 $char = ord $char;
 print “$char “;
 }
 print “\n”;
}

Or more simply:

use strict;
use warnings;
use utf8::all;

foreach my $word (@ARGV) {
 my @chars = split // => $word;
 foreach my $char (@chars) {

bapp01.indd 664bapp01.indd 664 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 10 Answers to Exercises ❘ 665

 $char = ord $char;
 print “$char “;
 }
 print “\n”;
}

Exercise 5 Solution

use strict;
use warnings;
use Encode ‘decode’;

binmode STDOUT, ‘:encoding(UTF-8)’;

foreach my $word (@ARGV) {
 $word = decode(‘UTF-8’, $word);
 my @chars = split // => $word;
 foreach my $char (@chars) {
 $char = ord $char;
 print “$char “;
 }
 print “\n”;
}
Or more simply
use strict;
use warnings;
use utf8::all;

foreach my $word (@ARGV) {
 my @chars = split // => $word;
 foreach my $char (@chars) {
 $char = ord $char;
 print “$char “;
 }
 print “\n”;
}

To print the Unicode code points, change the $char = ord $char line to this:

$char = “U+” . uc sprintf “%04x”, ord $char;

CHAPTER 10 ANSWERS TO EXERCISES

Exercise 1 Solution

See hex() and oct() in Chapter 4 if you need a refresher on the 0x... syntax. The following code
is merely the hexadecimal representation of numbers:

my @numbers = (0x23, 0xAA, 0xaa, 0x01, 0xfB);

bapp01.indd 665bapp01.indd 665 09/08/12 9:02 AM09/08/12 9:02 AM

666 ❘ APPENDIX A ANSWERS TO EXERCISES

So a descending numeric sort is just:

my @sorted = sort { $b <=> $a } @numbers;
print join ‘, ‘ => @sorted;

And that prints:

251, 170, 170, 35, 1

Of course, you may not want to print the decimal values when the original numbers were in
hexadecimal.

my @numbers = (0x23, 0xAA, 0xaa, 0x01, 0xfB);
my @sorted = sort { $b <=> $a } @numbers;
print join ‘, ‘ => map { sprintf “0x%X”, $_ } @sorted;

And that prints:

0xFB, 0xAA, 0xAA, 0x23, 0x1

Exercise 2 Solution

The BLOCK form looks like this:

my @numbers = (28, 49, 1000, 4, 25, 49, 529);
my @squares = sort { $a <=> $b }
 grep { int(sqrt($_)) == sqrt($_) } @numbers;
print join ‘, ‘ => @squares;

The grep is taking the integer value of the square root and comparing it against the square root.
For the number 9, you get 3 == 3 and that’s a perfect square. However, the square root of 1000 is
reduced to something like 31.6227766016838 == 31 and that is clearly not true, so 1000 is not a
perfect square.

The EXPRESSION form looks like this:

my @squares = sort { $a <=> $b }
 grep int(sqrt($_)) == sqrt($_), @numbers;

It can also be written like this:

my @squares = sort { $a <=> $b }
 grep(int(sqrt($_)) == sqrt($_), @numbers_;

What happens if one of the values in the @numbers array is actually the string Get a job, hippy!?
How would this change your code?

You can handle this in several ways of handling this, but one way is to realize that perfect squares
must be positive integers, so the following would do the trick:

bapp01.indd 666bapp01.indd 666 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 10 Answers to Exercises ❘ 667

my @squares = sort { $a <=> $b }
 grep { /^[0-9]+$/ && (int(sqrt($_)) == sqrt($_)) } @numbers;

In other words, use the regular expression /^[0-9]+$/ to guarantee that you have only digits.

Exercise 3 Solution

One solution follows:

my %seen;
my @unique = grep { not $seen{$_}++ } @list;

This is a moderately common idiom in Perl. (Although many people just use the List::MoreUtils
uniq function.) Here’s how it works.

The fi rst time that bob is encountered in grep, you have this:

not $seen{‘bob’}++

You know that $seen{‘bob’} must be false the fi rst time it’s encountered because there is no entry
in the %seen hash, and it evaluates as this:

not undef

And that evaluates as true; allow grep to say “bob’s OK and we’ll pass him along.” However,
the �� autoincrement operator kicks in after Perl has returned the value. It sees the undef value,
treats it as 0 (zero) and adds 1 to it.

The second time that bob is encountered in the grep, $seen{‘bob’} has the value of 1 and not 1 is
0 (zero) and that evaluates as false. Thus, grep cannot return any values after they are seen for the
fi rst time.

Exercise 4 Solution

The map and sort looks like this:

my @names = map { “$_->{first_name} $_->{last_name}” }
 sort { $a->{last_name} cmp $b->{last_name} }
 grep { $_->{years} > 1 }
 @employees;

Unlike other examples, use all of sort, map, and grep. The grep fi lters the list before the sort
because there is no point in sorting values that you will throw away (particularly if the list you sort
is large). The sort, of course, comes before the map because after the map you no longer have your
data structure, and it would be harder to sort on that last name.

There comes a time when you, as a Perl developer, will feel comfortable with these techniques.
Here’s how it might be rewritten with a for loop. Use a sort subroutine to make the sort clearer.

bapp01.indd 667bapp01.indd 667 09/08/12 9:02 AM09/08/12 9:02 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

668 ❘ APPENDIX A ANSWERS TO EXERCISES

sub by_last_name { $a->{last_name} cmp $b->{last_name} }
my @names;
foreach my $employee (sort by_last_name @employees) {
 next if $employee->{years} <= 1;
 push @names, “$employee->{first_name} $employee->{last_name}”;
}

It’s entirely up to you (and the circumstances of your code) which method you fi nd cleaner and
easier to maintain.

CHAPTER 11 ANSWERS TO EXERCISES

Exercise 1 Solution

One way of writing this package would be:

package Convert::Distance::Metric;

use strict;
use warnings;

our $VERSION = ‘0.01’;

use Exporter ‘import’;

our @EXPORT_OK = qw(
 kilometers_to_meters
 meters_to_kilometers
);
our %EXPORT_TAGS = (all => \@EXPORT_OK);
use constant METERS_PER_KILOMETER => 1000;

sub meters_to_kilometers {
 my $meters = shift;
 return $meters / METERS_PER_KILOMETER;
}

sub kilometers_to_meters {
 my $kilometers = shift;
 return $kilometers * METERS_PER_KILOMETER;
}

1;

Don’t forget that trailing 1!

Exercise 2 Solution

When you have added Convert::Distance::Metric, you should see a fi le layout like this in your
lib/ directory:

bapp01.indd 668bapp01.indd 668 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 11 Answers to Exercises ❘ 669

lib/
| Convert/
| | Distance/
| | |--Imperial.pm
| | |--Metric.pm

Your MANIFEST should now look like this:

Changes
lib/Convert/Distance/Imperial.pm
lib/Convert/Distance/Metric.pm
Makefile.PL
MANIFEST This list of files
README
t/00-load.t
t/manifest.t
t/pod-coverage.t
t/pod.t

If you do not include lib/Convert/Distance/Metric.pm in your manifest, it will not be included
in the distribution when you type make dist.

Exercise 3 Solution

For simplicity’s sake, we’re going to add the POD after a fi nal __END__ literal.

__END__

=head1 NAME

Convert::Distance::Metric - Convert kilometers to meters and back

=head1 SYNOPSIS

 use Convert::Distance::Metric “:all”;
 print kilometers_to_meters(7);
 print meters_to_kilometers(3800);

=head1 DESCRIPTION

This is a simple module to convert kilometers to meters and
back. It’s mainly here to show how modules are built and
documented.

=head1 EXPORT

The following functions may be exported on demand. You can
export all of them with:

 use Convert::Distance::Metric ‘:all’;

=over 4

bapp01.indd 669bapp01.indd 669 09/08/12 9:02 AM09/08/12 9:02 AM

670 ❘ APPENDIX A ANSWERS TO EXERCISES

=item * C<kilometers_to_meters>

=item * C<meters_to_kilometers>

=back

=head1 FUNCTIONS

=head2 C<kilometers_to_meters>

 my $meters = kilometers_to_meters($kilometers);

This function accepts a number representing kilometers and
returns the number of meters in that number of kilometers.

=head2 C<meters_to_kilometers>

 my $kilometers = meters_to_kilometers($meters);

This function accepts a number representing meters and returns
the number of kilometers in that number of meters.

=head1 BUGS

None known. Report bugs via e-mail to C<me@example.com>.

=head1 SEE ALSO

See the L<Convert::Distance::Imperial> modules for imperial
conversions.

=head1 AUTHOR

Curtis “Ovid” Poe C<ovid@cpan.org>

=head1 LICENSE

Copyright 2012 Curtis “Ovid” Poe.

This program is free software; you can redistribute it and/or
modify it under the terms of either: the GNU General Public
License as published by the Free Software Foundation; or the Artistic License. See
http://dev.perl.org/licenses/ for more
information.

Exercise 4 Solution

use strict;
use warnings;
use lib ‘lib’;
use Convert::Distance::Metric “:all”;
my $kilometers = 3.5;
my $meters = kilometers_to_meters($kilometers);

bapp01.indd 670bapp01.indd 670 09/08/12 9:02 AM09/08/12 9:02 AM

http://dev.perl.org/licenses/
mailto:ovid@cpan.org

Chapter 11 Answers to Exercises ❘ 671

print “There are $meters meters in $kilometers kilometers\n”;
$kilometers = meters_to_kilometers($meters);
print “There are $kilometers kilometers in $meters meters\n”;

Running the program should print out:

There are 3500 meters in 3.5 kilometers
There are 3.5 kilometers in 3500 meters

Exercise 5 Solution (Option)

We haven’t covered testing yet, but the initial t/00-load.t looks something like this:

#!perl –T

use Test::More tests => 1;

BEGIN {
 use_ok(‘Convert::Distance::Imperial’)
 || print “Bail out!\n”;
}
diag(“Testing Convert::Distance::Imperial
 $Convert::Distance::Imperial::VERSION,
Perl $], $^X”);

After you add Convert::Distance::Metric, it should look like this:

#!perl -T

use Test::More tests => 2;

BEGIN {
 use_ok(‘Convert::Distance::Imperial’)
 || print “Bail out!\n”;
 use_ok(‘Convert::Distance::Metric’)
 || print “Bail out!\n”;
}
diag(“Testing Convert::Distance::Imperial
 $Convert::Distance::Imperial::VERSION,
Perl $], $^X”);

Testing this with the prove utility should produce output similar to the following:

$ prove -lv t/00-load.t
t/00-load.t ..
1..2
ok 1 - use Convert::Distance::Imperial;
ok 2 - use Convert::Distance::Metric;
Testing Convert::Distance::Imperial 0.01, Perl 5.010001,
/Users/ovid/perl5/perlbrew/perls/perl-5.10.1/bin/perl
ok
All tests successful.

bapp01.indd 671bapp01.indd 671 09/08/12 9:02 AM09/08/12 9:02 AM

672 ❘ APPENDIX A ANSWERS TO EXERCISES

Files=1, Tests=2, 0 wallclock secs (0.02 usr 0.01 sys +
 0.02 cusr 0.00 csys = 0.05 CPU)
Result: PASS

CHAPTER 12 ANSWERS TO EXERCISES

Exercise 1 Solution

One way of writing the Person class would be this:

package Person;

use strict;
use warnings;

use DateTime;
use Carp ‘croak’;

sub new {
 my ($class, $args) = @_;
 my $self = bless {} => $class;
 $self->_initialize($args);
 return $self;
}

sub _initialize {
 my ($self, $args) = @_;
 my %args = %$args;
 my $name = delete $args{name};
 my $birthdate = delete $args{birthdate};
 # must have at least one non-whitespace character
 unless ($name && $name =~ /\S/) {
 croak “Person name must be supplied”;
 }
 # trap the error if it’s not an object
 unless (eval { $birthdate->isa(‘DateTime’) }) {
 croak “Person birthdate must be a DateTime object”;
 }
 $self->{name} = $name;
 $self->{birthdate} = $birthdate;
}

sub name { $_[0]->{name} }
sub birthdate { $_[0]->{birthdate} }

sub age {
 my $self = shift;
 my $duration = DateTime->now - $self->birthdate;
 return $duration->years;
}

1;

bapp01.indd 672bapp01.indd 672 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 12 Answers to Exercises ❘ 673

The DateTime::Duration object that is created in the age() method has a years() method
(perldoc DateTime::Duration would have shown you this) and you can use that to fi gure out how
many years old the person is.

You can test this with the following code:

use DateTime;
my $person = Person->new({
 name => ‘Bertrand Russell’,
 birthdate => DateTime->new(
 year => 1872,
 month => 5,
 day => 18,
),
});
print $person->name, ‘ is ‘, $person->age, ‘ years old’;

That should print; although, the age will obviously vary depending on when you run this code.

Bertrand Russell is 139 years old

Exercise 2 Solution

The problem with this code is in the new() constructor. We have used the one-argument form of
bless and that automatically blesses the code into the current class. If you tried to subclass this
class and you did not override the new() method, the object would be blessed into the superclass,
not the subclass. Always use the two-argument form of bless().

Exercise 3 Solution

my $self = bless {}, $class;
package Customer;

use strict;
use warnings;

use Carp ‘croak’;
use base ‘Person’;

sub _initialize {
 my ($self, @args) = @_;
 $self->SUPER::_initialize(@args);
 if ($self->age < 18) {
 croak “Customers must be 18 years old or older”;
 }
}

1;

bapp01.indd 673bapp01.indd 673 09/08/12 9:02 AM09/08/12 9:02 AM

674 ❘ APPENDIX A ANSWERS TO EXERCISES

CHAPTER 13 ANSWERS TO EXERCISES

Exercise 1 Solution

package User;

use Moose;
use Digest::MD5 ‘md5_hex’;

use namespace::autoclean;

has username => (is => ‘ro’, isa => ‘Str’, required => 1);
has password => (
 is => ‘ro’,
 isa => ‘Str’,
 writer => ‘_set_password’,
);

sub BUILD {
 my $self = shift;
 $self->_set_password(md5_hex($self->password));
}

sub password_eq {
 my ($self, $password) = @_;
 $password = md5_hex($password);
 return $password eq $self->password;
}

__PACKAGE__->meta->make_immutable;

1;

You can test the preceding code with the following snippet:

my $user = User->new(
 username => ‘Ovid’,
 password => ‘Corinna’,
);
print $user->dump;
print “Yes” if $user->password_eq(‘Corinna’);

Exercise 2 Solution

Here’s one way to write the role:

package Does::ToHash;

use Moose::Role;

sub to_hash {

bapp01.indd 674bapp01.indd 674 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 13 Answers to Exercises ❘ 675

 my $self = shift;
 my @attributes = map { $_->name }
 $self->meta->get_all_attributes;
 my %hash;
 foreach my $attribute (@attributes) {
 my $value = $self->$attribute;
 next if ref $value;
 $hash{$attribute} = $value;
 }
 return \%hash;
}

1;

And extending the User class to provide the Does::ToHash method looks like this:

package User;

use Moose;
with ‘Does::ToHash’;

use Digest::MD5 ‘md5_hex’;
use namespace::autoclean;

has username => (is => ‘ro’, isa => ‘Str’, required => 1);
has password => (
 is => ‘ro’,
 isa => ‘Str’,
 writer => ‘_set_password’,
);

sub BUILD {
 my $self = shift;
 $self->_set_password(md5_hex($self->password));
}

sub password_eq {
 my ($self, $password) = @_;
 $password = md5_hex($password);
 return $password eq $self->password;
}

__PACKAGE__->meta->make_immutable;

1;

And if you run this test script:

use Data::Dumper;
my $user = User->new(
 username => ‘Ovid’,
 password => ‘Corinna’,
);
print Dumper($user->to_hash);

bapp01.indd 675bapp01.indd 675 09/08/12 9:02 AM09/08/12 9:02 AM

676 ❘ APPENDIX A ANSWERS TO EXERCISES

You get the following output:

$VAR1 = {
 ‘password’ => ‘5169c96db420b1157c60ba46a6d4b43c’,
 ‘username’ => ‘Ovid’
 };

CHAPTER 14 ANSWERS TO EXERCISES

Exercise 1 Solution

In looking at the test’s @want array, you will see that the unique elements should be returned in the
order they were found in the original list.

use Test::Most;
sub unique {
 my @array = @_;
 my %seen;
 my @unique;
 foreach my $element (@array) {
 push @unique => $element unless $seen{$element}++;
 }
 return @unique;
}
my @have = unique(2, 3, 5, 4, 3, 5, 7);
my @want = (2, 3, 5, 4, 7);
is_deeply \@have, \@want,
 ‘unique() should return unique() elements in order’;
done_testing;

And that prints out:

ok 1 - unique() should return unique() elements in order
1..1

Exercise 2 Solution

The original unique() function returned the elements in whatever order they were found in the
hash keys, making them effectively random. Thus, sorting elements should be enough.

is_deeply [sort @have], [sort @want],
 ‘unique() should return unique() elements in order’;

You don’t even need to sort them numerically so long as you use the same ordering behavior for
both the @have and @want arrays.

Exercise 3 Solution

There are several approaches here, but use Scalar::Util ‘looks_like_number’.

bapp01.indd 676bapp01.indd 676 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 14 Answers to Exercises ❘ 677

use Test::Most;
use Carp ‘croak’;
use Scalar::Util ‘looks_like_number’;
sub reciprocal {
 my $number = shift;
 unless (looks_like_number($number)) {
 croak(“Argument to reciprocal\(\) must be a number”);
 }
 unless ($number) {
 croak(“Illegal division by zero”);
 }
 return 1 / $number;
}
throws_ok { reciprocal([]) }
 qr/Argument to reciprocal\(\) must be a number/,
 ‘Passing non-numbers to reciprocal() should fail’;
diag reciprocal([]);
done_testing;

Exercise 4 Solution

This one is a tricky because we laid a trap for you. In the original TestsFor::TV::Episode,
we had the %default_attributes hardcoded into the test method. You need to rewrite
TestsFor::TV::Episode. Specifi cally, you’ll want to pull out the hardcoded attributes into a
method you can easily override.

package TestsFor::TV::Episode;
use Test::Most;
use base ‘TestsFor’;
sub attributes : Tests(14) {
 my $test = shift;
 my %default_attributes = $test->default_attributes;
 my $class = $test->class_to_test;
 my $episode = $class->new(%default_attributes);
 while (my ($attribute, $value) = each %default_attributes) {
 can_ok $episode, $attribute;
 is $episode->$attribute, $value,
 “The value for ‘$attribute’ should be correct”;
 }
 my %attributes = %default_attributes; # copy ‘em
 foreach my $attribute (qw/season episode_number/) {
 $attributes{$attribute} = 0;
 throws_ok { $class->new(%attributes) }
 qr/Attribute \($attribute\) does not pass the type constraint/,
 “Setting the $attribute to a value less than zero should fail”;
 }
}
sub default_attributes {
 return (
 series => ‘Firefly’,
 director => ‘Marita Grabiak’,
 title => ‘Jaynestown’,
 genre => ‘awesome’,

bapp01.indd 677bapp01.indd 677 09/08/12 9:02 AM09/08/12 9:02 AM

678 ❘ APPENDIX A ANSWERS TO EXERCISES

 season => 1,
 episode_number => 7,
);
}
1;

When that is done, writing the test for TestsFor::TV::Episode::Broadcast is simple:

package TestsFor::TV::Episode::Broadcast;
use Test::Most;
use DateTime;
use base ‘TestsFor::TV::Episode’;
sub default_attributes {
 my $test = shift;
 my %attributes = $test->SUPER::default_attributes;
 $attributes{broadcast_date} = DateTime->new(
 year => 2002,
 month => 10,
 day => 8,
);
 return %attributes;
}
sub attributes : Tests(+2) {
 my $test = shift;
 $test->SUPER::attributes;
}
1;

Obviously, you could easily add more tests to that, but this is a good start. Studying this example
carefully and understanding why it works can give you many insights into both testing and object-
oriented programming.

If you’ve coded all the examples from this chapter, a full run of your test suite should now look like
this:

% prove t
t/query.t ok
t/test_classes.t .. ok
t/testit.t ok
All tests successful.
Files=3, Tests=59, 4 wallclock secs
Result: PASS

CHAPTER 15 ANSWERS TO EXERCISES

Exercise 1 Solution

First, look at the templates:

In the templates/characters.tt, add the following select group after the Profession. This
enables you to choose your education.

bapp01.indd 678bapp01.indd 678 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 15 Answers to Exercises ❘ 679

<tr>
 <td>Education</td>
 <td>
 <select name=”education”>
 <option value=”combat”>Combat</option>
 <option value=”medical”>Medical</option>
 <option value=”engineering”>Engineering</option>
 </select>
 </td>
</tr>

In templates/character_display.tt, add the following line after Profession. It enables the cho-
sen education to display.

<tr><td>Education</td><td>[% character.education %]</td></tr>

The main work is in characters.psgi, but it’s fairly easy.

In the generate_character() subroutine, the %adjustments_for hash now looks like this:

my %adjustments_for = (
 profession => {
 programmer => {
 strength => -3,
 intelligence => 8,
 health => -2,
 },
 pilot => { intelligence => 3 },
 redshirt => { strength => 5 }
 },
 birthplace => {
 earth => {
 strength => 2,
 intelligence => 0,
 health => -2,
 },
 mars => { strength => -5, health => 2 },
 vat => { intelligence => 2, health => -2 }
 },
 education => {
 combat => { strength => 2 },
 medical => { health => 2 },
 engineering => { intelligence => 2 }
 },
);

The %label_for hash now looks like this:

my %label_for = (
 profession => {
 pilot => “Starship Pilot”,
 programmer => “Programmer”,
 redshirt => “Doomed”,
 },

bapp01.indd 679bapp01.indd 679 09/08/12 9:02 AM09/08/12 9:02 AM

680 ❘ APPENDIX A ANSWERS TO EXERCISES

 education => {
 combat => “Combat”,
 medical => “Medical”,
 engineering => “Engineering”,
 },
 birthplace => {
 earth => “Earth”,
 mars => “Mars”,
 vat => “Vat 3-5LX”,
 },
);

Now you just need to add education to the list of attributes you iterate over:

 foreach my $attribute (qw/name education profession birthplace/) {
 # create character
 }

With that, run plackup characters.psgi and try it out.

Exercise 2 Solution

use strict;
use warnings;

use WWW::Mechanize;
use HTML::TableExtract;
use List::Util qw/min max sum/;

my $url = ‘http://localhost:5000/’;
my $mech = WWW::Mechanize->new;

my %stats_for = map { $_ => [] } qw/Strength Intelligence Health/;

for (1 .. 100) {
 $mech->get($url);
 $mech->follow_link(text_regex => qr/Please click here/);
 $mech->submit_form(
 form_number => 1,
 fields => {
 name => ‘Bob’,
 profession => ‘programmer’,
 education => ‘engineering’,
 birthplace => ‘earth’,
 },
);

 my $te = HTML::TableExtract->new;
 $te->parse($mech->content);

 foreach my $ts ($te->tables) {
 foreach my $row ($ts->rows) {
 if (exists $stats_for{ $row->[0] }) {

bapp01.indd 680bapp01.indd 680 09/08/12 9:02 AM09/08/12 9:02 AM

http://localhost:5000/

Chapter 16 Answers to Exercises ❘ 681

 push @{ $stats_for{ $row->[0] } } => $row->[1];
 }
 }
 }
}

while (my ($stat, $values) = each %stats_for) {
 my $min = min @$values;
 my $max = max @$values;
 my $avg = sum(@$values)/scalar @$values;
 print “$stat: Min ($min) Max ($max) Average ($avg)\n”;
}

Running this on your author’s computer takes just more than a second. Running this over the web
would likely take much longer. Here is the output from two sample runs:

Health: Min (2) Max (23) Average (12.72)
Strength: Min (5) Max (26) Average (15.32)
Intelligence: Min (15) Max (39) Average (26.32)

Health: Min (0) Max (24) Average (12.12)
Strength: Min (4) Max (26) Average (14.79)
Intelligence: Min (17) Max (38) Average (26.29)

It appears that in the second run, you generated a dead programmer. Oops.

CHAPTER 16 ANSWERS TO EXERCISES

Exercise 1 Solution

When you call prepare(), you must always call execute() before fetching results:

my $sth = $dbh->prepare(“SELECT id, name FROM customers”);
$sth->execute;
while (my @row = $sth->fetchrow_array) {
 print “ID: $row[0] Name: $row[1]\n”;
}

If you fi nd this too verbose and you don’t have huge amounts of data, you can shorten this with:

my $customers = $dbh->selectall_arrayref($sql);

Exercise 2 Solution

This one is tricky and you can handle it in a few ways. If you were allowed to change the licenses
table, you could switch the names of the licenses. (That would be trickier if there were more data in
the licenses table.) Instead, you need to fetch all the associated IDs from both sets of data upfront
and then start a transaction before making the switch. Without a transaction, if the code fails

bapp01.indd 681bapp01.indd 681 09/08/12 9:02 AM09/08/12 9:02 AM

682 ❘ APPENDIX A ANSWERS TO EXERCISES

partway through (for example, if you lose the database connection), you could have serious data
corruption.

You learned enough in this chapter to make this work without consulting the docs further, but you
can take a quick shortcut.

This code fetches the Public Domain id and the Attribution BY CC ID. Then it fetches the
media ids in separate array references, one set for the Public Domain media and one set for the
Attribution BY CC media.

When you have the data, create a try/catch block and update the license IDs to their new values.
(In other words, you effectively swap them.)

use strict;
use warnings;

use lib ‘lib’;
use MyDatabase ‘db_handle’;
use Try::Tiny;

my $pb_id = $dbh->selectall_arrayref(<<’END’);
 SELECT id
 FROM licenses
 WHERE name = ‘Public Domain’
END

if (@$pb_id > 1) {
 die “More than one Public Domain id found”;
}

my $cc_id = $dbh->selectall_arrayref(<<’END’);
 SELECT id
 FROM licenses
 WHERE name = ‘Attribution CC BY’
END

if (@$cc_id > 1) {
 die “More than one Attribution CC BY id found”;
}

my $sql = ‘SELECT id FROM media WHERE license_id = ?’;
my $pb_ids = $dbh->selectcol_arrayref($sql, undef, $pb_id->[0]);
my $cc_ids = $dbh->selectcol_arrayref($sql, undef, $cc_id->[0]);

now that we have all of our relevant data, time to move on:
if (@$pb_ids && @$cc_ids) {
 $dbh->begin_work;
 try {

 # here, we replace every id with a question mark and
 # then join the question marks.
 my $placeholders = join ‘,’, map { ‘?’ } @$pb_ids;
 my $rows_affected = $dbh->do(<<”END”, undef, $cc_id, @$pb_ids);
 UPDATE media SET license_id = ? WHERE id IN ($placeholders)
END

bapp01.indd 682bapp01.indd 682 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 17 Answers to Exercises ❘ 683

 unless ($rows_affected == @$pb_ids) {
 my $expected = @$pb_ids;
 die “We should have changed $expected rows, not $rows_affected”;
 }
 $placeholders = join ‘,’, map { ‘?’ } @$cc_ids;
 $rows_affected = $dbh->do(<<”END”, undef, $pb_id, @$cc_ids);
 UPDATE media SET license_id = ? WHERE id IN ($placeholders)
END

 unless ($rows_affected == @$pb_ids) {
 my $expected = @$pb_ids;
 die “We should have changed $expected rows, not $rows_affected”;
 }

 # if we got to here, we swapped them safely
 $dbh->commit;
 }
 catch {
 $dbh->rollback;
 die $_;
 };
}

CHAPTER 17 ANSWERS TO EXERCISES

Exercise 1 Solution

You want to read the person’s birthday from STDIN. Then, you use DateTime::Format::Strptime
to parse that date into a DateTime object. Then, you can subtract that date from DateTime->now to
get a DateTime::Duration object and call the years() method on it to extract the number of years
since the birthday.

use strict;
use warnings;

use DateTime;
use DateTime::Format::Strptime;

my $datetime_formatter = DateTime::Format::Strptime->new(
 pattern => ‘%Y-%m-%d’,
 time_zone => ‘GMT’,
);

print “Enter your birthday in YYYY-MM-DD format: “;

my $birthday = <STDIN>;
chomp($birthday);

my $birthday_date = $datetime_formatter->parse_datetime($birthday)
 or die “Could not parse birthday: $birthday”;

my $duration = DateTime->now - $birthday_date;
printf “You are %d years old\n” => $duration->years;

bapp01.indd 683bapp01.indd 683 09/08/12 9:02 AM09/08/12 9:02 AM

684 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 2 Solution

You use Getopt::Long with --birthdate and --age_at command-line switches. If --birthdate
is not supplied, prompt the user from the command line. If --age_at is not supplied, assume today
as the end date. If the end date is before the starting date, you’ll die with a useful error message.

use strict;
use warnings;

use DateTime;
use Getopt::Long;
use DateTime::Format::Strptime;

my ($birthdate, $age_at);
GetOptions(
 ‘birthdate=s’ => \$birthdate,
 ‘age_at=s’ => \$age_at,
) or die “Could not parse options”;

my $name = join “ “ => @ARGV;
my $datetime_formatter = DateTime::Format::Strptime->new(
 pattern => ‘%Y-%m-%d’,
 time_zone => ‘GMT’,
);

unless ($birthdate) {
 print “Enter your birthday in YYYY-MM-DD format: “;
 $birthdate = <STDIN>;
 chomp($birthdate);
}

my $birthday_date = $datetime_formatter->parse_datetime($birthdate)
 or die “Could not parse birthday: $birthdate”;
my $end_date = DateTime->now;

if ($age_at) { # overwrite $end_date if we have $age_at
 $end_date = $datetime_formatter->parse_datetime($age_at)
 or die “Could not parse birthday: $age_at”;
}

if ($end_date < $birthday_date) {
 die “End date must be on or after the birthday”;
}

my $duration = $end_date - $birthday_date;
if ($name) {
 printf “$name is %d years old\n” => $duration->years;
}
else {
 printf “You are %d years old\n” => $duration->years;
}

bapp01.indd 684bapp01.indd 684 09/08/12 9:02 AM09/08/12 9:02 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 17 Answers to Exercises ❘ 685

Exercise 3 Solution

This one is a bit trickier and shows you that Capture::Tiny does the right thing, but it might be a
bit hard to fi gure out at fi rst. First, here’s one way to write those tests:

use strict;
use warnings;

use Test::More;
use DateTime;
use Capture::Tiny ‘capture’;

my ($stdout, $stderr, @output) = capture {
 qx/perl age.pl --birthdate 1964-10-18 --age_at 2007-10-02 Charles Stross/;
};

is $output[0], “Charles Stross is 42 years old\n”,
 ‘Charles Stross was 42 years old when he wrote Halting State’;
($stdout, $stderr, @output) = capture {
 qx/perl age.pl --birthday 1967-06-20/;
};
like $stderr, qr/Unknown option: birthday/,
 ‘Passing an unknown option should cause the program to fail’;

($stdout, $stderr, @output) = capture {
 open my $fh, ‘|-’, ‘perl age.pl Ovid’;
 print $fh ‘1967-06-20’;
};
like $stdout, qr/Enter your birthday in YYYY-MM-DD format:/,
 ‘Not entering a birthdate should prompt for our birthday’;

my $today = DateTime->now;
my $birthday = DateTime->new(
 year => 1967,
 month => 6,
 day => 20,
);
my $age = ($today - $birthday)->years;

like $stdout, qr/Ovid is $age years old/,
 ‘... and the program should still tell use the correct age’;
diag $stdout;
done_testing;

In your fi rst test:

my ($stdout, $stderr, @output) = capture {
 qx/perl age.pl --birthdate 1964-10-18 --age_at 2007-10-02 Charles Stross/;
};
is $output[0], “Charles Stross is 42 years old\n”,
 ‘Charles Stross was 42 years old when he wrote Halting State’;

bapp01.indd 685bapp01.indd 685 09/08/12 9:02 AM09/08/12 9:02 AM

686 ❘ APPENDIX A ANSWERS TO EXERCISES

Because qx returns the program’s STDOUT, it populates the @output argument in your return values.
In this example, your $stdout is always empty and your $stderr remains empty if you have no
errors.

Your second test shows that $stderr is gets a value when you pass a bad option:

($stdout, $stderr, @output) = capture {
 qx/perl age.pl --birthday 1967-06-20/;
};
like $stderr, qr/Unknown option: birthday/,
 ‘Passing an unknown option should cause the program to fail’;

Your third test is the most interesting:

($stdout, $stderr, @output) = capture {
 open my $fh, ‘|-’, ‘perl age.pl Ovid’;
 print $fh ‘1967-06-20’;
};

like $stdout, qr/Enter your birthday in YYYY-MM-DD format:/,
 ‘Not entering a birthdate should prompt for our birthday’;

my $today = DateTime->now;
my $birthday = DateTime->new(
 year => 1967,
 month => 6,
 day => 20,
);

my $age = ($today - $birthday)->years;
like $stdout, qr/Ovid is $age years old/,
 ‘... and the program should still tell use the correct age’;

You used a piped open instead of the qx operator because you had to send some data to the pro-
gram. You can then construct your own DateTime object for today to make sure that you always
have the correct age in years in your test.

The entire test output should look similar to this:

age.t ..
ok 1 - Charles Stross was 42 years old when he wrote Halting State
ok 2 - Passing an unknown option should cause the program to fail
ok 3 - Not entering a birthdate should prompt for our birthday
ok 4 - ... and the program should still tell use the correct age
1..4
Enter your birthday in YYYY-MM-DD format: Ovid is 44 years old
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs
Result: PASS

This diagnostic is in the test output:

Enter your birthday in YYYY-MM-DD format: Ovid is 44 years old

bapp01.indd 686bapp01.indd 686 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 18 Answers to Exercises ❘ 687

That comes from this line of code:

diag $stdout;

Though you could determine this by reading your tests carefully, the diag() statement makes it
clear that Capture::Tiny is going to return all the STDOUT into a single variable, but you can see
it’s on a single line without newlines. Why? If you run the age.pl program from the command line,
you might see output like this:

$ perl age.pl Ovid
Enter your birthday in YYYY-MM-DD format: 1967-06-20
Ovid is 44 years old

So why doesn’t that show up in two lines in your $stdout variable?

The newline that you might expect after you enter your birthday in YYYY-MM-DD format isn’t present
because that was actually read from the program’s STDIN! Just because you can see it on the console
when you ran the program from the command line doesn’t mean that it’s coming from that pro-
gram’s STDOUT. This behavior might seem confusing, but after you think about it, it’s quite clear.

CHAPTER 18 ANSWERS TO EXERCISES

Exercise 1 Solution

Three potential problems may include:

 ➤ Commas might be embedded in quotes, breaking the split on commas.

 ➤ Newlines might be embedded in quotes, causing the fi lehandle read to return a partial
column.

 ➤ Quotation marks are used only to quote columns with special characters and are not part of
the data. The program does not remove them.

Exercise 2 Solution

You use DateTime::Tiny when you need only a simple data object. It can tell you the day, month,
hour, and so on. It’s also easy to print as a string. It’s lightweight and fast; however, it does not sup-
port date comparisons or other forms of date manipulation. It can be infl ated to a DateTime object.

The DateTime module is the most complete DateTime manipulation solution available on the
CPAN. It’s extremely comprehensive and fl exible (including excellent handling of time zones, though
those were not discussed in the chapter) and can enable you to compare date and times and do sim-
ple date math. Unfortunately, the module is large, slow to load, and often provides more functional-
ity than a simple program might need.

bapp01.indd 687bapp01.indd 687 09/08/12 9:02 AM09/08/12 9:02 AM

688 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 3 Solution

You should generally run Devel::NYTProf when your code runs slowly and you need to fi gure out
why. If your code runs fast enough, running Devel::NYTProf can be interesting, but it can also
service as a distraction when you have other tasks that you need to accomplish. When your program
runs fast enough, you should consider leaving it alone and not falling prey to the endless tweaking
to which so many programmers are prone. Further, over-optimizing your code can sometimes make
it harder to read. Clean, simple code tends to be easier to maintain and often has fewer bugs than
heavily optimized but obscure code.

Exercise 4 Solution

Running perlcritic -5 program.pl produces the following output:

Code before strictures are enabled at line 3, column 1.

 See page 429 of PBP. (Severity: 5)

Running perlcritic -1 program.pl produces the following:

RCS keywords Id not found at line 1, column 1.

 See page 441 of PBP. (Severity: 2)

RCS keywords $Revision$, $HeadURL$, $Date$ not found at line 1, column 1.

 See page 441 of PBP. (Severity: 2)

RCS keywords $Revision$, $Source$, $Date$ not found at line 1, column 1.

 See page 441 of PBP. (Severity: 2)

Code not contained in explicit package at line 1, column 1.

 Violates encapsulation. (Severity: 4)

No package-scoped “$VERSION” variable found at line 1, column 1.

 See page 404 of PBP. (Severity: 2)

Code before strictures are enabled at line 3, column 1.

 See page 429 of PBP. (Severity: 5)

Code before warnings are enabled at line 3, column 1.

 See page 431 of PBP. (Severity: 4)

3 is not one of the allowed literal values (0, 1, 2).

 Use the Readonly or Const::Fast module or the “constant” pragma

 instead at line 4, column 13.

 Unnamed numeric literals make code less maintainable. (Severity: 2)

“die” used instead of “croak” at line 9, column 6.

 See page 283 of PBP. (Severity: 3)

Module does not end with “1;” at line 13, column 1.

 Must end with a recognizable true value. (Severity: 4)

Always unpack @_ first at line 13, column 1.

 See page 178 of PBP. (Severity: 4)

Subroutine “hello” does not end with “return” at line 13, column 1.

 See page 197 of PBP. (Severity: 4)

Return value of flagged function ignored - print at line 15, column 9.

 See pages 208,278 of PBP. (\: 1)

The RCS keywords violation makes little sense if you do not use external tools (such as CVS or
Subversion) that support RCS keywords.

Issues such as not using strict or warnings are generally agreed to be problematic, but some of the
reported issues (such as not having a package name) don’t appear relevant to scripts. Others, such as
die instead of croak, don’t make much sense in this context.

bapp01.indd 688bapp01.indd 688 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 18 Answers to Exercises ❘ 689

The reported 3 is not one of the allowed literal values, and the suggestion to replace it
with a read-only constant is clearly not applicable here because you want a default value that can
change.

Unpacking @_ is almost always good advice unless this is hot code for which maximum performance
is critical.

Finally, you have a curious combination of a violation for not ending the subroutine with a return
statement and then ignoring the returned value. Interesting that you can get more violations
reported than there are lines of code, eh?

Exercise 5 Solution

First, create a perlcriticrc fi le specifi cally for scripts. Save this as perlcriticscripts:

exclude = RequireRCSKeywords
[-Modules::RequireExplicitPackage]
[-Modules::RequireEndWithOne]
[-Modules::RequireVersionVar]

Here’s one way to rewrite the program to make it pass the strictest level:

use strict;
use warnings;

use Getopt::Long;

sub hello {
 my ($name, $times) = @_;
 for (1 .. $times) {
 print “$name\n”; ## no critic ‘RequireCheckedSyscalls’
 }
 return;
}

my $name = ‘Nobody’;
my $times = 3; ## no critic ‘ProhibitMagicNumbers’

GetOptions(
 ‘name=s’ => \$name,
 ‘times=i’ => \$times,
) or die; ## no critic ‘RequireCarping’

hello($name, $times);

You can then verify this works with:

$ perlcritic -1 --profile perlcriticscripts my_program.pl
bad.pl source OK

bapp01.indd 689bapp01.indd 689 09/08/12 9:02 AM09/08/12 9:02 AM

690 ❘ APPENDIX A ANSWERS TO EXERCISES

Perl::Critic violations are often subjective and might not be suitable for your needs. That’s OK,
but make sure you understand why Perl::Critic warns about the issues it fi nds. If you don’t
understand the violation, you may be writing problematic code without realizing it.

CHAPTER 19 ANSWERS TO EXERCISES

Exercise 1 Solution

An object relational mapper, also known as an ORM, enables you to treat database records as
objects. It can make it easy to manipulate database information without having to embed SQL in
your code. They’re sometimes cumbersome for reporting systems with complicated SQL that must
span many tables (though DBIx::Class can handle this), but when you deal with many individual
records, they’re quite a timesaver.

Exercise 2 Solution

For this exercise, you need to choose Spanish. The Spanish text was automatically translated via
Google Translate. (Your author sincerest apologies to Spanish readers for any accidental hilarity.)

Save the following template as templates/es/letter.tt2.

[% month %] [% day %], [% year %]

Estimado [% name %],

Nuestros registros indican que usted no nos debe $[% amount %].
Si usted no paga inmediatamente, nos veremos obligados romper
el [% body_party %].

Que tengas un buen día :)
Me

Now in listing_19_2_letter.pl, change the %body_parts hash to include an es entry:

my %body_parts = (
 en => [qw/arms legs/],
 fr => [qw/bras jambes/],
 es => [qw/brazos piernas/],
);

Run the program with:

perl listing_19_2_letter.pl --name Ovid --amount 4.50 --lang es

And you should see output similar to (depending on the date):

Junio 12, 2012
Estimado Ovid,

Nuestros registros indican que usted no nos debe $4.50.

bapp01.indd 690bapp01.indd 690 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 19 Answers to Exercises ❘ 691

Si usted no paga inmediatamente, nos veremos obligados romper
el brazos.

Que tengas un buen día :)
Me

Exercise 3 Solution

First, save the SQL to a fi le named videos.sql and just do this:

sqlite3 rights.db < videos.sql

Unfortunately, that depends on having an operating system that cooperates with that syntax. So
write a Perl script to do this:

use strict;
use warnings;
use lib ‘lib’;
use DBI;

my $dbh = DBI->connect(
 “dbi:SQLite:dbname=rights.db”,
 “”, # no username required
 “”, # no password required
 { RaiseError => 1, PrintError => 0, AutoCommit => 1 },
) or die $DBH::errstr;

my $create_videos_table = <<”SQL”;
CREATE TABLE IF NOT EXISTS videos (
 id INTEGER PRIMARY KEY,
 name VARCHAR(255) NOT NULL,
 url VARCHAR(1000) NOT NULL,
 released DATETIME NULL
);
SQL
$dbh->do($create_videos_table);

my $create_video_to_media_table = <<”SQL”;
CREATE TABLE IF NOT EXISTS video_to_media (
 id INTEGER PRIMARY KEY,
 video_id INTEGER NOT NULL,
 media_id INTEGER NOT NULL,
 FOREIGN KEY (video_id) REFERENCES videos(id)
 FOREIGN KEY (media_id) REFERENCES media(id)
);
SQL
$dbh->do($create_video_to_media_table);

Next, you want to create your Rights::Schema::Result::Video and Rights::Schema::Result
::MediaToVideo classes and modify the Rights::Schema::Result::Media class. However, rather
than do this manually, update your model directly with the rights_create.pl script:

perl script/rights_create.pl model Media DBIC::Schema Rights::Schema \

 create=static ‘dbi:SQLite:./rights.db’

bapp01.indd 691bapp01.indd 691 09/08/12 9:02 AM09/08/12 9:02 AM

692 ❘ APPENDIX A ANSWERS TO EXERCISES

If you previously added your display_name() methods after the DO NOT MODIFY line, as explained
earlier in this chapter, they remain after you have rebuilt your schema.

Edit lib/Rights/Schema/Result/Video.pm and add the following near the end of the module:

sub display_name {
 my $self = shift;
 return $self->name;
}

That enables Catalyst::Plugin::AutoCRUD to automatically display a useful name for Videos in
the CRUD interface.

Next, create your controller:

perl script/rights_create.pl controller Media

And add these two methods, replacing the index() method already present in the controller:

sub index :Path :Args(0) {
 my ($self, $c) = @_;

 my $video_rs = $c->model(‘Media::Video’)->search(
 {}, # we want all of them
 { order_by => { -asc => ‘name’ } },
);
 $c->stash->{template} = ‘video/all.tt’;
 $c->stash->{video_rs} = $video_rs;
}

sub video :Path :Args(1) {
 my ($self, $c, $id) = @_;

 my $video = $c->model(‘Media::Video’)->find($id);
 $c->stash->{template} = ‘videos/display.tt’;
 $c->stash->{video} = $video;
}

Finally, create a root/videos directory and add the following two templates:

root/videos/all.tt:

 <table rules=”all”>
 <tr><th>Video</th><th>URL</th></tr>
 [% WHILE (video = video_rs.next) %]
 <tr>
 <td>[%video.name|html%]</td>
 <td>[% video.url | html %]</td>
 </tr>
 [% END %]
 </table>

root/videos/display.tt:

bapp01.indd 692bapp01.indd 692 09/08/12 9:02 AM09/08/12 9:02 AM

Chapter 19 Answers to Exercises ❘ 693

[% IF video %]
<table rules=”all”>
 <tr>
 <td>Name</td>
 <td>[% video.name |html %]</td>
 </tr>
 <tr>
 <td>URL</td>
 <td>[% video.url |html %]</td>
 </tr>
 <tr>
 <td>Date Released</td>
 <td>[% video.released |html %]</td>
 </tr>
 [% video_to_medias_rs = video.video_to_medias_rs %]
 <td>Media</td>
 [% IF video_to_medias_rs.count %]
 <td>

 [% WHILE (v2m = video_to_medias_rs.next) %]

 [%v2m.media.name|html%]

 [% END %]

 </td>
 [% ELSE %]
 <td>No media found</td>
 [% END %]
 </tr>
</table>
[% ELSE %]
Video not found
[% END %]

Then restart your server. Visit http://localhost:3000/autocrud and add one or two
videos. Then choose Video To Media from the drop-down menu and associate some media
with your videos.

Now you can visit http://localhost:3000/video to see a list of all videos you added. By clicking
a video, you have some basic data about that video, including all media attached to it.

In short, you should have a small, ugly, but functional application enabling you to manage rights
data for your videos. When a DMCA takedown request comes along, launch the application, fi nd
the video in question, and you can send a reply with all the media you have included, with their
sources and your rights to use those sources.

Feel free to play around more with this. The Catalyst mailing list, http://lists.scsys.co.uk/
cgi-bin/mailman/listinfo/catalyst, is helpful and can start you on your way to creating rich,
wonderful web applications.

If you feel this application is useful, consider creating a DMCA controller. For this controller, you
would have a method such as:

bapp01.indd 693bapp01.indd 693 09/08/12 9:02 AM09/08/12 9:02 AM

http://localhost:3000/autocrud
http://localhost:3000/video
http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/catalyst
http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/catalyst

694 ❘ APPENDIX A ANSWERS TO EXERCISES

sub dmca :Path :Args(1) {
 my ($self, $c, $id) = @_;

 my $video = $c->model(‘Media::Video’)->find($id);
 $c->stash->{template} = ‘dmca/response.tt’;
 $c->stash->{video} = $video;
}

The template for that controller could provide an entire DMCA takedown response for the video in
question, listing all media used, their start and end times in the video, the license for each media,
the date they were fetched from their respective sources, and a kind of “go away” to the originator
of the DMCA request. This response would be part of a form with empty text areas for you to type
extra information specifi c for the particular DMCA takedown request.

Imagine responding appropriately to a DMCA request with a single click of the mouse!

Have fun and congratulations on getting this far!

bapp01.indd 694bapp01.indd 694 09/08/12 9:02 AM09/08/12 9:02 AM

695

INDEX

 SYMBOLS

& (ampersand)
And (&&), 106
bitwise “and” (&), 103
lvalue && rvalue (&&=), 108
lvalue & rvalue (&=), 108

< > (angle brackets)
diamond operator, 260, 264,

286, 309
fi lehandle, 253, 547
globbing, 265
mode, 251
XML, 572

* (asterisk)
division (**), 98
multiplication, 98
regular expression quantifi er,

223
-- (autodecrement operator), 95–96
++ (autoincrement operator),

95–96
\ (backslash). See also escape

sequences
delimiter, 37, 252
forward slash compared to,

37, 252
before references, 158
before sigils, 201, 204

`` (backticks), 556, 558, 559, 566
=~ (binding operator), 94, 220,

221, 240
~ (bitwise negation), 103
^ (caret)

bitwise “xor,” 103
lvalue ^ rvalue (^=), 108
metacharacter, 223

{ } (curly braces)
block scope, 68, 127
debugger command ({ {), 593
hashes, 59
if statement, 127

metacharacter, 223
q, qq, 48–49
qw, 57

-> (dereferencing operator),
158–160, 161, 162, 196, 279, 357

$ (dollar sign)
$!, 80
$@, 80
$_ variable, 78–79, 85, 88,

134, 153, 220, 277, 574
$0, 80, 191, 227
$1,$2,…, 80
arrays, 55
hashes, 59
input record separator ($/),

86, 253, 254, 570
scalars, 44
$^V, 80

. (dot)
concatenation operator, 86, 95
match anything, 223
range operator (..), 97, 135,

136, 137, 302
= (equals sign)

assignment operators, 108
equal (==), 105
greater than or equal to (>=),

105
less than or equal to (<=), 105
not equal (!=), 105
numeric compare operator

(<=>), 105, 290, 308
! (exclamation sign)

equal (!), 106
negated binding operator

(!~), 220
not equal (!=), 105
shebang line (#!), 21

=> (fat comma), 61, 64
/ (forward slash)

backslash compared to, 37, 252
escaping, 221

perldoc, 17
<< (left shift operator), 103
*= (lvalue * rvalue), 108
**= (lvalue ** rvalue), 108
+= (lvalue + rvalue), 108
-= (lvalue - rvalue), 108
/= (lvalue / rvalue), 108
>>= (lvalue>> rvalue), 108
<<= (lvalue<< rvalue), 108
[] (metacharacter), 223
<=> (numeric compare operator),

105, 290, 308
// operator, 107
() (parentheses)

functions/builtins, 84
metacharacter, 223

% (percent sign)
modulus operator, 99, 301
printf formats, 91

| (pipe)
OR (||), 106, 107, 291, 292
bitwise “or,” 103
lvalue | rvalue(|=), 108
metacharacter, 223
piped opens, 559–560, 564,

566, 686
rvalue if ! lvalue(||=), 108

+ (plus sign)
addition, 98
autoincrement operator (++),

95–96
lvalue + rvalue (+=), 108
regular expression quantifi er,

223
? (question mark)

regular expression quantifi er,
223

ternary operator (?:),
131–132, 156

>> (right shift operator), 103
//= (rvalue if ! defi ned lvalue),

108

bindex.indd 695bindex.indd 695 10/08/12 3:51 PM10/08/12 3:51 PM

696

(sharp) – AUTOLOAD method

(sharp)
begins comment, 20
shebang line (#!), 21

- (subtraction), 98
_ (underscore)

names, 45, 316
private methods, 387
private subroutine, 186, 327,

330

A

$a, 80, 106, 114, 290, 291, 293
\A, 224
a\w, 224
Ævar personal shopper, 354. See also

Shopper::Personal class
abs(), 99
accessing elements

arrays, 55–57
hashes, 59

ActiveState Perl. See also
Strawberry Perl

CPAN usage, 32
ppm, 36, 40
pros/cons, 7
shebang line, 22
Strawberry Perl, 6

addition (+), 98
advanced roles, 423–425
$aevar object, 359
after method modifi er,

417–418, 438
age.pl program, 565, 685–687
AI::Prolog, 594–597
aliasing

issues, map/grep, 305
subroutines, 181, 215–216

[:alnum:], 232
[:alpha:], 232, 234–235
alphabetical sorting, 288–289
ampersand (&)

And (&&), 106
bitwise “and” (&), 103
lvalue && rvalue (&&=), 108
lvalue & rvalue (&=), 108

anchors
defi ned, 247
lookahead/lookbehind,

236–238, 247
modifi ers and, 228–230, 247

anchor metacharacters, 230
And

And (&&), 106
bitwise “and” (&), 103

Andrew, Andy, Kaufman exercise,
81, 655

Android, 527
angle brackets (< >)

diamond operator, 260, 264,
286, 309

fi lehandle, 253, 547
globbing, 265
mode, 251
XML, 572

Anne Frank stamp, 487, 488, 539,
540, 623

anne_frank_stamp.jpg, 481,
487–490, 493, 532, 648

anonymous arrays, 161–162
anonymous hashes, 162–163
anonymous references, 160–163, 174
anonymous subroutines, 197–199
answers. See exercises
AppConfig, 262
App::cpanminus. See cpanm
apply(), 205
app.psgi, 481, 485, 486, 487, 489,

490, 492, 493
ARG

Getopt::Long, 549–551
maze.pl, 549

arguments
argument coercion,

prototypes, 200–202
handling, 177–178
multiple, 178–179
named, 179–180

@ARGV, 548–556
defi ned, 79, 566
listing_3_5_hello.pl,

79–80
arithmetic operators, 98–99
Armstrong, Andy, 444
around(), 406, 438
around()method modifi er, 406
arrays, 53–58

accessing elements, 55–57
Andrew, Andy, Kaufman

exercise, 81, 655
anonymous, 161–162
@ sign, 53
defi ned, 53, 82
dollar sign ($), 55
duplicate array elements

exercise, 138–140
for/foreach loops, 132–134

hashes compared to, 58
iterating over arrays, 58
lengths, 56–57
lists vs., 113
printing, 66–67
in scalar context, 63–64
splitting, 141–142

array functions, 111–116
array references, 158–159, 358
array slices, 62, 172
arrays.pl, 125, 141–142
ASCII

POD documents, 344
UTF-8, 267

[:ascii:], 232
as_json(), 420, 421
assignment operators, 108–109
associativity, 109–111, 123.

See also precedence
as_string(), 373, 378, 379, 384,

392, 410, 411, 420, 433
asterisk (*)

division (**), 98
multiplication, 98
regular expression quantifi er,

223
@_, 80, 112, 177–178, 218
@ sign (arrays), 53
atan2(), 102–103
@first, 173, 659
@INC, 80, 318, 333, 344, 463
@second, 173, 659
attributes

defaults vs., 434
defi ned, 402, 438
name, HTML forms, 516
passed to database handles, 525
password attribute, 422
reaching inside the object,

360, 394
read-only, 402, 434–435
subroutine attributes, 465, 640
type constraints, 414–417
using, 402–405

Atwood, Jeff, 9
audio media type, 530
augment method modifi er,

418–420, 438
AutoCommit, 525, 526, 541
autodecrement operator (--), 95–96
autodie module, 251, 257, 258,

266, 278, 281, 316
autoincrement operator (++), 95–96
AUTOLOAD method, 395

bindex.indd 696bindex.indd 696 10/08/12 3:51 PM10/08/12 3:51 PM

697

$b – classes

B

$b, 80, 106, 114, 290, 291, 293
B:: modules, 260
-B fi le test operator, 259
-b fi le test operator, 259
b line debugger command, 593
b subname debugger command, 593
B<text>, 343
\b, 224
\D, 224
backslash (\). See also escape

sequences
delimiter, 37, 252
forward slash compared to,

37, 252
before references, 158
before sigils, 201, 204

backticks (``), 556, 558, 559, 566.
See also qx operator

bareword, 76, 255
base module, 377
basic roles, 420–423
basic tests, 440–444
B::Deparse, 260
becoming programmers, 613
before method modifi er, 417–418,

438
BEGIN, 335–338, 351
BEGIN blocks, 336–337
Benchmark module, 307,

601–604, 610
best practices

Moose, 433–436
Perl Best Practices, 405, 604,

606
binary search, 210–211
bind parameters, 536–538, 544
binding operator (=~), 94, 220, 221,

240
binmode(), 262–263, 268, 284, 286
bits, 267
bitwise operators, 103
bless()

array reference, 358
defi ned, 97, 356, 398
limitation, 400

BLOB, 528
block eval, 193–194
block scopes, 67–69, 127
blueprints, 355, 363, 398. See also

classes
Bomb::explode(), 423
Bomb::fuse(), 423
boolean operators, 103–108

Brand, H. Merijn, 569
breakpoints, 591, 593
browsers, 511. See also web clients
BUILD, 406–408, 438
BUILDARGS, 405–406, 434, 438
Build.PL, 30, 31, 32, 596
built-in variables, 78–80, 82
builtins. See functions
Bunce, Tim, 524, 598
buy(), 359, 362, 369, 370
_buy_item(), 362, 370, 371

C

c debugger command, 593
-c fi le test operator, 259
C<<text>>, 343
C<text>, 343
\cX, 224
C3 linearization, 395, 396, 410
cal utility, 582
camelCase, 45
can() method, 386–387
can_ok, 453
CAPTCHAS, 517
capture.pl, 545, 563
Capture::Tiny, 556, 560,

562–564, 565, 566, 685, 687
caret (^)

bitwise “xor,” 103
lvalue ^ rvalue (^=), 108
metacharacter, 223

carp(), 192, 363, 369
carriage return (\r), 50, 224, 253
case

case folding, 272
escape sequences, 50–51
fi le systems, 318

cat utility, 284
Catalyst, 634–651

controllers, 646–648
defi ned, 654
manual, 652
models, 643–646
MVC, 635
overview, 612
Rights application

autogenerating shell,
636–640

controllers, 646–648
CRUD, 648–651
models, 643–646
purpose, 636
views, 641–643

writing, 640–641
unholy trinity, 612
views, 641–643

Catalyst::Plugin::AutoCRUD,
649–651, 654, 692

catdir(), 282, 283
cat.pl, 284
Celsius/Fahrenheit examples, 122,

303–304, 656
celsius.pl, 287, 303–304
CGI::Application, 634
Changes fi le, 345
character classes, 231–232, 247
character entities, HTML, 496
character properties, Unicode,

275–276, 286
character.psgi, 481, 504, 508,

516, 520
chars2codepoints.pl, 285
Chatzilla, 8
chdir(), 277
CHECK blocks, 337–338
child classes. See subclasses
chomp(), 85–86, 254, 265, 547,

570
chop(), 85–86
chr(), 86
Christiansen, Tom, 202, 276
circular inheritance, 378
classes. See also

Shopper::Personal class;
subclasses; TV::Episode class;
specifi c classes

as packages, 355–356
blueprints, 355, 363, 398
defi ned, 355–356, 398
instance data vs., 379–381
Moose

namespace::autoclean,
409–410, 411, 434

Person class, 411–413
standard shell, 410, 434

Person class
creating, 397
Customer subclass, 397,

467
in Moose, 411–413

reaching inside the object,
360, 394

superclasses
defi ned, 374, 381, 398
Liskov Substitution

Principle, 375, 470
UNIVERSAL class

can() method, 386–387

bindex.indd 697bindex.indd 697 10/08/12 3:51 PM10/08/12 3:51 PM

698

classes – cookies

classes (Continued)
defi ned, 398
DOES() method, 385
isa() method, 385–386
object graph, 385
using, 385–387
VERSION() method, 387

Class:: namespace, 400
class methods, 363, 615
class-based OO programming, 355
Class::Data::Inheritable,

380, 472
clever code, sort/map/grep,

307–308
closures, 182, 197–199
cmp, 104
[:cntrl:], 232
Code Complete (McConnell), 613
code coverage, 594–598
code listings. See examples;

exercises; listings
code points, 267
codepoints2char.pl, 284
coding style, subroutines, 184–186
coercions

argument coercion,
prototypes, 200–202

Moose, 462
collation, 294–296
Colloquy, 8
column names, duplicate, 535
command line, 546–556

Google’s Directions API,
517–519, 553–556
google_directions.pl,

481, 517–518
listing_17_1_

directions.pl, 545,
553–554

GUIs compared to, 546
handling arguments, 548–556
switches

-e, 552
-I, 551–552
-l, 552
-n, 552–553
perlrun, 551–553, 566

terminal window, 14–18, 23
command paragraphs, POD, 339, 341
commands, debugger, 593
comma-separated values. See CSV
comments, extracting, 514–515
common tasks, 567–610

CSV data, 568–571
reading, 569–570

Text::CSV, 569
Text::CSV::Encoded, 570
Text::CSV_XS, 569–571,

610
writing, 570–571

dates, 580–586
calendar display, 582–586
date formats, converting,

240–241
dates.pl, 219, 240
DateTime module, 375,

580–581, 608, 673, 687
DateTime::Duration

object, 384, 397, 417
DateTime::Format::

Strptime, 462, 565,
580, 683, 684

DateTime::Locale, 652
DateTime::Tiny,

581–586, 608, 610, 687
Date::Tiny,

581–586, 610
exercises, 608–609, 687–690
Perl debugger, 587–593, 610
profi ling tools, 594–607

Benchmark module, 307,
601–604, 610

Devel::Cover, 594–598,
610

Devel::NYTProf, 598–
601, 608, 610, 688

Perl::Critic, 604–607,
609, 610, 690

XML data, 571–579
Data::XML::Variant,

572
example_18_4_library.

xml, 567, 571, 575
example_18_5_xml_

simple.pl, 567, 572
example_18_6_xml_

twig.pl, 567, 575
example_18_7_xml_

writer.pl, 567, 577
PIPs, 579
problem, 572
reading, 572–576
specifi cation area, 572
tags, 576
tree-branched parser, 574
writing, 576–579
XMLout(), 576
XML::Simple, 572–574,

576, 610
XML::Twig, 574–576, 610

XML::Writer, 576–578,
610

XML::Writer::String,
576–578

compiled language, Perl, 20
complex data structures, 157–158,

162–167, 172, 173, 174. See also
references

complex data types, objects as, 371
complex sorts, 290–292
complex.pl, 157, 164–165
composing regular expressions,

243–244
Comprehensive Perl Archive

Network. See CPAN
conditionals, 126–128
Config::General, 262, 639
Config::Std, 262
Config::Tiny, 262
connect(), 525, 526, 530, 541,

542, 618
connecting to database, DBI

module, 524–527
console, 16
constructors

BUILD, 406–408, 438
BUILDARGS, 405–406, 434, 438
hash references, 401
Moose, 405–408
new(), 357, 358, 359, 402,

405, 673
consuming roles, 420, 421,

435–436, 437
context, 63–66

defi ned, 63, 82
importance, 42
types, 63

continue statement, 145–146
control fl ow, 125–156, 657–659
controllers. See also Model-View-

Controller pattern
Catalyst, 646–648
MVC, 492, 654

convert DBI code to DBIx::Class,
619–624

Convert::Distance::Imperial,
344–347, 350, 670–671

converting between encodings, 272
converting date formats, 240–241
converting distance, 331–335
convert.pl, 315, 331–333
Conway, Damian, 405, 604, 606
cookies

defi ned, 521
pass session key, 500–504

bindex.indd 698bindex.indd 698 10/08/12 3:51 PM10/08/12 3:51 PM

699

copying – debugging

copying, references and, 169–171
copyrights database. See rights

database
cos(), 102–103
$count variable, 182
Cox, Alan, 338
CPAN (Comprehensive Perl Archive

Network), 25–40. See also
modules

documentation layout, 340
history, 25
metacpan, 27
modules

breadth, 26
download, 29–30
fi nding and evaluating,

26–29
installation, 29–39

POD, 338
CPAN clients, 33–39, 40
cpanm (App::cpanminus), 35–36,

38–39, 40
CPAN::Mini, 36–38, 40
cpan.org, 27
CPAN.pm, 33–35, 40
cpan.uwinnipeg.ca, 27
create, read, update, delete. See

CRUD
Creative Commons licenses, 530
Creature, 394, 395, 396
croak(), 192, 322, 368, 378, 392,

407, 526
CRUD (create, read, update, delete)

Catalyst::Plugin::

AutoCRUD, 649–651, 654,
692

using, 648–651
cryptography, 102, 437
C-style for/foreach loops,

136–138
CSV (comma, separated values)

data, 568–571
reading, 569–570
Text::CSV, 569
Text::CSV::Encoded, 570
Text::CSV_XS, 569–571, 610
writing, 570–571

curly braces [{ }]
block scope, 68, 127
debugger command ({ {), 593
hashes, 59
if statement, 127
metacharacter, 223
q, qq, 48–49
qw, 57

custom types, namespace for, 414, 435
Customer subclass, 397, 467
Cygwin, 6, 7, 16, 23, 557

D

-d fi le test operator, 258
-d fl ag, 598
-D switch, perldoc, 11, 18
\d, 224
Dancer, 26, 482, 490, 607, 634
data. See also common tasks

added to hashes, 60–61
rights database

inserting, 539–540
selecting, 533–536
updating, 539–540

DATA section, 261–262, 286
data structures

building, regular expressions,
226–228

references, 157–158, 162–167,
172, 173, 174

data types. See also arrays; hashes;
scalars; variables

objects as, 371
Perl, 42
SQLite, 528

databases, 523–544. See also DBI;
rights database; SQLite

defi ned, 524, 544
exercises, 543, 681–683
MySQL, 6, 524, 525, 526,

527, 644
Oracle, 524, 525, 527, 618
persistent, 533
PostgreSQL, 524, 525, 527,

618, 644
relational, 524
SQL, 524

defi ned, 524
injection attack, 536, 537
placeholders, 537

SQLite
data types, 528
DBD::SQLite, 524,

527–528, 544
defi ned, 527, 544
using, 527

Sybase, 524, 525
database drivers (DBDs)

DBD::SQLite, 524, 527–528,
544

defi ned, 544

list, 525
database handles, 525–526, 530,

536, 541
database interface. See DBI
Data::Dumper, 168–171, 174, 193
Data::XML::Variant, 572
dates, 580–586

calendar display, 582–586
date formats, converting,

240–241
dates.pl, 219, 240
DateTime module, 375,

580–581, 608, 673, 687
DateTime::Duration object,

384, 397, 417
DateTime::Format::

Strptime, 462, 565, 580,
683, 684

DateTime::Locale, 652
DateTime::Tiny, 581–586,

608, 610, 687
Date::Tiny, 581–586, 610

DBDs (database drivers)
DBD::DB2, 525
DBD::mysql, 525, 526
DBD::ODBC, 525
DBD::Oracle, 525
DBD::Pg, 525
DBD::PgPP, 525
DBD::SQLite, 524, 527–528,

544
DBD::Sybase, 525
defi ned, 544
list, 525

db_handle(), 528, 529
DBI (database interface)

connecting to database,
524–527

DBI code converted to
DBIx::Class, 619–624

defi ned, 544
dbicdump, 624–625
DBIx::Class, 614–625

DBI code converted to,
619–624

defi ned, 654
overview, 612
unholy trinity, 612

DBIx::Class::Schema::Loader,
624–625, 644, 649, 651, 653, 654

dclone, 157, 171, 205
-Debug fl ag, 639
debugging

breakpoints, 591, 593
commands, 593

bindex.indd 699bindex.indd 699 10/08/12 3:51 PM10/08/12 3:51 PM

http://cpan.org

700

debugging – examples

debugging (Continued)
Perl debugger, 587–593, 610
plackup terminal, 487
references, 166–169

declaring variables, 43–44
decoding data, Unicode, 268
decorate, sort, undecorate

(Schwartzian Transform),
308–310, 311

deep copying, 169–171
defaults, attributes vs., 434
delete(), 116–117
delete, create, read, update

operations. See CRUD
delimiters

alternative, 235, 240
backslash, 37, 252
block scope, 68, 127
q(), qq(), 48–49
qw(), 57
qx, 559

dereferencing operator (->),
158–160, 161, 162, 196, 279, 357

deserialization, 579
Design by Contract technique, 419
Devel::Cover, 594–598, 610
Devel::NYTProf, 598–601, 608,

610, 688
Developer Tools, OS X, 4
Devel::Peek, 135–136
diag(), 453
diagnostics

defi ned, 43, 82
using, 72–78

diagnostics.pl, 41, 77–78
diamond operator (< >), 260,

264, 286, 309. See also angle
brackets

die(), 191
Digest::MD5, 437, 674
[:digit:], 232
directories, 265–266. See also fi les

exercises, 284–285, 663–665
folders as, 16
globbing, 265–266, 286
lib/, 345
reading, 265
recursively printing directory

structure, 280–284
t/, 345
useful modules, 276–284
work directory creation, 16–17

dispatch table, 198–199
distribution, 346–348, 351
Dist::Zilla, 344

division (**), 98
DMCA takedown notices, 527, 652,

693, 694
do until, 149
do while, 149–151
documentation. See POD
DOES(), 385, 422
Does::ToHash, 437, 674–675
dollar sign ($)

$@, 80
$^V, 80
$!, 80
$_ variable, 78–79, 85, 88,

134, 153, 220, 277, 574
$0, 80, 191, 227
$1,$2,…, 80
arrays, 55
hashes, 59
input record separator ($/), 86,

253, 254, 570
scalars, 44

domain-specifi c language, 490
done_testing(), 442, 443
do_stuff(), 183, 395
dot (.)

concatenation operator, 86, 95
match anything, 223
range operator (..), 97, 135,

136, 137, 302
duct tape, 481, 484
dump(), 136, 437
duplicate array elements, 138–140
duplicate column names, 535
dynamic programming languages, 2

E

-e fi le test operator, 258
-e switch, 552
E<text>, 343
\e, 224
\E (end case modifi cation), 50, 224
each(), 117–118
effective questions, Perl community,

10
effective uid/gid, 259
elements, accessing

arrays, 55–57
hashes, 59

else, 128–131
elseif, 128–131
Email::Valid, 242, 247
ems, 342
Encode::Guess, 268, 273

encoding data, Unicode, 268–269
END blocks, 337
end case modifi cation (\E), 50, 224
END token, 261
English letters. See letters in French

and English
%ENV, 79, 80
episode versions, 389–392
episode.pl, 353, 391–392, 399,

432–433
eq, 104
eq_or_diff(), 458
equals sign (=)

assignment operators, 108
equal (==), 105
greater than or equal to (>=), 105
less than or equal to (<=), 105
not equal (!=), 105
numeric compare operator

(<=>), 105, 290, 308
error handling

databases, 541–542, 544
STDERR, 90

escape sequences
defi ned, 247
list, 224
main, 50
regular expressions, 223–226
special, 50–51

eval(), 192–195
eval{}, 451–452
examples. See also listings; Try It

Out; specifi c examples
example_3_1_variables.

pl, 41, 66–67
example_3_2_diagnostics.

pl, 41, 77–78
example_4_1_names.pl, 83,

118–119
example_5_1_unique.pl,

125, 138–139
example_5_2_arrays.pl,

125, 141–142
example_6_1_complex.pl,

157, 164–165
example_7_1_running_

total.pl, 175, 185–186
example_7_2_length.pl,

175, 198–199
example_7_3_zip.pl, 175,

208–209
example_7_4_maze.pl, 175,

212–217, 598
example_8_1_name_and_

age.pl, 219, 234–235

bindex.indd 700bindex.indd 700 10/08/12 3:51 PM10/08/12 3:51 PM

701

exclamation sign (!) – File::Temp

example_8_2_dates.pl, 219,
240

example_9_1_spies.pl, 249,
263–264

example_9_2_tree.pl, 249,
281–282

example_10_1_soldier.pl,
287, 296–297

example_10_2_is_prime.

pl, 287, 299–300
example_10_3_celsius.pl,

287, 303–304
example_11_1_convert.pl,

315, 331–333
example_12_1_shopper.pl,

353, 363, 366
example_12_2_episode.pl,

353, 391–392
example_13_1_person.pl,

399, 412
example_13_2_episode.pl,

399, 432–433
example_15_1_google_

directions.pl, 481,
517–518

example_16_1_fetch.pl,
523, 538–539

example_17_1_poets.pl,
545, 562–563

example_17_2_capture.pl,
545, 563

example_18_1_jobs.csv,
567, 568, 569

example_18_2_parse_csv.

pl, 567, 569
example_18_3_write_csv.

pl, 567, 570
example_18_4_library.

xml, 567, 571, 575
example_18_5_xml_simple.

pl, 567, 572
example_18_6_xml_twig.

pl, 567, 575
example_18_7_xml_writer.

pl, 567, 577
example_18_8_palindrome.

pl, 567, 587–588
example_18_9_factorial.

pl, 567, 602, 605
exclamation sign (!)

equal (!), 106
negated binding operator (!~),

220
not equal (!=), 105
shebang line (#!), 21

exec tool, 556, 566
exec()method, 279, 280
exercises. See also Try It Out;

specifi c exercises
answers, 655–694
common tasks, 608–609,

687–690
control fl ow, 154–155,

657–659
databases, 543, 681–683
exercise_3_2a_array.pl,

41, 655
exercise_3_2b_array.pl,

42, 655
exercise_3_3_fruit.pl,

42, 656
fi les/directories, 284–285,

663–665
modules, 350, 668–672
Moose, 437, 674–676
OO Perl, 397, 672–673
packages, 350, 668–672
references, 173, 659–660
regular expressions, 245–246,

661–663
subroutines, 217, 660–661
testing/tests, 478–479,

676–678
variables, 81, 655–656

exists(), 117
exp(), 99
exponential notation, 53
Exporter, 328–330, 443
Exporter::NoWork, 330, 443, 454,

528 exporting, 327–330, 351
extends keyword, 438
Extensible Markup Language. See

XML
Extensible Stylesheet Language

Transformations. See XSLT
external criteria, sort, 296–297
external programs

running, 556–558
tools

backticks (``), 556, 558,
559, 566

exec, 556, 566
open, 556
qx operator, 556, 559–560,

563, 565, 566, 685, 686
system(), 556–558, 566

extracting data, regular
expressions, 226–228, 247

extracting links from web pages,
512–514

F

-f fi le test operator, 258
-f switch, 44
factorial functions, 601–604
factorial.pl, 567, 602, 605
Fahrenheit/Celsius examples, 122,

303–304, 656
Fail!, 190–191
false/true values, 106, 121, 126,

186–187, 656
FAQs, perldoc, 12–14
fat comma (=>), 61, 64
fetching records from table,

538–539
fetch.pl, 523, 538–539
fetchrow_array(), 535
$fh. See fi lehandles
Fibonacci sequence exercise,

197–198
FIFO, 259, 337
fi les. See also directories

DATA section, 261–262, 286
exercises, 284–285,

663–665
fi ltering, spies example,

263–265
globbing, 265–266, 286
handling, 250–265
opening, 250–251
parsing, 252–255
reading, 251–256
reading wrong way, 255–256
temporary, 260–261, 286
useful modules, 276–284
writing, 256–258

fi le scoped, 67
fi le systems, case sensitivity, 318
fi le test operators, 258–259, 286
File::Find, 276–278, 286
File::Find::Rule, 279–284, 286

install, 38–39
File::Glob, 265
FILEHANDLE, 89, 251
fi lehandles ($fh)

abbreviation, 251
angle brackets, 253, 547
comma after, 90
print(), 89–90
while loop, 253

FILENAME, 251
File::Path, 278
File::Spec::Functions, 282,

283, 630, 632
File::Temp, 260–261

bindex.indd 701bindex.indd 701 10/08/12 3:51 PM10/08/12 3:51 PM

702

fi nal exam – hex

fi nal exam, 652. See also video_
to_media lookup table

find(), 277–278
fl ags

-d, 598
-Debug, 639
printf(), 92, 103

fl oats, 51–52
folders, 16. See also directories
foo, 158
for/foreach loops, 132–142

arrays, 132–134
C-style, 136–138
lists, 135–136

formatting codes, POD, 342–343
forward declarations, 206–207
forward slash (/)

backslash compared to, 37, 252
escaping, 221
perldoc, 17

foy, brian d, 9
freenode, 8
French letters. See letters in French

and English
Friedl, Jeffrey, 245
fruits exercise, hashes, 81, 656
full paths, 37, 277, 278
functions (builtins). See also methods;

subroutines; specifi c functions
arguments

handling, 177–178
multiple, 178–179
named, 179–180

array functions, 111–116
builtins vs., 83
hash functions, 116–118
list functions, 111–116
mimicking, 204–205
named unary operators, 83,

84, 110
naming conventions,

330–331
numeric, 98–103
operators vs., 44, 83, 94
parentheses, 84
perldoc -f, 14
pure, 603
subroutines vs., 84, 176
test functions

can_ok, 453
diag(), 453
eval{}, 451–452
is(), 440, 445–448,

449, 480
isa_ok, 453

is_deeply(), 449–450,
456, 480

like(), 448–449
miscellaneous, 453
ok(), 440, 445, 453, 457,

480
require_ok, 452
SKIP, 450
TODO, 450–451
use_ok, 452

trigonometric, 102–103
future programmer, 142

G

/g, 229, 234–235
-g fi le test operator, 259
\G, 224
\g{GROUP}, 224
ge, 104
GET requests, 483, 486, 489, 496,

497, 521. See also POST requests
get_budget(), 360, 368, 370
get_content(), 509
get_invoice(), 359, 369, 370
get_name(), 368, 370
Getopt:: namespace, 549
GetOptions(), 549, 551
Getopt::Long, 549–551, 566
getters/setters, 360, 361, 370
gid, 259
git, 279, 345, 606
given/when statement, 151–153
glob(), 158, 265–266. See also

typeglobs
globally scoped variable, 69
globbing, 265–266, 286
GnuWin project, 557
Golden, David, 327
Google Translate, 652, 690
Google’s Directions API, 517–519,

553–556
google_directions.pl, 481,

517–518
listing_17_1_directions.

pl, 545, 553–554
Gorwits, Oliver, 649
[:graph:], 232
graphical user interfaces. See GUIs
grep, 298–303

aliasing issues, 305
clever code, 307–308
combining techniques,

308–311

complicated versus simple,
306–307

defi ned, 115, 298
exercises, 311–312, 666–667
forms, 298
map compared to, 297
prime numbers example,

299–303
grouping, 232–235, 247
gt, 104
GUIs (graphical user interfaces),

546, 596
Guttman, Uri, 310
Guttman-Rosler Transform,

310–311

H

h debugger command, 593
h2xs, 344
half-million tests, 440
handling parameters, 490–491
hard references, 168
HARNESS_PERL_SWITCHES=-

MDevel::Cover prove

-l t, 596
hashes, 58–61

accessing elements, 59
anonymous, 162–163
arrays compared to, 58
curly braces, 59
data added to, 60–61
defi ned, 58, 82, 116
dollar sign ($), 59
fruits exercise, 81, 656
iterating over hashes, 60
keys, 58
printing, 66–67
in scalar context, 64
values, 58
writing, tips, 60–61

hash functions, 116–118
hash references, 159–160, 401
hash slices, 62, 139, 172
has_many(), 615, 616
HEAD request, 483, 484
headings, POD, 340–341
Hello World!

fi rst program, 18–22
web application, 484–490

helper functions, 409, 415
here-docs, 49, 154
heuristic, Perl parser, 153, 206
hex(), 100

bindex.indd 702bindex.indd 702 10/08/12 3:51 PM10/08/12 3:51 PM

703

hexadecimal numbers – -l switch

hexadecimal numbers
exercise, 311, 665–666
hex designation, 52

host, telnet, 483
HTML (HyperText Markup

Language)
character entities, 496
encoding data, 496
extracting comments from

web pages, 514–515
extracting links from web

pages, 512–514
LWP::Simple, 512, 513
online information, 482
parsing models, 243
regular expressions, 242–243
web form example, 515–516
XML as, 575–576

HTML::SimpleLinkExtor,
512–514, 521

HTML::TableExtract, 515,
517, 680

HTML::TokeParser::Simple,
514, 521

HTTP (HyperText Transfer
Protocol), 482–511

basics, 482–484
defi ned, 482, 521
GET requests, 483, 486, 489,

496, 497, 521
POST requests

defi ned, 521
handling, 496–500
security, 496, 497, 500

response codes, 486, 512
stateless, 500
telnet, 482–483, 484

http://localhost:5000, 485,
488, 489, 510

HTTPS, 482, 497, 512
hung up, on terminology, 1, 44, 176
HyperText Markup Language. See

HTML

I

/i, 229
-I switch, 551–552
I<text>, 343
identifi ers. See names
if statement, 126–132
if(%names){...}, 127, 128
ignore.txt, 345
image media type, 530

immutable class, namespace::
autoclean, 409–410, 411, 434

%INC, 80
indentlevel, 341, 342
index(), 86–87
infi x, 84
infi x operators, 104
inheritance

base module, 377
C3 linearization, 395, 396,

410
circular, 378
defi ned, 398
Moose, 408–409
multiple, 377, 394–396, 410,

435, 472
subclass, 374
superclass, 374
UNIVERSAL class, 385

INIT blocks, 337–338
_initialize(), 367, 368, 369,

373, 378, 383, 384, 392, 426
injection attacks, SQL, 536, 537
inner method modifi er, 418–420, 438
input

STDIN, 547–548, 566
writing to, 560–561

input record separator ($/), 86, 253,
254, 570

inserting data, rights database,
539–540

installable distribution, 346–348
instances, 355, 363
instance data, class vs., 379–381
instance method, 363
int(), 101
INTEGER, 528
integers, 51–52
intelligent variable names, 47
interior sequences, 342–343
Internet Relay Chat. See IRC
interpreted language, Perl, 20
“The Interwebs.” See HTTP; web

clients
invocant, 357, 386, 406, 472, 474
iPhone, 527
IRC (Internet Relay Chat), 8–9
is(), 387, 440, 445–448, 449, 480
@ISA array, 377, 378
isa()method, 385–386
isa_ok, 453
is_deeply(), 449–450, 456, 480
ISO-8859-1 (Latin-1), 266, 270,

272, 273, 344
is_palindrome(), 186–187

is_prime(), 301, 302, 303, 306,
307, 317, 328, 329

is_prime.pl, 287, 299–300
issues. See problem areas
is_temperature_out_of_

bounds(), 594
is_utf8(), 27
iterating

over arrays, 58
over hashes, 60

iTerm2, 15
-It/lib, 468, 469, 477

J

JavaScript, 355, 517, 641
JavaScript Object Notation. See JSON
job opportunities, Perl, 3
jobs.csv, 567, 568, 569
Johnson, Paul, 594
join(), 113
JSON (JavaScript Object Notation)

deserialization, 579
Google’s Directions API,

517–519, 553–556
online description, 420
Role::Serializable::JSON,

420, 421, 422
JSON::Any, 517, 518, 519, 520

K

-k fi le test operator, 259
\k<GROUP>, 224
Kannada font, 285, 664
Kaplan, Adam, 598
Kennedy, Adam, 492
keys(), 117
keys, hashes, 58
keywords

extends, 438
new, 357
scoping, 119–121
term fuzziness, 44

Kobes, Randy, 27
kobesearch.cpan.org, 27
KVIrc, 8

L

-l fi le test operator, 259
-l switch

command line, 552
prove utility, 348

bindex.indd 703bindex.indd 703 10/08/12 3:51 PM10/08/12 3:51 PM

http://kobesearch.cpan.org

704

-l t/ – logic programming

-l t/, 477
L<name>, 343
L<name/”sec”>, 343
L</”sec”>, 343
L<text>, 343
\l (lowercase next character),

50, 224
\L (lowercase until \E), 50, 224
\U (uppercase until \E), 50, 224
labels, 146–147
last(), 137, 144–145
Latin-1 (ISO-8859-1), 266, 270,

272, 273, 344
lc(), 87
lcfirst(), 87
le, 104
left shift operator (<<), 103
length(), 88
length.pl, 175, 198–199
lengths, of arrays, 56–57
letters in French and English,

630–634
templates/en/letter.tt2,

611, 630
templates/fr/letter.tt2,

611, 630
lexically scoped variables, 67, 68,

82, 136, 192, 323
lib/ directory, 345
lib/Convert/Distance/

Imperial.pm, 315, 331,
345–348, 669

lib/Convert/Distance/Metric.

pm, 315, 350, 669
lib/Customer.pm, 439, 467
lib/My/Company/Moose/Types.

pm, 399, 415
lib/MyDatabase.pm, 523, 528
lib/My/Number/Utilities.pm,

315, 316, 317, 333
lib/My/Schema.pm, 611, 619
lib/My/Schema/Result/

License.pm, 611, 621
lib/My/Schema/Result/Media.

pm, 611, 620
lib/My/Schema/Result/

MediaType.pm, 611, 620
lib/Person.pm, 399, 411, 439, 461
library.xml, 567, 571, 575
lib/Shopper/Personal.pm,

353, 363
lib/TestMe.pm, 439, 443, 452, 454
lib/TestQuery.pm, 439, 454
lib/TV/Episode/Broadcast.pm,

353, 375, 399, 432

lib/TV/Episode/OnDemand.pm,
353, 381

lib/TV/Episode.pm, 353, 371,
399, 439, 475

lib/TV/Episode/Version.pm,
353, 389

libwww-perl, 512
license class

create, 621
lib/My/Schema/Result/

License.pm, 611, 621
licenses table, 530, 619. See also

rights database
LIFO, 337
like(), 448–449
linguistics, Perl and, 355
linked lists, 111
linking formats, 343–344
links, extracting, 512–514
Linux

commands, OS X, 557
Cygwin, 6, 7, 16, 23, 557
modules installation, 35
shebang line, 21
terminal window, 15

Liskov, Barbara, 375
Liskov Substitution Principle,

375, 470
lists

arrays vs., 113
for/foreach loops, 135–136
linked, 111
POD, 341–342
returning, 189
in scalar context, 64
while/until loops, 143–144

list context, 64–66
list functions, 111–116
listings (code listings). See also

examples; Try It Out
listing_3_1_scope.pl, 42,

68–69
listing_3_2_vars.pl, 42,

70–71
listing_3_3_our.pl, 42, 71
listing_3_4_diagnostics.

pl, 42, 75–76
listing_3_5_hello.pl, 42,

79–80
listing_6_1_sales.pl, 157,

162–163
listing_6_2_dclone.pl,

157, 171
listing_7_1_fibonacci.

pl, 175, 197–198

listing_7_2_binary_

search.pl, 175, 210–211
listing_8_1_data_

structure.pl, 219,
226–227

listing_8_2_composed_

regexes.pl, 219, 244–245
listing_9_1_targets.pl,

250, 252–255
listing_9_2_reading_

from_data.pl, 250,
261–262

listing_10_1_employee.

pl, 287, 290–291
listing_10_2_collate.pl,

287, 294–295
listing_10_3_locale_

sort.pl, 287, 295–296
listing_11_1_primes.pl,

315, 317–318, 333
listing_12_1_episode.pl,

353, 373, 381
listing_13_1_age.pl, 399,

416
listing_15_1_get_links.

pl, 481, 512, 514
listing_15_2_get_

comments.pl, 481, 514
listing_15_3_post_

character.pl, 481, 515
listing_16_1_make_

database.pl, 523,
529–530, 532

listing_16_2_populate_

database.pl, 523, 531
listing_16_3_select.pl,

523, 533
listing_17_1_directions.

pl, 545, 553–554
listing_17_2_wc.pl, 545,

564
listing_18_1_cal.pl, 567,

582–584
listing_19_1_dbic.pl, 611,

621–623
listing_19_2_letter.pl,

611, 630, 632, 652, 690
List::Util, 116
Little, Stevan, 400
load_namespaces(), 615, 622
local(), 119–120
local variables, 71–72
localtime, 370
log(), 101
logic programming, 594–595

bindex.indd 704bindex.indd 704 10/08/12 3:51 PM10/08/12 3:51 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

705

London Perl Mongers – Moose

London Perl Mongers, 594
lookahead/lookbehind anchors,

236–238, 247
looks_like_number(), 97, 191, 217
[:lower:], 232
lowercase next character (\l),

50, 224
lowercase until \E (\L), 50, 224
lt, 104
-lv t/lib t/lib/TestsFor/TV/

Episode.pm, 476, 477
-lv t/test_classes.t, 464
lvalue, 93, 108
lvalue | rvalue(|=), 108
lvalue && rvalue (&&=), 108
lvalue & rvalue (&=), 108
lvalue ** rvalue (**=), 108
lvalue * rvalue (*=), 108
lvalue + rvalue (+=), 108
lvalue - rvalue (-=), 108
lvalue / rvalue (/=), 108
lvalue ^ rvalue (^=), 108
lvalue<< rvalue (<<=), 108
lvalue>> rvalue (>>=), 108
LWP::Protocol::https, 512
LWP::Simple, 34, 512, 513
LWP::UserAgent, 513–514

M

/m, 229
-M fi le test operator, 259
-M switch, 260
Makefile.PL, 30, 31, 32, 39, 345,

347, 348, 595, 596
Manifest, 345
map

aliasing issues, 305
Celsius/Fahrenheit example,

303–304
clever code, 307–308
combining techniques,

308–311
complicated versus simple,

306
defi ned, 115–116, 303
exercises, 312, 667–668
grep compared to, 297

Mastering Regular Expressions
(Friedl), 245

matching, regular expression
advanced, 235–241
basic, 220–235
extracting data, 226–228, 247

quantifi ers, 221–223, 247
syntax, 220

Math::Random::MT::Perl, 102
Math::Random::Secure, 102
Math::TrulyRandom, 102
maze generator, recursive, 212–215
maze.pl, 175, 212–217, 549, 598
McConnell, Steve, 613
MD5 digest, 437, 674–675
media class

create, 620
lib/My/Schema/Result/

Media.pm, 611, 620
media table, 530, 619
media type class

create, 620–621
lib/My/Schema/Result/

MediaType.pm, 611, 620
media_types table,

530, 619
memoization, 211–215, 218
--merge, 447
Meta Object Protocol, 410
metacharacters, 223, 230
metacpan, 27
metadata, 371
metaprogramming, 410,

422, 425, 433
methods. See also specifi c methods

BUILD, 406–408, 438
BUILDARGS, 405–406, 434, 438
can(), 386–387
class methods, 363, 615
defi ned, 398
DOES(), 385
instance method, 363
isa(), 385–386
method resolution order, 396
new(), 357, 377, 400, 465, 673
private, 362, 370, 387, 388, 389
as subroutines, 355, 358–363,

397, 398
unnecessary, 393
VERSION(), 387

method modifi ers
after, 417–418, 438
before, 417–418, 438
around(), 406
augment, 418–420, 438
inner, 418–420, 438

method resolution order, 396, 410
method signatures, 426–427
mimicking builtins, 204–205
mIRC, 8
Miyagawa, Tatsuhiko, 484

MODE, 251
models

Catalyst, 643–646
MVC, 492, 654

Model-View-Controller pattern
(MVC). See also Catalyst

beauty, 635–638
defi ned, 492, 654
Plack, 492

modifi ers, 228–230, 247
modules. See also CPAN; specifi c

modules
base, 377
CPAN

breadth, 26
download, 29–30
fi nding and evaluating,

26–29
installation, 29–39

creating, 345–349
defi ned, 351
directories/fi les, 276–284
exercises, 350, 668–672
installable distribution,

346–348
installing, 29–39, 345–349
require statement,

321–323, 351
use statement, 321–323, 351
version numbers, 326–327

Module::Build, 32, 35, 349
Module::Build::Authoring, 349
Module::Starter, 316, 344–345
modulus operator (%), 99, 301
Mojolicious, 26, 490, 634
Mono/.NET, 2
Montulli, Lou, 500
Moose, 399–438

advanced features, 413–431
attributes

defaults vs., 434
defi ned, 402, 438
reaching inside the object,

360, 394
read-only, 402, 434–435
type constraints, 414–417
using, 402–405

best practices, 433–436
BUILD, 406–408, 438
BUILDARGS, 405–406, 434, 438
classes

namespace::autoclean,
409–410, 411, 434

Person class, 411–413
standard shell, 410, 434

bindex.indd 705bindex.indd 705 10/08/12 3:51 PM10/08/12 3:51 PM

706

Moose – object relational mappers

Moose (Continued)
coercions, 462
custom types, 414, 435
defi ned, 438
exercises, 437, 674–676
helper functions, 409, 415
history, 400
inheritance, 408–409
metaprogramming, 410, 422,

425, 433
method modifi ers

after, 417–418, 438
before, 417–418, 438
around(), 406
augment, 418–420, 438
inner, 418–420, 438

OO Perl vs., 402
roles

advanced, 423–425
basic, 420–423
consuming, 420, 421,

435–436, 437
defi ned, 420, 438
DOES(), 385, 422
Does::ToHash, 437,

674–675
Moose::Role, 420, 424,

425, 674
multiple inheritance vs., 435
online information, 425

syntax, 400–414
TV::Episode class, 428–431
TV::Episode::Broadcast

subclass, 431–433
type constraints, 414–417

Moose::Role, 420, 424, 425, 674
Moose::Util::TypeConstraints,

403, 414, 415, 429, 430, 461, 475
MooseX:: modules, 425–428, 438
MooseX::FollowPBP, 404, 405
MooseX::Method::Signatures,

426–427
MooseX::Semi

AffordanceAccessor, 427–428
MooseX::StrictConstructor, 426
multimedia project, 527, 538. See

also rights database
multiple arguments, 178–179
multiple inheritance, 377, 394–396,

410, 435, 472. See also roles
multiplication (*), 98
my(), 43–44, 119
my variables, 67–69
MyDatabase, 528
mylength(), 198, 199, 203, 204

My::Number::Utilities,
316–319, 321, 322, 324, 325,
327–329

My::Schema class, 622
My::Schema::Result::License,

619–624
My::Schema::Result::Media,

619–624
My::Schema::Result::

MediaType, 619–624
MySQL, 6, 524, 525, 526, 527, 644
mytime(), 204

N

n debugger command, 593
-n switch, 552–553
\n (newline), 50, 224, 252, 262
\N{}, 50, 224, 274, 275, 304
\N{CHARNAME}, 224
{n}, 223
{n,}, 223
{n,m}, 223
naïve sort, 309, 310, 311
name attribute, HTML forms, 516
name_and_age.pl, 219, 234–235
named arguments, 179–180
named subexpressions, 238–241, 247
named unary operators, 83, 84, 110
named Unicode character, 50, 224
names (identifi ers), 45, 316
namespace::autoclean, 409–410,

411, 434
namespaces

Class::, 400
custom types, 414, 435
defi ned, 69, 351
Getopt::, 549
Object::, 400
packages and, 316–327

names.pl, 83, 118–119
naming conventions

functions, 330–331
subroutines, 330–331
variables, 45–46, 47

ne, 104
negated binding operator (!~), 220
Netscape Navigator, 500
new keyword, 357
new()constructor, 357, 358, 359,

402, 405, 673
newline (\n), 50, 224, 252, 262
new()method, 357, 377, 400, 434,

465, 673

next(), 145
next steps, 611–654. See also

Catalyst; DBIx::Class;
Template Toolkit

becoming programmers, 613
book topics

covered, 612
not covered, 613

ORMs
cons, 618–619
defi ned, 654
pros, 618–619
understanding, 613–614
Vietnam of Computer

Science, 619
Niecza, 2
nightmare situation, Unicode,

269–270
not equal (!=), 105
NULL, 528
null prototypes, 329
numbers, 51–53
numeric compare operator (<=>),

105, 290, 308
numeric operators, 98–103
numerical sorting, 289–290

O

-O fi le test operator, 259
-o fi le test operator, 259
objects

Ævar personal shopper
analogy, 354

defi ned, 354–355, 356–358,
398

functionality, 355, 371
overloading, 381–385
reaching inside, 360, 394
as references, 356–358

Object:: namespace, 400
object graph, UNIVERSAL class, 385
object oriented Perl (OO Perl),

353–398
exercises, 397, 672–673
Moose vs., 402
problem areas, 393–396
recap, 381
rules of, 355, 381

object oriented programming
(OOP), 354, 397, 400. See also
Moose

object relational mappers. See
ORMs

bindex.indd 706bindex.indd 706 10/08/12 3:51 PM10/08/12 3:51 PM

707

object system, prototype-base – perldoc

object system, prototype-base, 355
Object-Relational Impedance

Mismatch, 619
oct(), 100
octal, 82–83
octets, 267
ok(), 440, 445, 453, 457, 480
Omega, 456
one-liners, Perl, 19, 551, 553
OO Perl. See object oriented Perl
OOP. See object oriented

programming
open(), 250–251, 255–256, 263, 286
open tool, 556. See also piped opens
opendir(), 255, 256, 286
opening fi les, 250–251
operators. See also functions;

specifi c operators
arithmetic, 98–99
assignment, 108–109
bitwise, 103
functions vs., 44, 83, 94
numeric, 98–103
string, 94–95

OR (||), 106, 107, 291, 292
or die section, 251
or operator, 107
Oracle, 524, 525, 527, 618
Oraperl, 524
ord(), 86
ORMs (object-relational mappers).

See also DBIx::Class
cons, 618–619
defi ned, 654
exercise, 652, 690
pros, 618–619
understanding, 613–614
Vietnam of Computer

Science, 619
OS X

Developer Tools, 4
Linux/Unix commands, 557
terminal window, 15

our(), 71, 120
output

backticks (``), 556, 558, 559,
566

parsing wc output, 564
piped opens, 559–560, 564,

566, 686
qx operator, 556, 559–560,

563, 565, 566, 685, 686
STDERR, 89–90, 547–548,

562–563
STDOUT, 89–90, 547–548

overloading objects, 381–385
override(), 411, 434
overriding

defi ned, 374, 381
new(), 434

P

p EXPR, 593
-p fi le test operator, 259
\P{PROPERTY}, 224
\p{PROPERTY}, 224
pack(), 88–89
packages. See also classes

classes as, 355–356
defi ned, 69, 351
exercises, 350, 668–672
namespaces and, 316–327
subroutines in, 327–335

package variables
avoiding, 326
defi ned, 82
introduction, 69–72
our(), 71
using, 323–326

palindrome checker, 298
palindrome.pl, 567, 587–588
paragraphs, POD, 339, 341
parameters, handling, 490–491
params.psgi, 481, 490, 491, 492,

493, 497, 498, 500
parent class. See superclasses
parentheses [()]

functions/builtins, 84
metacharacter, 223

parse_csv.pl, 567, 569
parse_query_string(), 455
parsing. See also CSV data; XML

Getopt::Long, 549–551, 566
heuristic Perl parser, 153, 206
HTML parsing models, 243
HTML::TokeParser::Simple,

514, 521
JSON, 517
listing_9_1_targets.pl,

252–255
test for query string parser,

453–457
wc output, 564

passwords
CPAN, 35
MD5 digest, 437, 674–675
password attribute, 422
setuid, 259

percent sign (%)
modulus operator, 99, 301
printf formats, 91

performance, Benchmark module,
307, 601–604, 610

Perl
ActiveState Perl

CPAN usage, 32
ppm, 36, 40
pros/cons, 7
shebang line, 22

compiled language, 20
creator of, Wall, 1, 3, 6, 113, 399
duct tape, 481, 484
getting, 3–4, 23
history, 1–3
interpreted language, 20
job opportunities, 3
linguistics and, 355
one-liners, 19, 551, 553
OO Perl, 353–398

exercises, 397, 672–673
Moose vs., 402
problem areas, 393–396
recap, 381
rules of, 355, 381

PERL, 2
platforms, 3, 8
Strawberry Perl, 6, 7, 8, 22,

23, 32, 33
term confusion, 1–2
UNIX, 15
versions

Perl 5, 3
Perl 6, 2

on Windows, 6
perl, term confusion, 1–2
Perl 5 Porters, 3
Perl Best Practices (Conway), 405,

604, 606
Perl community, 8–10, 23
Perl Mongers, 9, 23, 594
Perl Package Manager, 36
perlbrew, 4–6
perlcritic, 605–606, 609, 610,

688, 689
Perl::Critic, 604–607, 609,

610, 690
perldoc, 11–14

FAQs, 12–14
installing, 17
perldoc -f, 14
structure, 11, 23
Try It Out, 17–18
tutorials, 12–14

bindex.indd 707bindex.indd 707 10/08/12 3:51 PM10/08/12 3:51 PM

708

PerlMonks – qr//

PerlMonks, 9, 10
perlrun, 551–553, 566
persistent database, 533
Person class

creating, 397
Customer subclass, 397, 467
in Moose, 411–413
test class

basic, 463–467
extended, 467–471

personal shopper analogy, 354.
See also Shopper::Personal class

person.pl, 399, 412
pi(), 328, 329, 379, 380
PI value, 326
pipe (|)

OR (||), 106, 107, 291, 292
bitwise “or,” 103
lvalue | rvalue(|=), 108
metacharacter, 223
rvalue if ! lvalue(||=), 108

piped opens, 559–560, 564, 566, 686
PIPs (Programme Information

Platform), 579
.pl extension, 21
placeholders, 537
Plack

creation of, 484
defi ned, 521
Hello World!, 484–490
installing, 484
MVC pattern, 492
Task::Plack, 484

Plack::Builder, 490, 504
Plack::Request, 490, 499
Plack::Session, 500
plackup character.psgi, 508,

515, 680
plackup terminal, 487, 491
Plain Old Documentation. See POD
platforms, Perl, 3, 8
plength(), 589, 590
plus sign (+)

addition, 98
autoincrement operator (++),

95–96
lvalue + rvalue (+=), 108
regular expression quantifi er,

223
POD (Plain Old Documentation),

338–344. See also perldoc
ASCII, 344
command paragraph, 339, 341
CPAN, 338
defi ned, 11, 351

formatting codes, 342–343
headings, 340–341
Latin-1, 344
linking formats, 343–344
lists, 341–342
structure, 340–342

poets.pl, 545, 562–563
polymorphism, 384
pop(), 111–112
Portland.pm group, 9
ports, 486
POST requests

defi ned, 521
handling, 496–500
security, 496, 497, 500

postfi x, 84
PostgreSQL, 524, 525, 527, 618, 644
ppm, 36, 40
Practical Extraction and Report

Language, 2
PracticalJoke, 423
pragmas, 70, 73. See also specifi c

pragmas
precedence

associativity, 109–111, 123
defi ned, 109, 123

prefi x, 84
prime numbers example, grep,

299–303
print(), 89–90
[:print:], 232
PrintError, 525, 526
printf(), 90–92, 102, 165, 285, 447
printing

arrays, 66–67
hashes, 66–67
printing name, lowercase/

uppercase, 118–119
recursively printing directory

structure, 280–284
scalars, 66–67
Unicode, 274–275

print_it.pl, 549–550
private methods, 362, 370, 387–392
private subroutines, 186, 327, 330
problem areas

aliasing issues, map/grep, 305
object oriented Perl, 393–396
regular expressions, 241–245
web clients, 511
XML specifi cation, 572

profi ling tools, 594–607
Benchmark module, 307,

601–604, 610
Devel::Cover, 594–598, 610

Devel::NYTProf, 598–601,
608, 610, 688

Perl::Critic, 604–607,
609, 610, 690

Programme Information Platform
(PIPs), 579

programmers
becoming, 613
Code Complete, 613
future, 142

programming languages. See also
Moose; object oriented Perl

defi ned, 42
dynamic, 2
OOP, 354, 397, 400
static, 2

Prolog, 243–244, 594–597
prototype-base object system, 355
prototypes

described, 200–207
null, 329

prove utility, 444–445
easiness, 477
HARNESS_PERL_SWITCHES=-

MDevel::Cover prove -l

t, 596
-It/lib, 468, 469, 477
-l switch, 348
-l t/, 477
-lv t/lib t/lib/

TestsFor/TV/Episode.

pm, 476, 477
-lv t/test_classes.t, 464
--merge, 447
t/test_class.t, 469
-v switch, 348, 444, 471, 477
-v t/query.t., 455

pseudocode, 42, 426
PSGI. See also Plack

creation of, 484
defi ned, 484, 521
plackup character.psgi,

508, 515, 680
public domain, 530, 538
pure functions, 603
push(), 111–112

Q

q, qq, 48–49
q debugger command, 593
\Q, 224
qr(), 221, 243
qr//, 243, 459

bindex.indd 708bindex.indd 708 10/08/12 3:51 PM10/08/12 3:51 PM

709

quantifi ers – rights database

quantifi ers, 221–223, 247
Queen Elizabeth/queen ant

example, 236–237
query strings

defi ned, 521
handling, 490–491
query string parser, testing,

453–457
question mark (?)

regular expression quantifi er,
223

ternary operator (?:), 131–132,
156

questions
effective, Perl community, 10
FAQs, perldoc, 12–14

quote-like operators, 48–49, 111,
221, 559

quotes, 48–49
qw, 57
qx operator, 556, 559–560, 563,

565, 566, 685, 686

R

r debugger command, 593
-R fi le test operator, 259
-r fi le test operator, 258
\r (carriage return), 50, 224, 253
RaiseError, 525, 526, 542
rand(), 101–102
range operator (..), 97, 135, 136,

137, 302
reaching inside the object,

360, 394
read, update, delete, create

operations. See CRUD
readdir(), 265, 286
reading CSV data, 569–570
reading directories, 265
reading fi les, 251–256
reading XML data, 572–576
README, 345
ReadOnly, 525
read-only attributes, 402, 434–435
read-write, 257, 380, 393, 402, 427,

428, 466
REAL, 528
real uid/gid, 259
Really::Private, 330–331
reciprocal(), 192, 206, 440,

452, 478
recursive maze generator, 212–215
recursive subroutines, 209–215

recursively printing directory
structure, 280–284

redo statement, 146
references, 157–174

anonymous, 160–163, 174
array, 158–159, 357
complex data structures,

157–158, 162–167, 172,
173, 174

creating, 158
debugging, 166–169
deep copying, 169–171
defi ned, 158, 174
exercises, 173, 659–660
hard, 168
hash, 159–160, 401
objects as, 356–358
other, 163
slices, 172
subroutine, 163, 196–199
symbolic, 168
working with, 166–172

Referer, 497, 504
Regexp::Common, 241–244, 247
regular expressions, 219–247

additional information, 245
anchors, 228–230, 247
binding operator (=~), 94, 220,

221, 240
building data structures,

226–228
character classes, 231–232, 247
complicated, 243
composing, 243–244
converting date formats,

240–241
defi ned, 219, 247
escape sequences, 223–226
exercises, 245–246,

661–663
grouping, 232–235, 247
HTML, 242–243
issues, 241–245
lookahead/lookbehind

anchors, 236–238, 247
Mastering Regular

Expressions, 245
matching

advanced, 235–241
basic, 220–235
extracting data, 226–228,

247
quantifi ers, 221–223, 247
syntax, 220

modifi ers, 228–230, 247

named subexpressions,
238–241, 247

Regexp::Common, 241–244,
247

Social Security numbers
example, 245, 661

substitutions, 235–236, 247
Unicode character properties,

275–276
relational databases, 524. See also

databases
repetition, x operator, 94
require statement, 321–323, 351
require_ok, 452
response codes, 486, 512
result classes

My::Schema::Result::

License, 619–624
My::Schema::Result::

Media, 619–624
My::Schema::Result::

MediaType, 619–624
return(), 186
returning data, subroutines,

186–190
reuse code, 453
reverse(), 114
reverse sorting, 290
right shift operator (>>), 103
Rights application

autogenerating shell, 636–640
controllers, 646–648
CRUD, 648–651
models, 643–646
purpose, 636
views, 641–643
writing, 640–641

rights database
bind parameters, 536–538
checking if works, 530–531
creating, 528–530
data

inserting, 539–540
selecting, 533–536
updating, 539–540

DBI code converted to
DBIx::Class, 619–624

DMCA takedown notices, 527,
652, 693, 694

fetching records from table,
538–539

licenses table, 530, 619
listing_16_1_make_

database.pl, 523,
529–530, 532

bindex.indd 709bindex.indd 709 10/08/12 3:51 PM10/08/12 3:51 PM

710

rights database – sort

rights database (Continued)
listing_16_2_populate_

database.pl, 523, 531
media table, 530, 619
media_types table, 530, 619
multimedia project, 527, 538
populate, 531–533
purpose, 527
result classes

My::Schema::Result::

License, 619–624
My::Schema::Result::

Media, 619–624
My::Schema::Result::

MediaType, 619–624
sqlite3 client, 530
video_to_media lookup

table, 652–653, 691–694
Rights::Schema::Result::

classes, 652
Rights::Schema::Result::Lice

nse, 649, 650
Rights::Schema::Result::

Media, 649, 653, 691
Rights::Schema::Result::Medi

aToVideo, 652, 691
Rights::Schema::Result::Medi

aType, 645, 649, 650
Rights::Schema::Result::

Video, 652, 691
rindex(), 86–87
roles

advanced, 423–425
basic, 420–423
consuming, 420, 421,

435–436, 437
defi ned, 420, 438
DOES(), 385, 422
Does::ToHash, 437, 674–675
Moose::Role, 420, 424,

425, 674
multiple inheritance vs., 435
online information, 425

Role::Serializable::JSON,
420, 421, 422

Rolsky, Dave, 580
Rose::DB, 26, 614, 618
Rosler, Larry, 310
running_total(), 185–186
running_total.pl, 175,

185–186
rvalue, 93, 108
rvalue if ! defi ned lvalue (//=), 108
rvalue if ! lvalue(||=), 108

S

/s, 229
s debugger command, 593
-S fi le test operator, 259
-s fi le test operator, 259
S pattern, 593
S<text>, 343
\S, 224
\s, 224
scalars, 46–53

defi ned, 46, 82, 84
dollar sign ($), 44
numbers, 51–53
printing, 66–67
references, 157–174

anonymous, 160–163, 174
array, 158–159
complex data structures,

157–158, 162–167, 172,
173, 174

creating, 158
debugging, 166–169
deep copying, 169–171
defi ned, 158, 174
exercises, 173, 659–660
hard, 168
hash, 159–160
other, 163
slices, 172
subroutine, 163, 196–199
symbolic, 168
working with, 166–172

strings, 47–51
escape sequences, 50–51
functions, 85–94

using, 84–111
scalar context, 63–64
Scalar::Util, 97
Schwartz, Randal, 310
Schwartzian Transform (decorate,

sort, undecorate), 308–310, 311
Schwern, Michael, 349
scope, 67–72

block scopes, 67–69, 127
defi ned, 67, 82
fi le scoped, 67
globally scoped variables, 69
lexically scoped variables, 67,

68, 82, 136, 192, 323
subroutines, 216

scoping keywords, 119–121
scraping websites, 517
search.cpan.org, 26

security
HTTPS, 482, 497, 512
POST, 496, 497, 500
telnet, 483

seek(), 257
Seekers of Perl Wisdom link, 9, 10
SELECT statements, 533–536
selecting data, rights database,

533–536
sessions, 500, 521
session key, 500–504
session_expired(), 501, 504
set_budget(), 368, 369, 370
setuid, 259
setup, 471–473
sharp (#)

begins comment, 20
shebang line (#!), 21

shebang lines, 21–22
shift(), 112
Shopper::Personal class,

355–371
blueprint, 355
buy(), 359, 362, 369, 370
get_budget(), 360, 368, 370
get_invoice(), 359, 369, 370
Shopper::Personal

->hire(), 357
Shopper::Personal->new,

356
Try It Out, 363–371

shopper.pl, 353, 363, 366
shutdown, 471–473
sigils, 44–45
Signes, Ricardo, 2
sin(), 102–103
SKIP, 450
slices

array slices, 62, 172
defi ned, 61, 82
hash slices, 62, 139, 172
reference usage, 172

Social Security numbers example,
245, 661

soldier.pl, 287, 296–297
sort, 288–297

alphabetical, 288–289
clever code, 307–308
combining techniques,

308–311
complex, 290–292
complicated versus simple, 306
examples, 114–115
exercises, 312, 667–668

bindex.indd 710bindex.indd 710 10/08/12 3:51 PM10/08/12 3:51 PM

http://search.cpan.org

711

sort blocks – switches

external criteria, 296–297
forms, 288
Guttman-Rosler Transform,

310–311
naïve sort, 309, 310, 311
numerical, 289–290
reverse, 290
Schwartzian Transform

(decorate, sort, undecorate),
308–310, 311

subroutine, 292–293
Unicode situations, 293–297

sort blocks, 289, 290, 292, 310
sort LIST, 114–115, 288
source fi lters, 153–154
[:space:], 232
spaceship operator (<=>), 105,

290, 308
special variables, 80
spiders, 511
spies.pl, 249, 263–264
splice(), 112
split(), 113
splitdir(), 282, 283
splitting arrays, 141–142
Spolsky, Joel, 9, 276
Spouse::explode(), 423
Spouse::fuse(), 423
sprintf(), 90–92, 102, 285, 447,

448, 663
SQL (Structured Query Language)

defi ned, 524
duplicate column names, 535
injection attack, 536, 537
placeholders, 537

SQLite. See also rights database
data types, 528
DBD::SQLite, 524,

527–528, 544
defi ned, 527, 544
using, 527

sqlite3 client, 530
sqrt(), 102
srand(), 101–102
sreverse(), 200, 203
stack trace, 192, 402, 414
StackOverfl ow, 9–10
startup, 471–473
stat(), 258, 283
state(), 120–121
state variables, 120, 121, 181–183
stateless, HTTP, 500
statement modifi ers, 147–148
static programming languages, 2

STDERR, 89–90, 547–548, 562–563
STDIN, 547–548, 566
STDOUT, 89–90, 547–548
Strawberry Perl, 6, 7, 8, 22, 23, 32,

33. See also ActiveState Perl
strict

defi ned, 43, 82
Moose, 402
using, 72–78
warnings vs., 81, 655

strings, 47–51
escape sequences, 50–51
functions, 85–94

string eval, 192–193
string operators, 94–97
Structured Query Language. See SQL
style, coding, 184–186
subclasses (child classes)

Customer, 397, 467
defi ned, 374, 381, 398
inheritance, 374
Liskov Substitution Principle,

375, 470
TV::Episode::Broadcast,

374, 375–379, 385
Moose version, 431–433
object graph, 385
using, 374, 375–379

TV::Episode::OnDemand,
374, 381–385

subroutines, 175–218. See also
functions; methods

aliasing, 181, 215–216
anonymous, 197–199
arguments

handling, 177–178
multiple, 178–179
named, 179–180

closures, 182, 197–199
coding style, 184–186
declaring, 176–177
defi ned, 176
exercises, 217, 660–661
exporting, 327–330, 351
forward declarations, 206–207
functions vs., 84, 176
guidelines, 215–217
memoization, 211–215, 218
method modifi ers

after, 417–418, 438
before, 417–418, 438
around(), 406
augment, 418–420, 438
inner, 418–420, 438

methods as, 355, 358–363,
397, 398

mimicking builtins, 204–205
naming conventions, 330–331
overdoing, 216
in packages, 327–335
private, 186, 327, 330
prototypes, 200–207
recursive, 209–215
recursive maze generator,

212–215
returning data, 186–190
running_total(), 185–186
scope issues, 216
state variables, 120, 121,

181–183
syntax, 176

subroutine attributes, 465, 640
subroutine references, 163, 196–199
substitutions

Liskov Substitution Principle,
370, 375

regular expressions, 235–236,
247

substr(), 93
subtraction (-), 98
subtypes, 404, 414, 415, 435, 438
subtype polymorphism, 384
Subversion, 279, 345, 606, 688
super(), 411, 434
superclasses (parent classes)

defi ned, 374, 381, 398
Liskov Substitution Principle,

375, 470
SUPER::some_method, 378, 410
Switch module, 153–154
switch statement, 151
switches

command-line
-e, 552
-I, 551–552
-l, 552
-n, 552–553
perlrun, 551–553, 566

-f, 48
-M, 260
perldoc

-D switch, 11, 18
-v switch, 11

prove utility
-l, 348
-v, 348, 444, 471, 477

tr///, 94
-w, 21, 74, 75

bindex.indd 711bindex.indd 711 10/08/12 3:51 PM10/08/12 3:51 PM

712

Sybase – tr///

Sybase, 524, 525
Sybperl, 524
symbolic reference, 168
syntax

Moose, 400–414
POD, 340–342
regular expression matching,

220
subroutines, 176

system(), 556–558, 566
system Perl, 3

T

T debugger command, 593
t/ directory, 345
-T fi le test operator, 259
-t fi le test operator, 259
\t (tab), 48, 50, 224, 252
tables. See also rights database

dispatch table, 198–199
fetching records from table,

538–539
licenses table, 530, 619
media table, 530, 619
media_types table,

530, 619
tags, XML, 576
talking box example, 394–396
TAP. See Test Anything Protocol
tar command, 556–557
tarball, 348
Task::Plack, 484
tasks. See common tasks
teardown, 471–473
tell(), 257
telnet, 482–483, 484
templates

defi ned, 625
reasons for using, 625–626
web applications, 492–496

Template Toolkit, 625–634
defi ned, 654
introduction, 626–630
letters in French and English,

630–634
templates/en/letter.

tt2, 611, 630
templates/fr/letter.

tt2, 611, 630
overview, 612
tutorial, 651

unholy trinity, 612
templates/character_display.

tt, 481, 504–505, 508, 509,
510, 511, 679

templates/character.tt, 481,
504–505, 507, 510, 511, 627

templates/en/letter.tt2,
611, 630

templates/fr/letter.tt2,
611, 630

Template::Tiny, 492–496, 508,
625. See also Template Toolkit

temporary fi les, 260–261, 286
terminal window, 14–18, 23.

See also command line
terminology confusion, 1, 44, 176
terms of service (TOS), 511, 515
ternary operator (?:), 131–132, 156
tests, 439–480

basic, 440–444
code coverage, 596
Devel::Cover, 594–598, 610
exercises, 478–479, 676–678
fi le test operators, 258–259
GUIs, 596
half-million, 440
query string parser, 453–457
TV::Episode class, 475–477
xUnit style testing, 461

Test Anything Protocol (TAP),
441, 443

test class
basic, 463–467
extended, 467–471
TV::Episode::Broadcast

subclass, 479, 677–678
test control methods, 471–474
test functions

can_ok, 453
diag(), 453
eval{}, 451–452
is(), 440, 445–448, 449, 480
isa_ok, 453
is_deeply(), 449–450,

456, 480
like(), 448–449
miscellaneous, 453
ok(), 440, 445, 453, 457, 480
require_ok, 452
SKIP, 450
TODO, 450–451
use_ok, 452

test plan, 440, 441

test scripts. See also testit.t
t/ directory, 443

Test::Builder, 443, 461
Test::Class, 461–477
Test::Differences, 457–458
Test::Exception, 459
Test::Harness, 443–444. See also

prove utility
testit.t, 443
Test::Kit, 461
TestMe package, 442–443
Test::More

test functions, 444–453
can_ok, 453
diag(), 453
eval{}, 451–452
is(), 440, 445–448, 449,

480
isa_ok, 453
is_deeply(), 449–450,

456, 480
like(), 448–449
miscellaneous, 453
ok(), 440, 445, 453, 457,

480
require_ok, 452
SKIP, 450
TODO, 450–451
use_ok, 452

using, 440–442
Test::Most, 460–461
TestsFor::Person, 463–467
Test::Simple, 442
Test::Unit, 461
Test::Warn, 460
TEXT, 528
Text::CSV, 569
Text::CSV::Encoded, 570
Text::CSV_XS, 569–571, 610
three-argument form, open(), 250,

256, 263, 265, 560
time. See dates
time_remaining(), 501
timethese(), 602
t/lib/TestsFor/Customer.pm,

439, 467, 468, 469, 471
t/lib/TestsFor/Person.pm, 439,

463, 471
TODO, 450–451
TOS. See terms of service
t/query.t, 439, 454, 455,

477, 678
tr///, 93–94

bindex.indd 712bindex.indd 712 10/08/12 3:51 PM10/08/12 3:51 PM

713

transactions – Unicode

transactions, 540–541, 544
transfer_money(), 541
trees, 574
tree utility, 280–281
tree-branched XML parser, 574
tree.pl, 249, 281–282, 284, 317,

333, 344, 638, 644
trigonometric functions, 102–103
Trout, Matt, 612, 614
true/false values, 106, 121, 126,

186–187, 656
truncate(), 257
Try It Out. See also exercises;

listings
binary search, 210–211
Celsius/Fahrenheit example,

map, 303–304
character generator for game,

504–511
convert DBI code to

DBIx::Class, 619–624
converting date formats,

240–241
cookies for session key,

500–504
CPAN client, confi guration,

38–39
dispatch table, 198–199
distance conversion,

331–335
duplicate array elements,

138–140
episode versions, 389–392
fetching records from table,

538–539
Fibonacci sequence, 197–198
File::Find::Rule install,

38–39
fi ltering fi les (spies example),

263–265
/g and [:alpha:], 234–235
Google’s Directions API,

517–519, 553–556
google_directions.pl,

481, 517–518
listing_17_1_

directions.pl, 545,
553–554

grep- prime numbers
example, 299–303

Hello World, 20
installable distribution,

346–348

letters in French and English,
630–634
templates/en/letter.

tt2, 611, 630
templates/fr/letter.

tt2, 611, 630
parsing wc output, 564
perldoc, 17–18
PerlMonks account, 10
Person class, in Moose,

411–413
printing

names, lowercase/
uppercase, 118–119

scalars, arrays, hashes,
66–67

recursive maze generator,
212–215

recursively printing directory
structure, 280–284

running_total(), 185–186
Shopper::Personal class,

363–371
sorting by external criteria,

296–297
splitting arrays, 141–142
testing query string parser,

453–457
TV::Episode::Broadcast,

with Moose, 431–433
uninitialized variables,

77–78
while vs. do while,

149–151
writing calendar display,

582–586
zip(), 208–209

Try::Tiny, 195–196
t/test_classes.t, 439, 463, 464,

466, 477, 678
t/test_class.t, 469
tunnel(), 21, 212, 213, 214,

215, 216
Turing Award, 375
Turing complete, 235
tutorials, perldoc, 12–14
TV::Episode class, 371–374

episode versions (Try It Out),
389–392

lib/TV/Episode.pm, 353,
371, 399, 439, 475

lib/TV/Episode/Version.

pm, 353, 389

Moose version, 428–431
object graph, 385
tests, 475–477
UNIVERSAL

can() method, 386–387
defi ned, 398
DOES() method, 385
isa() method, 385–386
object graph, 385
using, 385–387
VERSION() method, 387

TV::Episode::Broadcast
subclass
Moose version, 431–433
object graph, 385
test class, 479, 677–678
using, 374, 375–379

TV::Episode::OnDemand subclass,
374, 381–385

two-argument form, open(), 250,
255

type constraints, 414–417
type theory, 2
typeglobs, 158, 167, 255, 256, 266.

See also glob()

U

-u fi le test operator, 259
\u (uppercase next character), 50,

224
uc(), 87–88
ucfirst(), 87–88
uid, 259
undecorate. See decorate, sort,

undecorate
undef value, 47
underscore (_)

names, 45, 316
private methods, 387
private subroutine, 186, 327,

330
unholy trinity, 612. See also

Catalyst; DBIx::Class;
Template Toolkit

Unicode, 266–276
additional information, 276
case folding, 272
character properties, 275–276,

286
converting between encodings,

272

bindex.indd 713bindex.indd 713 10/08/12 3:51 PM10/08/12 3:51 PM

714

Unicode – Weather::Google

Unicode (Continued)
decoding data, 268
defi ned, 267, 286
encoding data, 268–269
named Unicode character,

50, 224
nightmare situation, 269–270
printing, 274–275
sorting data, 293–297

Unicode Collation Algorithm,
294, 313

Unicode::Collate, 294–296
uninitialized variables, 77–78
uninitialized warnings,

140–141
unique(), 478, 676
unique.pl, 125, 138–139
UNITCHECK blocks, 337–338
UNIVERSAL class

can() method, 386–387
defi ned, 398
DOES() method, 385
isa() method, 385–386
object graph, 385
using, 385–387
VERSION() method, 387

UNIX. See also Linux
commands, OS X, 557
Development Support tools, 4
Perl, 15

unless statement, 128–131
unnecessary methods, 393
unpack(), 88–89
unshift(), 112
until loops, 142–144
update, create, read, delete

operations. See CRUD
updating data, rights database,

539–540
[:upper:], 232
uppercase next character (\u),

50, 224
uppercase until \E (\U), 50, 224
uptime command, 559
URI::Escape, 454
use statement, 321–323, 351
use_ok, 452
UTF-8

ASCII and, 267
defi ned, 286
everything, 273
is_utf8(), 273
shortcut, 274

utf8::all, 274–275, 289
UTF-16, 267, 272
UTF-32, 267

V

v debugger command, 593
-v switch

perldoc, 11
prove utility, 348, 444, 471,

477
-v t/query.t, 455
values(), 117
values, hashes, 58
VARCHAR(255), 528
variables, 41–82. See also arrays;

scalars
built-in, 78–80, 82
context, 63–66

defi ned, 63, 82
importance, 42
types, 63

declaring, 43–44
defi ned, 42
exercises, 81, 655–656
hashes, 58–61

accessing elements, 59
anonymous, 162–163
arrays compared to, 58
curly braces, 59
data added to, 60–61
defi ned, 58, 82, 116
dollar sign ($), 59
fruits exercise, 81, 656
iterating over hashes, 60
keys, 58
printing, 66–67
in scalar context, 64
values, 58
writing, tips, 60–61

lexically scoped, 67, 68, 82,
136, 192, 323

local, 71–72
my, 67–69
naming conventions, 45–46,

47
package variables

avoiding, 326
defi ned, 82
introduction, 69–72
our(), 71
using, 323–326

scope, 67–72
block scopes, 67–69, 127
defi ned, 67, 82
fi le scoped, 67
globally scoped variables,

69
lexically scoped variables,

67, 68, 82, 136, 192,
323

subroutines, 216
special, 80
state, 120, 121, 181–183
uninitialized, 77–78

variables.pl, 41, 66–67
vars pragma, 70–71
verbatim text, 342
version numbers, 326–327
VERSION()method, 387
video media type, 530
video_to_media lookup table,

652–653, 691–694
Vietnam of Computer Science, 619.

See also ORMs
views. See also Model-View-

Controller pattern
Catalyst, 641–643
MVC, 492, 654

virtual method, 628
Vromansbecause, Johan, 549
$^V, 80

W

W EXPR, 593
w EXPR, 593
-W fi le test operator, 259
-w fi le test operator, 258
-w switch, 21, 74, 75
\w, 224
Wall, Larry, 1, 3, 6, 113, 399
wantarray(), 189–190
wanted(), 277
Wardley, Andy, 612
warnings. See also Test::Warn

defi ned, 43, 82
Moose, 402
strict vs., 81, 655
uninitialized, 140–141
using, 72–78

wc utility, 560–561, 564
weather modules search, 27–28
Weather::Google, 28–31, 34

bindex.indd 714bindex.indd 714 10/08/12 3:51 PM10/08/12 3:51 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

715

web applications – zip.pl

web applications. See also
Catalyst

anne_frank_stamp.jpg, 481,
487–490, 493, 532, 648

character generator for game,
504–511

cookies, pass session key,
500–504

handling parameters, 490–491
templates, 492–496
writing

Hello World!, 484–490
overview, 482

web clients, 511–520
browsers compared to, 511
issues, 511
spiders, 511
writing

examples, 512
extracting comments from

web pages, 514–515
extracting links from web

pages, 512–514
overview, 482
pattern, 512
web form example,

515–517
web form example, 515–517
web frameworks. See also

Catalyst

CGI::Application, 634
Dancer, 26, 482, 490,

607, 634
Mojolicious, 26, 490, 634
types, 26, 634

web pages
extracting comments, 514–515
extracting links, 512–514
scraping websites, 517

“whatever” operator. See range
operator

while loops
do while vs., 149–151
fi lehandle, 253
lists, 143–144
using, 142–144

whitespace, 130, 342
wide character in print, 272–273
Wide character in print

warning, 269, 270, 272, 304
wide hex character, 50
Windows

ActiveState Perl
CPAN usage, 32
ppm, 36, 40
pros/cons, 7
shebang line, 22
Strawberry Perl, 6

fi lename delimiter, 37, 252
Perl on, 6
.pl extension, 21
Strawberry Perl, 6, 7, 8, 22,

23, 32, 33
terminal window, 16

[:word:], 232
work directory, 16–17
write_csv.pl, 567, 570
writing calendar display, 582–586
writing CSV data, 570–571
writing fi les, 256–258
writing hashes, 60–61
writing Hello World!, 484–490
writing Rights application,

640–641
writing to input, 560–561
writing web clients. See web clients
writing XML data, 576–579
WSGI, 484. See also Plack
WWW::Mechanize, 515–516, 519,

520, 521, 680

X

/x, 229
x= (lvalue x rvalue), 108
x command, 589
x EXPR, 593
-X fi le test operator, 259
-x fi le test operator, 258
x operator, 94
\x{263a}, 50

[:xdigit:], 232
XML (Extensible Markup

Language), 571–579
Data::XML::Variant, 572
example_18_4_library.

xml, 567, 571, 575
example_18_5_xml_simple.

pl, 567, 572
example_18_6_xml_twig.

pl, 567, 575
example_18_7_xml_writer.

pl, 567, 577
PIPs, 579
problem, 572
reading, 572–576
specifi cation area, 572
tags, 576
tree-branched parser, 574
writing, 576–579

XMLout(), 576
XML::Simple, 572–574, 576, 610
XML::Twig, 574–576, 610
XML::Writer, 576–578, 610
XML::Writer::String, 576–578
XPath, 574
XSLT (Extensible Stylesheet

Language Transformations), 574
xUnit style testing, 461. See also

Test::Class

$^X, 80, 453, 563

Y

y///, 93–94
Y2K, 580
YAML, 263, 579, 635

Z

-z fi le test operator, 258
\Z, 224
\z, 224
zip() exercise, 208–209
zip.pl, 175, 208–209

bindex.indd 715bindex.indd 715 10/08/12 3:51 PM10/08/12 3:51 PM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox54 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

Read thousands of books for free online with with
this 15-day trial offer.

badvert.indd 716badvert.indd 716 23/08/12 5:02 PM23/08/12 5:02 PM

http://www.safaribooksonline.com/wrox54

9781118013847-cover-rb4.indd 2 8/2/12 4:36 PM

mailto:wrox-partnerwithus@wrox.com
http://newsletter.wrox.com
http://facebook.com.wroxpress

9781118013847-cover-rb4.indd 2 8/2/12 4:36 PM

	Beginning Perl
	Copyright
	Credits
	About the Author
	About the Technical Editor
	Acknowledgments
	Contents
	Introduction
	Who this Book is for
	If You Have No Programming Experience
	If You're An Experienced Programmer

	What this Book Covers
	How this Book is Structured
	What You Need to Use this Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Chapter 1: What is Perl?
	Perl Today
	Getting Perl
	Working with Non-Windows Platforms: perlbrew
	Using Windows

	The Perl Community
	IRC
	PerlMonks
	Perl Mongers
	StackOverflow

	Using perldoc
	Understanding the Structure of perldoc
	Getting Started with perldoc
	Using Tutorials and FAQs
	Using the perldoc - f function

	Using a Terminal Window
	Using the Command Line
	Creating a Work Directory

	Creating Hello, World!
	Writing Your First Program
	Shebang Lines

	Summary

	Chapter 2: Understanding the CPAN
	CPAN and METACPAN
	Finding and Evaluating Modules
	Downloading and Installing

	CPAN Clients
	Using the CPAN.pm Client
	Using the Cpanm Client
	PPM
	CPAN::Mini

	Summary

	Chapter 3: Variables
	What Is Programming?
	A Few Things to Note Before Getting Started
	strict, warnings, and diagnostics
	The my Function
	Sigils
	Identifiers

	Scalars
	Strings
	Numbers

	Arrays
	Breaking Down the Code
	Accessing Elements
	Iterating over Arrays

	Hashes
	Accessing Elements
	Iterating Over Hashes
	Adding Data to Hashes

	Slices
	Array Slices
	Hash Slices

	Context
	Scalar Context
	List Context

	Scope
	my Variables
	Package Variables

	Strict, Warnings, and Diagnostics
	strict
	warnings
	diagnostics
	Working Without a Net

	Perl's Built-in Variables
	$_
	%ENV
	@ARGV
	Other Special Variables

	Summary

	Chapter 4: Working with Data
	Using Scalars
	Working with Strings
	Using String Operators
	Scalar::Util
	Numeric Builtins
	Bitwise Operators
	Understanding Booleans
	Assignment Operators
	Precedence and Associativity

	Array and List Functions
	Built-in Array Functions
	List::Util

	Built-in Hash Functions
	delete()
	exists()
	keys()
	values()
	each()

	Scoping Keywords
	my()
	local()
	our()
	state()

	Summary

	Chapter 5: Control Flow
	Using the if Statement
	Understanding Basic Conditionals
	else/elsif/unless
	The Ternary Operator ?:

	for/foreach loops
	Arrays
	Lists
	C-Style

	Using while/until Loops
	Lists
	last/next/redo/continue
	Labels

	Statement Modifiers
	Types of Statement Modifiers
	do while/do until

	given/when
	Basic Syntax
	The Switch Module

	Summary

	Chapter 6: References
	References 101
	Array References
	Hash References
	Anonymous References
	Other References

	Working with References
	Debugging
	Copying
	Slices

	Summary

	Chapter 7: Subroutines
	Subroutine Syntax
	Argument Handling
	Multiple Arguments
	Named Arguments
	Aliasing
	State Variables (Pre-and Post-5.10)
	Passing a List, Hash, or Hashref?

	Returning Data
	Returning True/False
	Returning Single and Multiple Values
	wantarray

	FAIL!
	"Wake Up! Time to Die!"
	carp and croak
	eval
	evalGotchas
	Try::Tiny

	Subroutine References
	Existing Subroutines
	Anonymous Subroutines
	Closures

	Prototypes
	Argument Coercion
	More Prototype Tricks
	Mimicking Builtins
	Forward Declarations
	Prototype Summary

	Recursion
	Basic Recursion
	Divide and Conquer
	Memoization

	Things to Watch For
	Argument Aliasing
	Scope Issues
	Doing Too Much
	Too Many Arguments

	Summary

	Chapter 8: Regular Expressions
	Basic Matching
	Quantifiers
	Escape Sequences
	Extracting Data
	Modifiers and Anchors
	Character Classes
	Grouping

	Advanced Matching
	Substitutions
	Lookahead/Lookbehind Anchors
	Named Subexpressions (5.10)

	Common Regular Expression Issues
	Regexp::Common
	E-mail Addresses
	HTML
	Composing Regular Expressions

	Summary

	Chapter 9: Files and Directories
	Basic File Handling
	Opening and Reading a File
	File Test Operators
	The Diamond Operator
	Temporary Files
	DATA as a File
	binmode

	Directories
	Reading Directories
	Globbing

	Unicode
	What Is Unicode?
	Two Simple Rules
	Lots of Complicated Rules

	Useful Modules
	File::Find
	File::Path
	File::Find::Rule

	Summary

	Chapter 10: Sort, Map, and Grep
	Basic Sorting
	Sorting Alphabetically
	Sorting Numerically
	Reverse Sorting
	Complex Sort Conditions
	Writing a sort Subroutine
	Sorting and Unicode Fun!

	map and grep
	Using grep
	Using map
	Aliasing Issues
	Trying to Do Too Much
	Trying to Be Clever

	Putting It All Together
	Schwartzian Transform (aka decorate, sort, undecorate)
	Guttman-Rosler Transform

	Summary

	Chapter 11: Packages and Modules
	Namespaces and Packages
	use Versus require
	Package Variables
	Version Numbers

	Subroutines in Other Packages
	Exporting
	Naming Conventions

	BEGIN, UNITCHECK, CHECK, INIT, and END
	BEGIN blocks
	END Blocks
	INIT, CHECK, and UNITCHECK Blocks

	Plain Old Documentation (POD)
	Documentation Structure
	Headings
	Paragraphs
	Lists
	Verbatim
	Miscellaneous

	Creating and Installing Modules
	Creating a Simple Module
	Makefile.PL or Module::Build?

	Summary

	Chapter 12: Object Oriented Perl
	What Are Objects? The Ævar the Personal Shopper
	Three Rules of Perl OO
	Class Is a Package
	An Object Is a Reference That Knows Its Class
	A Method Is a Subroutine

	Objects – Another View
	Using TV::Episode
	Subclassing
	Using TV::Episode::Broadcast
	Class Versus Instance Data

	A Brief Recap
	Overloading Objects
	Using UNIVERSAL
	Understanding Private Methods

	Gotchas
	Unnecessary Methods
	"Reaching Inside"
	Multiple Inheritance

	Summary

	Chapter 13: Moose
	Understanding Basic Moose Syntax
	Using Attributes
	Using Constructors
	Understanding Inheritance
	Taking Care of Your Moose

	Advanced Moose Syntax
	Using Type Constraints
	Using Method Modifiers
	Understanding and Using Roles
	Exploring MooseX
	Rewriting Television::Episode

	Moose Best Practices
	Use namespace::autoclean and Make Your Class Immutable
	Never Override new()
	Always Call Your Parent BUILDARGS Method
	Provide Defaults if an Attribute is Not Required
	Default to Read-Only
	Put Your Custom Types in One Module and Give Them a Namespace
	Don't Use Multiple Inheritance
	Always Consume All Your Roles at Once

	Summary

	Chapter 14: Testing
	Basic Tests
	Using Test::More
	Writing Your Tests
	Understanding the prove Utility

	Understanding Test::More Test Functions
	Using ok
	Using is
	Using like
	Using is_deeply
	Using SKIP
	Using TODO
	Using eval {}
	Using use_ok and require_ok
	Working with Miscellaneous Test Functions

	Using Other Testing Modules
	Using Test::Differences
	Using Test::Exception
	Using Test::Warn
	Using Test::Most

	Understanding xUnit Style Using Testing
	Using Test::Class
	A Basic Test Class
	Extending a Test Class
	Using Test Control Methods
	Calling Parent Test Control Methods

	Summary

	Chapter 15: The Interwebs
	A Brief Introduction to HTTP
	Plack
	Hello, World!
	Handling Parameters
	Templates
	Handling POST Requests
	Sessions

	Web Clients
	Extracting Links from Web Pages
	Extracting Comments from Web Pages
	Filling Out Forms Programmatically

	Summary

	Chapter 16: Databases
	Using the DBI
	Connecting to a Database
	Using SQLite
	Using DBD::SQLite

	Selecting Basic Data
	Using SELECT Statements
	Using Bind Parameters
	Inserting and Updating Data
	Creating Transactions
	Handling Errors

	Summary

	Chapter 17: Plays Well with Others
	The Command Line
	Reading User Input
	Handling Command-Line Arguments
	perlrun

	Other Programs
	Running an External Program
	Reading Another Program's Output
	Writing to Another Program's Input
	STDERR

	Summary

	Chapter 18: Common Tasks
	Using CSV Data
	Reading CSV Data
	Writing CSV Data

	Understanding Basic XML
	Reading CSV Data
	Writing CSV Data

	Handling Dates
	Using the DateTime Module
	Using Date::Tiny and DateTime::Tiny

	Understanding Your Program
	Using the Debugger
	Profiling
	Perl::Critic

	Summary

	Chapter 19: The Next Steps
	What Next?
	What This Book Covers
	What This Book Leaves Out

	Understanding Object-Relational Mappers
	Understanding DBIx::Class
	Understanding Basic DBIx::Class Usage
	Understanding the Pros and Cons of an ORM
	Using DBIx::Class::Schema::Loader

	Using the Template Toolkit
	Why Use Templates?
	An Introduction to Template Toolkit

	Using Catalyst to Build Apps
	The Beauty of MVC
	Setting Up a Catalyst Application
	Using Catalyst Views
	Using Catalyst Models
	Using Catalyst Controllers
	CRUD: Create, Read, Update, and Delete

	Summary

	Appendix: Answers to Exercises
	Chapter 3: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 4: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 5: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution
	Exercise 5: Solution
	Exercise 6: Solution

	Chapter 6: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 7: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 8: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 9: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution
	Exercise 5: Solution

	Chapter 10: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 11: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution
	Exercise 5: Solution (Option)

	Chapter 12: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 13: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution

	Chapter 14: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 15: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution

	Chapter 16: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution

	Chapter 17: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 18: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution
	Exercise 5: Solution

	Chapter 19: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Index
	Advertisement

